что такое коагуляция белка в кулинарии
Коагуляция белков
Если продукт, содержащий белок, нагревают после его денатурации дальше, то добавленное тепло заставляет денатурированные белки передвигаться гораздо быстрее. Развернутые белковые цепи при контакте будут притягиваться друг к другу и формировать белковые сети. Этот процесс известен в науке под названием «коагуляция».
Коагуляция в кулинарии «ответственна» в том числе и за потерю прозрачности сырого яйца в процессе нагрева.
Смыкающиеся цепи белка не позволяют свету проникать внутрь, и прозрачность продукта утрачивается.
Сети белков в процессе коагуляции выступают некой «ловушкой» для воды. Попадая внутрь и связываясь с белками, она превращает жидкость в гель, снижая его текучесть.
Коагуляция может быть как полезна для кулинара, так и доставлять реальные неудобства на кухне. Пельмени, вареники, клецки, макароны и другие изделия из пшеничной муки сохраняют свою форму только благодаря коагуляции белковых сетей, а заварной крем становится комковатым потому, что яичные белки были нагреты до слишком высокой температуры и в денатурированных белках начался процесс коагуляции.
Кулинарный закон:
? Кислоты способствуют и ускоряют коагуляцию белков, крахмалы – замедляют коагуляцию.
Говоря о белках и их роли в кулинарных процессах нельзя не сказать о таком явлении, как синерезис, которое уже упоминалось выше. Синерезис – процесс вытеснения воды или жидкости из белковых сетей в продукте. Это происходит из-за наличия электростатических напряжений между положительными и отрицательными заряженными атомами серы в белковых продуктах.
Процесс синерезиса всегда нежелателен в приготовлении пищи, поскольку ведет к тому, что пища высыхает.
Данный текст является ознакомительным фрагментом.
Что такое коагуляция белка в кулинарии
Федор Сокирянский, Илья Лазерсон
Кулинарная наука, или Научная кулинария
ЭТА КНИГА СТАНЕТ НЕ ТОЛЬКО ОТПРАВНОЙ ТОЧКОЙ В ВАШЕМ УВЛЕКАТЕЛЬНОМ ПУТЕШЕСТВИИ В МИР ФИЗИКИ И ХИМИИ ПИЩЕВЫХ ПРОДУКТОВ, но и позволит УСОВЕРШЕНСТВОВАТЬ ПРАКТИЧЕСКИЕ КУЛИНАРНЫЕ НАВЫКИ И МАСТЕРСТВО. ЖЕЛАЕМ ВАМ ПОБОЛЬШЕ НОВЫХ КУЛИНАРНЫХ СВЕРШЕНИЙ И ГАСТРОНОМИЧЕСКИХ ОТКРЫТИЙ.
И ПОМНИТЕ: САМЫЙ КОРОТКИЙ ПУТЬ К КУЛИНАРНОЙ НАУКЕ ЛЕЖИТ ЧЕРЕЗ НАУЧНУЮ КУЛИНАРИЮ!
Вы держите в руках довольно необычную книгу о кулинарии. Вопреки возможным ожиданиям читателя, в ней нет кулинарных рецептов, пошаговых инструкций по приготовлению блюд, списков ингредиентов и красивых фотографий. В отличие от большинства кулинарных изданий, отвечающих на вопрос «Как готовить те или иные блюда?», данная книга отвечает на вопрос «Почему те или иные блюда готовятся тем или иным образом?».
Кулинарная наука открывает удивительный мир химических и физических явлений, происходящих в процессе приготовления пищи. В книге рассказывается о составе и свойствах продуктов питания, особенностях их приготовления, хранения и подачи, о новых способах кулинарной обработки пищевых продуктов с использованием привычной бытовой техники и стандартного кухонного инвентаря.
Научная кулинария – это совершенно новый подход к приготовлению пищи, получивший распространение за рубежом и у нас всего несколько лет назад. Суть его заключается в применении базовых знаний химии и физики для создания новых кулинарных блюд, с учетом сочетаемости исходных продуктов, их вкуса, цвета, аромата, консистенции, плотности, кислотности, растворимости и других свойств. В ресторанном бизнесе это кулинарное течение получило название «молекулярная гастрономия», в книге используется термин «научная кулинария». Научная кулинария – это мир неожиданных открытий о давно известных и любимых нами фруктах и овощах, мясе и рыбе, хлебе и сладостях.
Как известно, любая природная материя состоит из молекул и атомов. Но знаете ли вы, что вкус жареной говядины формируется более чем 600 видами различных молекул? Приходило ли вам в голову, что из одного куриного яйца можно взбить 1 кубический метр пены?! Что из куриного бульона готовится прекрасное фруктовое желе? А за вкус приготовленных продуктов «отвечает» одна химическая реакция – реакция Майяра? Вы хотите знать, почему пельмени всплывают из воды при варке, почему яблоки темнеют при нарезке, почему нельзя снимать накипь с бульона и зачем жарить рис перед отвариванием? Если вас интересуют ответы на эти вопросы – эта книга для вас, а если у вас есть дети-подростки, то и для них.
Прилавки магазинов ломятся от огромных количеств разнообразных «лакомств» промышленного производства в соблазнительных ярких упаковках. Реклама в средствах массовой информации назойливо (на грани агрессии) призывает к их употреблению. Устоять трудно. Напор торговцев и рекламщиков воздействует: у детей и подростков формируется не совсем верная модель пищевого поведения. Газированные напитки, снеки и сладости вытеснили из детского рациона питания традиционные полезные и вкусные продукты. Родителям порой тяжело убедить ребенка есть «правильную» пищу и отказаться от столь притягательных, но вредных продуктов. В отличие от зарубежных стран в наших школах пока еще серьезно не обучают правильному и здоровому питанию. Любой ребенок от природы наделен чувством любопытства и жаждой познания всего нового. Задайтесь вопросом, много ли знают наши дети о еде, продуктах питания и способах их приготовления? К сожалению, почти ничего. Эта книга может стать первым шагом в формировании живого и осознанного интереса к кулинарии и продуктам питания у вашего ребенка.
Мы убеждены, что книга «Кулинарная наука, или Научная кулинария», будет интересна и взрослым, и школьникам, и домохозяйкам, и профессионалам. Она откроет читателю поразительный мир пищевых продуктов и кулинарии в неожиданном аспекте.
Часть I Просто о сложном: состав основных категорий пищевых продуктов и химико-физические изменения продукта в процессах его приготовления, обработки и хранения
Глава 1 Углеводы, белки, жиры, вода – основа продуктов
Вся еда, которую мы употребляем в пищу, содержит три основные группы молекул: сахара, белки и жиры. Молекулы сахаров состоят из атомов углерода, водорода и кислорода. Многих из сахаров называются углеводами, поскольку они состоят из перечисленных выше атомов. Строго говоря, сахара включают в себя не только углеводы, но и многие другие соединения – крахмал и даже целлюлозу (главную составляющую деревьев!).
Множество соединенных между собой единиц сахара называются полисахаридами, а в другом физическом состоянии, без контакта с водой и возможностью соединяться с ее молекулами, – моносахаридами. Нам, кулинарам, хорошо известны такие моносахариды, как глюкоза, фруктоза и галактоза. Некоторые из них мы используем в процессе приготовления пищи буквально каждый день.
Глюкоза, фруктоза и галактоза имеют одинаковую химическую формулу (С6Н12O6), но расположение атомов в данных сахарах отличается в каждом конкретном случае, что влияет на главное – вкус этих веществ.
Моносахариды – глюкоза, фруктоза и галактоза
В чем содержатся эти вещества?
Глюкоза и фруктоза присутствуют во многих фруктах и в меде, а также в смеси с другими сахарами. Галактоза же – в неферментированных молочных продуктах.
Сладкие фрукты и овощи (морковь и свекла) содержат довольно много сахаров. Фруктоза – самая сладкая из всех трех видов сахаров, на втором месте по сладости находится глюкоза.
Однако, если нагревать фруктозу до 60 °C, например, при варке вишневого варенья, готовое лакомство окажется кислым. Этот феномен объясняется тем, что при достижении данной температуры, сладость фруктозы снижается ровно в два раза. Именно поэтому знающие хозяйки, употребляя фруктозу с чаем, кладут в чашку всегда на 2–3 ложки больше, нежели обычного сахара рафинада. А вот глюкоза в чистом виде вообще не применяется в качестве подсластителя, так как она еще менее сладкая, чем фруктоза.
Если быть совсем точным, нужно отметить, что ни один из перечисленных сахаров в кулинарии не применяется в чистом виде. Обычно используется дисахарид – их «старший брат», состоящий из более крупных молекул сахара.
Дисахариды – сахароза, лактоза и мальтоза
В кулинарии и пищевой промышленности известны три вида дисахаридов: сахароза, лактоза и мальтоза.
Поговорим о каждом из них в отдельности.
Сахароза состоит из химического соединения двух моносахаридов – глюкозы и фруктозы. Именно этот продукт мы знаем как обычный столовый кусковой сахар-рафинад, или сахарный песок. Этот второй (после фруктозы) по сладости сахар обычно используется для приготовления конфет, поскольку он имеет приятный вкус даже при высоких концентрациях, а также обладает интересными формообразующими (текстурными) свойствами. Концентрация сахара в любом продукте очень важна. Мало кто знает, что при высоких концентрациях всеми любимый коричневый тростниковый сахар становится горьким.
Лактоза состоит из соединенных вместе остатков (остатки – термин органической химии, см. глоссарий) глюкозы и галактозы. Она редко встречается в кулинарии в чистом виде, но содержится в молоке. Лактоза гораздо менее сладкая, чем сахароза, поэтому никогда не используется в качестве подсластителя.
Мальтоза состоит из двух объединенных молекул остатков глюкозы, более всего содержится в ячмене. Аромат пива, кроме зависимости от прочих исходных ингредиентов, определяется наличием мальтозы в этом продукте.
Вместе моносахариды и дисахариды образуют группу углеводов, известную в органической химии как «простые сахара». Их называют «простыми», потому что они легко разрушаются и усваиваются организмом. Кстати, это объясняет и немедленный всплеск энергии, который мы чувствуем после употребления сахаров. Например, чай с сахаром бодрит гораздо больше, чем без него. Присутствие сахаридов, наравне с кофеином, во многих сладких газировках также объясняет их тонизирующие (непродолжительные) свойства.
Что такое коагуляция белка в кулинарии
Кулинарный закон:
♦ Белки разрушаются при различных температурах, знание диапазона температур, при которых разрушаются и денатурируют белки, дает ключ к получению наилучших результатов в процессе приготовления пищи.
Коагуляция белков
Кулинарный закон:
♦ Кислоты способствуют и ускоряют коагуляцию белков, крахмалы – замедляют коагуляцию.
Ферменты и пигменты
Важно!
Белки – не просто часть мясных и рыбных продуктов, но и вещества, обеспечивающие:
♦ стабилизацию (как водно-жировой смеси, так и водно-воздушной смеси);
♦ влияние на текстуру – методом как задержки воды (гелеобразование), так и водоотведением (синерезис);
♦ влияние на вкус и качество протекания главной реакции в кулинарии реакции Майяра.
Процесс коагуляции белка – главный процесс в кулинарии, которым нужно учиться управлять.
Насыщенные жиры
Ненасыщенные жиры
Кулинарный закон:
♦ Жиры, которые используются для жарки, должны нагреваться по крайней мере до температуры 180 °C.
Жарить при более низких температурах строго не рекомендуется.
Советы кулинарам:
♦ масло при жарке нельзя недогреть и нельзя перегреть;
♦ всегда храните растительные масла в холодильнике, а
оливковое – при комнатной температуре;
♦ никогда не жарьте на оливковом масле;
♦ используйте кисточку для нанесения масла на продукты перед жаркой, обмазывая их поверхность, не наливайте масло прямо в сковороду или сотейник.
Это позволит вам не допустить излишков масла в сковороде и обеспечить равномерную прожарку продуктов.
Процессы растворения
Как можно изменить температуру кипения
Что такое «эмульсия»?
Советы кулинарам:
♦ всегда готовьте, используя только очищенную, не минерализованную воду;
♦ не солите пищу в процессе варки и тушения в воде;
♦ чем больше содержание поваренной соли в организме – тем хуже гомеостаз и обмен веществ;
♦ в сутки человеческий организм теряет около 12 стаканов воды (2400 мл). Желательно чтобы это количество компенсировалось через пищу и питье в пропорции 50/50.
Основы кулинарной науки. Часть 1
1. Зачем это надо?
Если вы читали первые уроки, посвященные инвентарю, то знаете, что чугун очень хорошо удерживает тепло, но медленно греется. Медь, наоборот, греется быстро и равномерно распределяет тепло. Но даже, если бы вы не прочитали об этом, то обнаружили бы опытным путем во время готовки.
Как видите, чем больше мы разбираемся в кулинарных процессах, тем больше узнаем о химии и физике. Кулинария и наука тесно связаны, поэтому профессиональные повара тщательно изучают процессы, происходящие в продуктах, чтобы всегда добиваться на кухне потрясающих, а главное контролируемых результатов.
Домашнему повару знать это не обязательно, но очень полезно. Если вы будете понимать, как устроена кулинария изнутри, то всегда сможете сделать правильное тесто, добиться золотистой корочки на мясе или загустить соус. Даже самые точные рецепты не подарят вам такой уверенности на кухне, как знание базовых кулинарных техник.
Если какая-то информация на данном этапе покажется вам сложной или не нужной, не страшно. Когда-нибудь, готовя то или иное блюдо, вы вдруг поймаете себя на мысли, что понимаете, что происходит, и скажете: “Ага!”.
2. Из чего состоит пища?
Наша еда состоит из белков, углеводов, жиров и небольшого количества минералов и витаминов.
Для сбалансированного здорового питания вы должны получать 45-50% энергии от углеводов, 30-35% от белков и 15-20% от жиров.
Углеводы (крахмалы и сахара) дают нам энергию и играют важную роль в усвоении жиров. Углеводы бывают простые и сложные (комплексные). Комплексные углеводы в свою очередь делятся на крахмалистые (рис, злаки, гречка, и др.) и фиброуглеводы – всевозможные овощи и зелень.
Простые углеводы – это моносахариды (фруктоза, глюкоза и галактоза) и дисахариды – обычные сахара. Если следите за фигурой и здоровьем, то максимально снижайте употребление дисахаридов, не злоупотребляйте фруктозой и делайте упор на комплексные углеводы.
Белки (протеины) – это строительные материал для нашего тела. Состоят они из аминокислот. Из 20 необходимых человеку аминокислот организм вырабатывает только 11, а остальные 9 мы должны получать вместе с пищей, животной или растительной.
Белок в отличие от жиров не умеет запасаться в организме, поэтому желательно включать белковые продукты в каждый прием пищи. Особенно это касается спортсменов.
Жиры делятся на 4 типа: насыщенные, ненасыщенные, полиненасыщещенные и трансжиры. Большинство растительных и животных жиров в умеренном количестве не вредно и даже полезно для нашего организма. Жиры помогают усваиваться жирорастворимым витаминам, улучшают здоровье суставов и кожи, ускоряют метаболизм, дают энергию. Лучшие жиры – это оливковое масло, рыбий жир, орехи.
Самые вредные и опасные жиры – это трансжиры. Навсегда вычеркните из своего рациона маргарин, не злоупотребляйте фастфудом и покупными кондитерскими изделиями. Если хотите бургер, лучше приготовьте его сами из качественных ингредиентов.
Минералы, витамины бывают водорастворимые и жирорастворимые. Они в небольшом количестве содержатся во всех продуктах, поэтому для здорового питания необходим сбалансированный и разнообразный рацион.
Длительная термическая обработка и высокая температура разрушает витамины и минералы. Старайтесь выбирать способы приготовления, которые сохраняют как можно больше полезных веществ в продуктах.
3. Что такое тепло?
Теперь, когда мы знаем, из чего состоят продукты, давайте посмотрим, как мы их можем приготовить. Приготовление еды – это передача тепла от теплового источника в пищу с целью произвести в ней необходимые изменения.
Тепло, в свою очередь, — это энергия, связанная с движением молекул и атомов. Чем выше активность молекул, тем выше температура предмета. В твердых предметах молекулы не движутся, а вибрируют, выделяя энергию. В жидкостях молекулы двигаются свободно и даже могут оторваться от поверхности и превратиться в газ. Это называется испарение.
Когда горячий предмет сталкивается с холодным, молекулы во втором начинают ускоряться, а в первом замедляться. Мой любимый аттракцион детства Автодром отлично иллюстрирует это. Просто представьте, что каждая машинка – это молекула.
Когда холодные и горячие молекулы сталкиваются, то одни ускоряются, а другие замедляются, прямо как машинки на детском автодроме. Фото: centralpark.kh.ua
Вся кулинария основана на том, как энергия перемещается в продукты, внутри продуктов и из продуктов. Это база, из которой вытекает все остальное: текстура, аромат, пищевая ценность и даже безопасность пищи. Поэтому, один из главных навыков в кулинарии – это контроль тепла.
4. Еда и тепло
Теперь давайте посмотрим, как тепло влияет на различные компоненты пищи. Ниже представлены основные процессы в кулинарии, в которых должен разбираться каждый повар.
Углеводы: желатинизация крахмалов и карамелизация сахаров
Желатинизация крахмалов. Крахмал – традиционный загуститель в кулинарии. Когда смесь крахмала и жидкости нагревается, гранулы крахмала поглощают жидкость и увеличиваются в размере, отчего смесь становится густой. Этот процесс называется желатинизация и происходит при температуре от 66 до 100 С в зависимости от используемого крахмала.
Карамелизация сахаров. Под воздействием температуры сахар сначала плавится, образуя густой сироп, а потом изменяет цвет, становясь все более коричневым и приобретая характерный вкус и аромат. Этот процесс называется карамелизация. Карамелизация происходит при приготовлении соусов и десертов, а также отвечает за образование румяной корочки на хлебе, мясе и овощах.
Белки: денатурация, коагуляция и реакция Майяра
Денатурация и коагуляция белков. Аминокислоты, из которых состоят белки соединены в длинные цепи. Тепловая обработка разрушает эти цепи. Этот процесс называется денатурация. При дальнейшем увеличении температуры начинается коагуляция (свертывание) – необратимый процесс, при котором белковый продукт теряет жидкость, сжимается и становится плотным.
Каждый белок имеет определенную температуру денатурации. Для рыбы это 30 С, для яичного белка — 55 С, а для мяса — 60 С. Большинство протеинов полностью коагулирует при 71- 85 С.
Реакция Майяра. В продуктах с небольшим содержанием сахара и большим содержанием белка за изменение цвета в сторону коричневого отвечает другая реакция – реакция Майяра. Когда продукт нагревается, аминокислоты вступают в реакцию с молекулами углеводов, и начинается сложная химическая реакция, в ходе которой появляется характерный цвет и аромат. Наиболее активно она происходит при температуре выше 160 градусов. Яркие примеры реакции Майяра – жареное мясо, кофе, шоколад, темное пиво.
Не удивляйтесь, что я привожу одинаковые примеры и в параграфе про карамелизацию, и здесь. Дело в том, что часто во время приготовления продуктов одновременно происходят обе эти реакции.
Размягчение соединительной ткани. Соединительная ткань состоит из коллагена и эластина. Коллаген – это очень жесткий белок, который образуется в самых подвижных мышцах животного. Поэтому такие отрубы как ноги или шея очень плохо подходят для быстрого обжаривания. Однако если долгое время тушить эти части в жидкости при температуре выше 55 градусов, то коллаген размягчится и превратится в желатин, а мясо станет нежнее.
Жиры: точка дымления
Точка дымления. Важное свойство жиров – то, что они не испаряются, как вода, отчего их можно нагреть до очень высоких температур. Именно поэтому они используются для быстрой обжарки продуктов и образования на них ароматной румяной корочки. Тем не менее у каждого жира существует определенная температура дымления, при превышении которой он начинает разрушаться и издавать неприятный запах. Животные жиры начинают дымиться при температуре около 190 С, а растительные при 232 C.
Вода: кипение и испарение
Poaching
Simmering
Boiling
Испарение. Активное испарение воды, то есть переход из жидкого состояния в газообразное, начинается при температуре 100 С, однако в незначительной степени испарение происходит и при более низкой температуре.
Температуры, которые важно помнить:
0 С – замерзание воды
60 С – коагуляция белков
65 С – желатинизация крахмалов
100 С – испарение воды
140 С — реакция Майяра
160 С – карамелизация сахаров
Кулинарная наука, или Научная кулинария.
Например, яичный белок прозрачен, потому что зазоры между цепями его белков пропускают свет.
Гидрофильные и гидрофобные группы белков
Белки делятся на две группы по принципу «особого отношения» с водой. Выделяют гидрофильные и гидрофобные группы белков. Ввиду того что белковые цепочки достаточно плотно свернуты в клубок, внутри него удерживается значительное количество воды. Когда белок разрушается, вода с большим содержанием белка выделяется наружу. Такая «вода» в пище называется ни чем иным, как «соком» блюда или продукта.
Во время приготовления пищи протекают физические и химические процессы, которые приводят к различным метаболическим изменениям белков.
Два наиважнейших процесса в кулинарии, описанные в органической химии, о которых настоящий кулинар должен знать почти все, – это «денатурация» и «коагуляция» белков.
Рассмотрим эти важнейшие кулинарные процессы подробнее.
Довольно слабые связи, которые удерживают трехмерную структуру белка, могут быть вполне легко разрушены. Для этого необходимо просто нагреть продукт, содержащий белок, или добавить немного кислоты (лимонной или уксуса), или приложить некоторое механическое усилие (например, прижать к сковороде или перемешать в кастрюле).
По мере того как связи, удерживающие белок в сложенном виде, разрушаются, белки разворачиваются в длинные цепочки, и защищенные ранее внутри белка аминокислоты попросту «вываливаются» наружу. Этот процесс и называется «денатурацией».
? Желудок человека гораздо легче переваривает денатурированные белки, чем любые другие.
Это означает, что сырая рыба (в суши и роллах) переваривается гораздо хуже, чем запеченная. Пища, приготовленная на огне, либо с добавлением соли и кислоты, переваривается гораздо лучше, чем сырая, соленая, вяленая или незначительно термически обработанная!
Быстрее всего белки денатурируются температурой, нежели кислотой, солью или путем механического воздействия, потому приготовить мясо можно гораздо быстрее на огне, нежели замариновав или законсервировав его (сушеное, вяленое мясо).
Денатурированные белки имеют много полезных функций в современном процессе приготовления пищи. В этой книге мы не раз еще вернемся к процессу денатурации белков. Они не только лучше перевариваются, чем сырые белки (их группы более доступны для переваривания ферментами), они – гораздо полезнее.
Как известно, яйца выступают простейшим источником белков, но усваиваются организмом гораздо хуже, чем денатурированные белки мяса или рыбы. Это связано с тем, что мясо, рыба и растительные источники содержат белки в сочетании с большим количеством других молекул (крахмала, жиров и др.).
Белки также выполняют другую, важнейшую в кулинарии, роль – они выступают естественными эмульгаторами.
В обычном блендере невозможно однородно смешать воду и масло (или жир). Подобная смесь будет очень нестабильна, точнее – стабильна в течение очень короткого промежутка времени.
Смесь жиров и воды не будет стабильной до тех пор, пока в ней есть так называемые поверхностно-активные молекулы. В жироводяной смеси они стремятся окружить капли жиров, поместить внутрь себя гидрофобные части и оставить для контакта с водой лишь свои гидрофильные части.
Обычные белки в своем естественном состоянии имеют снаружи лишь гидрофильные части и потому не могут быть поверхностно-активными молекулами. Тем не менее, как говорилось выше, денатурированные белки обнажают как гидрофильные, так и гидрофобные группы, и могут выступать как поверхностно-активные молекулы для стабилизации жироводяной смеси.
Например, смесь уксуса, воды и масла может быть вполне устойчивой, если в смеси присутствуют яичные белки (например, в майонезе). После того как белки взбиты, они денатурированы и готовы к стабилизации масляных капель в смеси. Белки являются натуральными пенообразователями.
Мы знаем, что при приготовлении белкового крема воздух добавляется в жидкость механическим взбиванием его венчиком. Но далеко не все воздушно-жидкостные смеси являются стабильными. Например, когда взбивается чистая вода, воздушные пузырьки в смеси не могут быть стабильными, они быстро поднимаются на поверхность, будучи менее плотными, чем вода, а затем улетучиваются.
Однако, когда взбивается жидкость, содержащая белки (например, яичные белки), то воздух может быть стабильно включен в смесь. Хотя пузырьки воздуха являются гораздо менее плотным, чем сама жидкость (вода или молоко), они уже никуда не исчезнут. Это происходит потому, что в процессе взбивания яичных белков они денатурируются, их гидрофобные и гидрофильные части становятся доступными, гидрофильные взаимодействуют с водой, а гидрофобные – с воздухом.
Белки являются также незаменимыми загустителями, о чем подробно пойдет речь в последующих главах книги.
Кровь животных тоже, как и яичные желтки, наполнена различными белками.
В высокой гастрономии лучшим загустителем считается именно кровь, полученная при первичной обжарке мяса. Хестон Блюменталь – величайший английский шеф-повар, считает этот загуститель самым лучшим для приготовления соусов и подливок.
Яичный желток – это самый распространенный загуститель в кондитерском деле.
Белки обладают свойствами загустителей из-за того, что, разрушаясь даже при слабом нагреве, они разворачиваются в длинные цепи. Эти цепи не дают молекулам воды, присутствующим в белках, с легкостью перемещаться вокруг друг друга, при этом молекулы растягиваются, а жидкость сгущается.
? Белки разрушаются при различных температурах, знание диапазона температур, при которых разрушаются и денатурируют белки, дает ключ к получению наилучших результатов в процессе приготовления пищи.
Если продукт, содержащий белок, нагревают после его денатурации дальше, то добавленное тепло заставляет денатурированные белки передвигаться гораздо быстрее. Развернутые белковые цепи при контакте будут притягиваться друг к другу и формировать белковые сети. Этот процесс известен в науке под названием «коагуляция».
Коагуляция в кулинарии «ответственна» в том числе и за потерю прозрачности сырого яйца в процессе нагрева.
Смыкающиеся цепи белка не позволяют свету проникать внутрь, и прозрачность продукта утрачивается.
Сети белков в процессе коагуляции выступают некой «ловушкой» для воды. Попадая внутрь и связываясь с белками, она превращает жидкость в гель, снижая его текучесть.
Коагуляция может быть как полезна для кулинара, так и доставлять реальные неудобства на кухне. Пельмени, вареники, клецки, макароны и другие изделия из пшеничной муки сохраняют свою форму только благодаря коагуляции белковых сетей, а заварной крем становится комковатым потому, что яичные белки были нагреты до слишком высокой температуры и в денатурированных белках начался процесс коагуляции.
? Кислоты способствуют и ускоряют коагуляцию белков, крахмалы – замедляют коагуляцию.
Говоря о белках и их роли в кулинарных процессах нельзя не сказать о таком явлении, как синерезис, которое уже упоминалось выше. Синерезис – процесс вытеснения воды или жидкости из белковых сетей в продукте. Это происходит из-за наличия электростатических напряжений между положительными и отрицательными заряженными атомами серы в белковых продуктах.
Процесс синерезиса всегда нежелателен в приготовлении пищи, поскольку ведет к тому, что пища высыхает.
Ферменты и пигменты
Ферменты представляют собой особую группу белков, управляющих химической трансформацией белоксодержащих продуктов и контролирующих химические реакции, происходящие с ними. Для того чтобы началась нужная химическая реакция и в результате появились иные продукты, необходимы ферменты, которые эту реакцию ускорят. Ферменты сами по себе остаются неизменными, но их присутствие необходимо для того, чтобы проходили изменения в реагирующих молекулах. Ферменты содержат активный центр, в который перемещаются реагирующие молекулы. Возникает тесный контакт, что способствует течению реакции между ними.
Ферменты ответственны как за необходимые, так и за нежелательные реакции при хранении продуктов в процессах приготовления пищи. Ферменты обусловливают прогорклость пищи или потемнение продуктов (овощей или фруктов, мяса и рыбы), но без них невозможно выпечь хлеб, приготовить квас или пиво.
Поскольку ферменты тоже являются белками, их структура так же подвержена влиянию тепла и кислотности (pH). Об этих процессах и самом процессе ферментирования пойдет речь в последующих главах.
Пигменты – это самые удивительные белки, которые участвуют в восприятии (именно в восприятии, а не формировании) цвета пищевых продуктов и кулинарных блюд. Пигменты буквально не «красят» продукты в разные цвета. Они лишь обеспечивают определенные оптические явления, реагируя на преломление волн света. Пигменты – это «экраны», они отражают только волны видимого света определенной длины и, в свою очередь, поглощают волны всех других длин, что влияет на зрительное восприятие того или другого цвета продуктов.
Например, хлорофилл – пигмент, который содержится в зеленых овощах, поглощает все волны видимого света, за исключением волн зеленого. Пигменты в мясе поглощают все, кроме красного, «давая» мясу его красный цвет. Поглощающие свойства этих пигментов сильно зависят от их структуры. Даже очень малые изменения в структуре могут привести к изменению того, какие волны будут отражаемы, а какие нет. Так как ферменты являются белками, и, следовательно, тоже зависимы от изменений температуры и pH, цвет многих продуктов будет меняться при воздействии этих экстремальных условий. Понимание возможных изменений «работы» пигментов может быть очень полезным для повара, чтобы контролировать цвет приготовляемых блюд.
Белки – не просто часть мясных и рыбных продуктов, но и вещества, обеспечивающие:
? стабилизацию (как водно-жировой смеси, так и водно-воздушной смеси);
? влияние на текстуру – методом как задержки воды (гелеобразование), так и водоотведением (синерезис);
? влияние на вкус и качество протекания главной реакции в кулинарии реакции Майяра.
Процесс коагуляции белка – главный процесс в кулинарии, которым нужно учиться управлять.
Белки могут не только впитывать воду, но и вытеснять ее. Это объясняет, почему после жарки мяса еще спустя 5–7 минут из него вытекает сок в тарелку.
Ферменты и пигменты в содержащих белок продуктах – важнейшие типы белка, «управление» поведением которых в процессе готовки также является залогом успешного освоения «научной кулинарии».
Жиры представляют собой различные типы молекул. Один из важных жиров – триглицерид. Триглицериды состоят из молекулы глицерина и трех прикрепленных к ней молекул жирных кислот.
Жиры бывают двух видов – насыщенные и ненасыщенные жиры.
Жиры, которые не содержат двойных связей в любой из своих цепей, называются насыщенными жирами. Они называется «насыщенными», поскольку содержат столько атомов водорода, сколько могут к себе присоединить. Эти жиры, как правило, остаются твердыми при комнатной температуре и имеют животное происхождение (например, жир животных или масло).
Ненасыщенные жиры, наоборот, не содержат двойных связей в своей молекулярной структуре. Они являются ненасыщенными, потому что не содержат столько атомов водорода, сколько могли бы иметь. Они, как правило, находятся в жидком состоянии при комнатной температуре и имеют либо растительное происхождение, либо добываются из рыб. В кулинарии их называют «растительные масла». Ненасыщенные жиры могут быть далее классифицированы в соответствии с количеством двойных связей в них как:
– мононенасыщенные (могут прикрепить еще хотя бы один атом водорода), например оливковое и арахисовое масла;
– полиненасыщенные (могут прикрепить намного больше атомов водорода), например подсолнечное и кукурузное масла.
Важно знать, что полиненасыщенные масла прогоркают при комнатной температуре, поэтому их лучше всегда хранить в холодильнике.
Вспомните, как оливковое масло становится мутным и густеет в холодильнике, хотя всегда остается жидким при комнатной температуре. Почему?
Это связано именно с тем, что области ненасыщенных жиров охлаждаются и создается оптический эффект, как будто масло мутное полностью.
Из кулинарной практики мы знаем, что жиры крайне неохотно смешиваются с водой. Это создает ряд неудобств при приготовлении соусов. Объясняется данное обстоятельство очень просто: жиры – нейтральные субстанции и не могут притягиваться к молекулам воды. Если смешать масло и воду, масло будет всплывать на поверхность воды, потому что его плотность меньше, чем у воды. Для того чтобы сделать стабильной эмульсию воды и жира, необходимы поверхностно-активные молекулы (напомним: молекулы, которые содержат как гидрофобные, так и гидрофильные части). Примером поверхностно-активных молекул могут быть молекулы моющего средства для грязной посуды. Нерастворимые в воде части моющего средства соединяются с жирами в пятнах и загрязнениях и смываются водой.
Для кулинарных изысканий также крайне полезно принять во внимание, что жиры в отличие от воды очень чувствительны к малейшим изменениям температуры окружающей среды. Например, вода существенно не меняется при нагреве в диапазоне от 0 до 100 °C. С жирами происходит обратное явление – нагрев до точки кипения повышает текучесть источника жира, в то время как охлаждение до точки замерзания приводит к постепенному увеличению вязкости.
Давайте вспомним, как утром выглядят пожаренные накануне котлеты, которые вы положили с вечера в холодильник прямо в сковороде. Наутро мы можем наблюдать жировое «поседение» на продукте и вокруг него, котлеты в сковороде напоминают седые вершины гор и укутанные снегами ущелья.
Это связано с тем, что молекулы в различных частях жира плавятся при различных температурах в отличие от воды, где каждая молекула будет кипеть ровно при той же температуре, что и другие.
Данный пример объясняет, почему наши удивительные кулинарные творения, пожаренные в масле, часто выглядят крайне неаппетитно после непродолжительного хранения в холодильнике.
Все мы помним, что жиры в кулинарии чаще всего используются при жарении. Важно знать, какие физические и химические процессы при этом происходят.
Итак, температура кипения жиров значительно выше, чем температура кипения воды, и находится в диапазоне между 260 и 400 °C (в зависимости от видажиров). Например, температура кипения оливкового масла составляет около 300 °C. Поэтому в ресторанах никому не приходит в голову заливать оливковое масло в промышленный фритюр, для того чтобы пожарить картофель «фри». Оказывается, дело не только в его дороговизне, но и в его физико-химических особенностях.
Однако, жиры начинают разлагаться при температуре ниже их температуры кипения. Этот процесс начинается при достижении жирами температуры, называемой в физике температурой вспышки. Например, температура вспышки того же оливкового масла составляет 180–200 °C. Температура вспышки может быть обнаружена «на глаз» по появлению легкого дымка и обесцвечиванию жиров. В этот момент жиры начинают разлагаться.
В процессе их распада образуются несколько новых химических соединений – в основном оксиды триглицеридов (например, акролеин) и окрашенные соединения. Чем выше количество ненасыщенных жиров, тем ниже температура вспышки и больше токсичных соединений.
? Жиры, которые используются для жарки, должны нагреваться по крайней мере до температуры 180 °C.
Жарить при более низких температурах строго не рекомендуется.
В домашних условиях для жарки на сковороде лучше всего применять рафинированные и растительные масла, так как их температура вспышки выше 200 °C. В ресторанах чаще используют пальмовое масло, его температура вспышки колеблется в пределах 210–225 °C.
Неочищенные масла никогда не должны использоваться для жарки, потому что их температура вспышки часто находится ниже отметки 180 °C.
Равным образом, масло для жарки в домашних условиях не должно быть повторно применяться более трех раз, потому что температура вспышки такого масла будет снижаться по мере возрастания чистоты его использования. В ресторанах масло может употребляться до 30–50 раз после тщательной фильтрации. Важно понимать, там используются специальные термостабилизированные масла, температура вспышки которых стабильна.
Работая дома, также не стоит экспериментировать с нагревом жиров до слишком высоких температур, так как при высоких температурах жир может стать источником горючих паров, которые могут спонтанно воспламениться.
В ресторанах паназиатской кухни можно увидеть как у повара, подбрасывающего ингредиенты блюда в воке (wok – сковорода с параболической формой дна), под сковородой вздымаются в воздух снопы высокого пламени. Это происходит из-за того, что сильно перегретое масло мгновенно воспламеняется. Не стоит повторять такие эксперименты дома. Помните, в ресторанах работают со специальными конструкциями пожарозащищенных вытяжных зонтов, оснащенных пламегасителями.
И наконец, о самом главном. Жиры играют очень важную роль в образовании вкуса. Многие молекулы различных продуктов, ответственные за их вкус, являются гидрофобными. Это означает, что они не «дружат» с молекулами воды – «переносчиками» вкуса. Таким образом, вкус доносится именно через молекулы жиров. Жиры в пище также улучшают текстуру и «вкусовые» качества пищевых продуктов. (Об этом мы подробно поговорим в последующих главах.) Жиры также используются для приготовления пищи вместо воды. Преимуществом использования жира в качестве средства приготовления блюда является то, что жиры обеспечивают более высокие температуры тепловой обработки, чем вода.
Реакция Майяра, которая отвечает за цвет и вкус большинства видов жареных или приготовленных на гриле продуктов, может проходить гораздо быстрее «при посредничестве» жиров. Это означает, что их использование позволит сократить время приготовления пищевых продуктов, тем самым сохраняя их состав и питательные свойства.
? масло при жарке нельзя недогреть и нельзя перегреть;
? всегда храните растительные масла в холодильнике, а
оливковое – при комнатной температуре;
? никогда не жарьте на оливковом масле;
? используйте кисточку для нанесения масла на продукты перед жаркой, обмазывая их поверхность, не наливайте масло прямо в сковороду или сотейник.
Это позволит вам не допустить излишков масла в сковороде и обеспечить равномерную прожарку продуктов.
Воду можно по праву назвать «главным кулинарным природным веществом». Без воды сложно представить приготовление какого-либо блюда. Вода содержится в любой органической материи, которую мы используем в пищу. Вода – источник почти всех микроэлементов, необходимых для поддержания работоспособности человеческого организма.
Какие же процессы происходят в кулинарии при непосредственном участии воды?
В чистой воде ее молекулы находятся в непрерывном движении. Каждая молекула воды состоит из двух атомов водорода и одного атома кислорода, «скрепленных» в V-образной форме. Молекулы воды могут образовывать цепочки.
Когда вода нагревается, молекулы начинают двигаться с большей энергией и скоростью – так быстро, что связи между ними начинают разрушаться, «отпуская» некоторые отдельные молекулы воды из цепочки. Эти молекулы отрываются от поверхности, превращаясь в водяной пар. При 100 °C все взаимосвязи молекул разрушаются и вода переходит из жидкого состояния в газообразное.
В противоположность этому, когда вода очень сильно охлаждается, молекулы воды постепенно утрачивают энергию, необходимую для движения, создают новые связи и постепенно, со снижением температуры, переходят из жидкого агрегатного состояния в состояние твердое. Так образуется лед.
Молекулы всех видов часто классифицируются по принципу активности во взаимодействии с водой. Молекулы, которые активно взаимодействуют с водой, называются «гидрофильные», или «влаголюбивые». Эти молекулы активно взаимодействуют с водой, потому что точно так же, как и вода, являются электрически заряженными. Вступая в контакт с водой, такие молекулы образуют связи с ее молекулами. Такие связи по сути и являются отражением процесса растворимости.