что такое итератор в питоне
Итераторы и итерируемые объекты в Python
25.02.2019 23:05 CPython 3.7.2
На момент написания данной статьи только на одной странице Built-in Types официальной документации Python 3 слово “iterator” встречается 21 раз, а “iterable” – 39. Довольно популярные слова, не так ли? Сегодня мы попытаемся разобраться, что же они значат: что такое итератор (iterator) и что такое итерируемый объект (iterable), а также в чем между ними разница.
Итераторы
Рассмотрим такой пример:
Впрочем, мы можем получить тот же результат и без использования for :
Но если сейчас вызвать next() шестой раз, то мы получим исключение StopIteration :
Чтобы понять лучше, как работает for в данной ситуации, напишем его аналог, используя while :
Как и список, другие встроенные типы последовательностей (кортеж, строка и т.п.) также могут вернуть итератор:
Множества и словари также возвращают объект итератора:
Магические методы __iter__() и __next__()
name | address |
---|---|
Amazon.com, Inc. | 410 Terry Ave North, Seattle, Washington, U.S. |
Apple Inc. | 1 Apple Park Way, Cupertino, California, U.S. |
Facebook, Inc. | 1601 Willow Road, Menlo Park, California, U.S. |
Google LLC | 1600 Amphitheatre Parkway, Mountain View, California, U.S. |
Microsoft Corporation | One Microsoft Way, Redmond, Washington, U.S. |
… | … |
Сделаем первые наброски. Чтобы иметь возможность быстро тестировать написанный код, мы будем создавать в памяти временную базу данных (БД) с минимальным набором данных, не касаясь реальной БД:
Объект companies в дальнейшем будет возвращать итератор, но пока абсолютно бесполезен.
Сохраним наш код в файл “companies.py”. Уже сейчас мы можем импортировать класс Companies и использовать его в других модулях (например так: from companies import Companies ). В этом случае код блока условия ( if __name__ == ‘__main__’ ) не будет выполняться. Выполняется он только непосредственно при запуске модуля (например вот так: python3 companies.py ).
Итак, вот что получилось:
Теперь нам нужно сделать так, чтобы экземпляр Companies мог вернуть итератор. Для этого нужно реализовать метод __iter__() :
Результат работы будет таким:
Итерируемые объекты
Стоит заметить, что создавать отдельный класс итератора вовсе необязательно. Ничего не мешает нам совместить классы Companies и CompaniesIterator :
Теперь класс CompaniesIterator нам больше не нужен, так как Companies сам реализует протокол итератора. Сейчас экземпляр класса Companies будет как итерируемым объектом, так и итератором.
Магический метод __getitem__()
В случае с нашим MyList мы также получим объект итератора, используя iter() :
Встроенная функция iter()
Как уже упоминалось выше, итерируемый объект может иметь оба метода сразу. Давайте добавим метод __iter__() к уже реализованному ранее __getitem__() :
Итак, можно выделить несколько этапов работы iter() :
Дополнительный материал не по теме
Возвращаясь к примеру с базой данных SQLite, хотелось бы заметить, что реализация собственного итератора в данной ситуации избыточна, так как объект курсора сам является итератором. Мы можем просто возвращать его при вызове __iter__() :
Теперь мы можем легко получить информацию о количестве записей:
Дата последнего редактирования статьи: 06.06.2019 12:45
© 2019-2020, Dmitry Pakhomov
Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Итераторы в Python с примерами
Итератор в Python относится к объекту, по которому мы можем выполнять итерацию. iterator состоит из счетных значений, и эти значения можно просматривать одно за другим.
Итератор просто реализует протокол iterator в Python. Протокол итератора – это класс, который имеет два специальных метода, а именно __iter __() и __next __(). С помощью этих двух методов итератор может вычислить следующее значение в итерации.
С итераторами легко работать с последовательностями элементов в Python. Нам не нужно выделять вычислительные ресурсы всем элементам в последовательности, мы выполняем итерацию по одному элементу за раз, что помогает нам сэкономить место в памяти.
В этой статье мы изучим, как работать с итераторами в Python.
Итерируемые объекты
Итерируемый объект – это объект, способный возвращать итератор. Итерируемый объект может представлять, как конечные, так и бесконечные источники данных. Итерация прямо или косвенно реализует два метода: __iter __() и __next __(). Метод __iter __() возвращает объект-итератор, а метод __next __() помогает нам перемещаться по элементам в итеративном объекте.
Примеры итерируемых объектов в Python включают списки, словари, кортежи и наборы.
Создание итератора
В Python мы создаем итератор, реализуя для объекта методы __iter __() и __next __(). Рассмотрим следующий пример:
Мы создали итератор с именем element, который печатает числа от 0 до N. Сначала мы создали экземпляр класса и дали ему имя classinstance. Затем мы вызвали встроенный метод iter() и передали имя экземпляра класса в качестве параметра. Это создает объект-итератор.
Давайте теперь обсудим, как использовать итератор для фактического перебора элементов.
Метод next()
Метод next() помогает нам перебирать элементы итератора. Продемонстрируем это на примере, приведенном выше:
В приведенном выше скрипте мы вызвали метод next() и передали ему имя элемента итератора в качестве параметра. Каждый раз, когда мы это делаем, итератор переходит к следующему элементу в последовательности. Вот еще один пример:
В приведенном выше скрипте мы создали список с именем list1, который содержит 4 целых числа. Создан итератор с именем element. Метод next() помог нам перебрать элементы списка.
Итерация с помощью цикла for
Цикл for помогает нам перебирать любой объект, способный возвращать итератор. Например:
В приведенном выше коде мы создали переменную с именем x, которая используется для перебора элемента итератора через цикл for.
Бесконечные итераторы
Бесконечный итератор – это итератор с бесконечным числом итераций. Мы должны быть особенно осторожны при работе с бесконечными итераторами. Рассмотрим следующий пример:
Приведенный выше код будет работать вечно. Чтобы остановить это, вам придется вмешаться вручную. Вот еще один пример, демонстрирующий, как создать бесконечный итератор в Python:
Код должен возвращать все четные числа, начиная с 0. Мы можем запустить код, как показано ниже:
И эта цепочка может продолжаться вечно. Это показывает, что с бесконечным итератором мы можем иметь бесконечное количество элементов без необходимости хранить их все в памяти.
В следующем разделе мы увидим, как мы можем реализовать механизм выхода из таких бесконечных итераторов.
Остановка итерации
В предыдущем разделе мы увидели, как создать бесконечный итератор в Python. Однако итераторы обычно не предназначены для бесконечных итераций в Python. Всегда удобно реализовать условие завершения.
Мы можем остановить выполнение итератора навсегда с помощью оператора StopIteration. Нам нужно только добавить условие завершения в метод __next __(), которое вызовет ошибку, как только будет достигнуто указанное количество итераций. Вот пример:
Итерируемый объект, итератор и генератор
Привет, уважаемые читатели Хабрахабра. В этой статье попробуем разобраться что такое итерируемый объект, итератор и генератор. Рассмотрим как они реализованы и используются. Примеры написан на Python, но итераторы и генераторы, на мой взгляд, фундаментальные понятия, которые были актуальны 20 лет назад и еще более актуальны сейчас, при этом за это время фактически не изменились.
Итераторы
Для начала вспомним, что из себя представляет паттерн «Итератор(Iterator)».
Назначение:
Существуют два вида итераторов, внешний и внутренний.
Внешний итератор — это классический (pull-based) итератор, когда процессом обхода явно управляет клиент путем вызова метода Next.
Внутренний итератор — это push-based-итератор, которому передается callback функция, и он сам уведомляет клиента о получении следующего элемента.
Классическая диаграмма паттерна “Итератор”, как она описана в небезызвестной книги «банды четырех»:
Aggregate — составной объект, по которому может перемещаться итератор;
Iterator — определяет интерфейс итератора;
ConcreteAggregate — конкретная реализация агрегата;
ConcreteIterator — конкретная реализация итератора для определенного агрегата;
Client — использует объект Aggregate и итератор для его обхода.
Пробуем реализовать на Python классический итератор
Конкретная реализация итератора для списка:
Конкретная реализация агрегата:
Теперь мы можем создать объект коллекции и обойти все ее элементы с помощью итератора:
А так как мы реализовали метод first, который сбрасывает итератор в начальное состояние, то можно воспользоваться этим же итератором еще раз:
Реализации могут быть разные, но основная идея в том, что итератор может обходить различные структуры, вектора, деревья, хеш-таблицы и много другое, при этом имея снаружи одинаковый интерфейс.
Протокол итерирования в Python
В книге «банды четырех» о реализации итератора написано:
Минимальный интерфейс класса Iterator состоит из операций First, Next, IsDone и CurrentItem. Но если очень хочется, то этот интерфейс можно упростить, объединив операции Next, IsDone и CurrentItem в одну, которая будет переходить к следующему объекту и возвращать его. Если обход завершен, то эта операция вернет специальное значения(например, 0), обозначающее конец итерации.
Именно так и реализовано в Python, но вместо специального значения, о конце итерации говорит StopIteration. Проще просить прощения, чем разрешения.
Сначала важно определиться с терминами.
Рассмотрим итерируемый объект (Iterable). В стандартной библиотеке он объявлен как абстрактный класс collections.abc.Iterable:
У него есть абстрактный метод __iter__ который должен вернуть объект итератора. И метод __subclasshook__ который проверяет наличие у класса метод __iter__. Таким образом, получается, что итерируемый объект это любой объект который реализует метод __iter__
Но есть один момент, это функция iter(). Именно эту функцией использует например цикл for для получения итератора. Функция iter() в первую очередь для получения итератора из объекта, вызывает его метод __iter__. Если метод не реализован, то она проверяет наличие метода __getitem__ и если он реализован, то на его основе создается итератор. __getitem__ должен принимать индекс с нуля. Если не реализован ни один из этих методов, тогда будет вызвано исключение TypeError.
Итого, итерируемый объект — это любой объект, от которого встроенная функция iter() может получить итератор. Последовательности(abc.Sequence) всегда итерируемые, поскольку они реализуют метод __getitem__
Теперь посмотрим, что с итераторами в Python. Они представлены абстрактным классом collections.abc.Iterator:
__next__ Возвращает следующий доступный элемент и вызывает исключение StopIteration, когда элементов не осталось.
__iter__ Возвращает self. Это позволяет использовать итератор там, где ожидается итерируемых объект, например for.
__subclasshook__ Проверяет наличие у класса метода __iter__ и __next__
Итого, итератор в python — это любой объект, реализующий метод __next__ без аргументов, который должен вернуть следующий элемент или ошибку StopIteration. Также он реализует метод __iter__ и поэтому сам является итерируемым объектом.
Таким образом можно реализовать итерируемый объект на основе списка и его итератор:
Функция next() вызывает метод __next__. Ей можно передать второй аргумент который она будет возвращать по окончанию итерации вместо ошибки StopIteration.
Прежде чем переходить к генераторам, рассмотрим еще одну возможность встроенной функции iter(). Ее можно вызывать с двумя аргументами, что позволит создать из вызываемого объекта(функция или класс с реализованным методом __call__) итератор. Первый аргумент должен быть вызываемым объектом, а второй — неким ограничителем. Вызываемый объект вызывается на каждой итерации и итерирование завершается, когда возбуждается исключение StopIteration или возвращается значения ограничителя.
Например, из функции которая произвольно возвращает 1-6, можно сделать итератор, который будет возвращать значения пока не «выпадет» 6:
Небольшой класс ProgrammingLanguages, у которого есть кортеж c языками программирования, конструктор принимает начальное значения индекса по названию языка и функция __call__ которая перебирает кортеж.
Можем перебрать все языки начиная с C# и до последнего:
Генераторы
С точки зрения реализации, генератор в Python — это языковая конструкция, которую можно реализовать двумя способами: как функция с ключевым словом yield или как генераторное выражение. В результате вызова функции или вычисления выражения, получаем объект-генератор типа types.GeneratorType.
В объекте-генераторе определены методы __next__ и __iter__, то есть реализован протокол итератора, с этой точки зрения, в Python любой генератор является итератором.
Концептуально, итератор — это механизм поэлементного обхода данных, а генератор позволяет отложено создавать результат при итерации. Генератор может создавать результат на основе какого то алгоритма или брать элементы из источника данных(коллекция, файлы, сетевое подключения и пр) и изменять их.
Ярким пример являются функции range и enumerate:
range генерирует ограниченную арифметическую прогрессию целых чисел, не используя никакой источник данных.
enumerate генерирует двухэлементные кортежи с индексом и одним элементом из итерируемого объекта.
Yield
Для начало напишем простой генератор не используя объект-генератор. Это генератор чисел Фибоначчи:
Но используя ключевое слово yield можно сильно упростить реализацию:
Любая функция в Python, в теле которой встречается ключевое слово yield, называется генераторной функцией — при вызове она возвращает объект-генератор.
Объект-генератор реализует интерфейс итератора, соответственно с этим объектом можно работать, как с любым другим итерируемым объектом.
Рассмотрим работу yield:
Создается стейт-машина в которой при каждом вызове __next__ меняется состояния и в зависимости от него вызывается тот или иной кусок кода. Если в функции yield в цикле, то соответственно состояние стейт-машины зацикливается пока не будет выполнено условие.
Свой вариант range:
Генераторное выражение (generator expression)
Если кратко, то синтаксически более короткий способ создать генератор, не определяя и не вызывая функцию. А так как это выражение, то у него есть и ряд ограничений. В основном удобно использовать для генерации коллекций, их несложных преобразований и применений на них условий.
В языках программирования есть такие понятия, как ленивые/отложенные вычисления(lazy evaluation) и жадные вычисления(eager/greedy evaluation). Генераторы можно считать отложенным вычислением, в этом смысле списковое включение(list comprehension) очень похожи на генераторное выражение, но являются разными подходами.
Первый вариант работает схожим с нашей функцией cool_range образом и может генерировать без проблем любой диапазон. А вот второй вариант создаст сразу целый список, со всеми вытекающими от сюда проблемами.
Yield from
Для обхода ограниченно вложенных структур, традиционный подход использовать вложенные циклы. Тот же подход можно использовать когда генераторная функция должна отдавать значения, порождаемые другим генератором.
Функция похожая на itertools.chain:
Но вложенные циклы можно убрать, добавив конструкцию yield from:
Основная польза yield from в создании прямого канала между внутренним генератором и клиентом внешнего генератора. Но это уже больше тема про сопрограммы(coroutines), которые заслуживают отдельной статьи. Там же можно обсудить методы генератора: close(), throw() и send().
И в заключении еще один пример. Функция принимающая итерируемый объект, с любым уровнем вложенности другими итерируемыми объектами, и формирующая плоскую последовательность:
Знакомимся с продвинутыми возможностями Python: итераторы, генераторы, itertools
В Python есть много возможностей, которые привлекают математиков. Вот некоторые из них: встроенная поддержка кортежей, списков и множеств, которые записываются практически так же, как это делается в математике, list comprehensions или генераторы списков, синтаксис которых похож на генераторы множеств, и другое.
Посмотрите пример использования. В последней строке сделана попытка превратить итератор в список. Это приводит к бесконечному циклу.
И пример использования:
Рассмотрим ещё один интересный пример: генерацию последовательности Q Хофштадтера. В приведённом ниже коде итератор используется для генерации последовательности с помощью вложенных повторений.
Вот пример использования:
Генераторы
Посмотрите, как это применяется на практике.
Одно из возможных решений — получение одновременно списка и результата.
Наконец, с помощью генераторов удобно реализовывать дискретные динамические системы. Пример ниже показывает, как с помощью генераторов реализуется отображение тент.
Пример использования генератора:
Рекурсивные генераторы
Генераторные выражения
Как отмечалось выше, генераторные выражения можно передавать в функции, которые нуждаются в итераторе. Например, сумму первых десяти совершенных квадратов можно получить так:
Ниже будут другие примеры генераторных выражений.
Модуль itertools
В модуле itertools есть набор итераторов, которые упрощают работу с перестановками, комбинациями, декартовыми произведениями и другими комбинаторными структурами. Документация доступна по ссылке.
Обратите внимание, представленные ниже алгоритмы не являются оптимальными для практического использования. Примеры используются, чтобы показать возможности перестановок и комбинаций. На практике лучше избегать перечисления перестановок и комбинаций, если вы не имеете веской причины для этого, так как размер перечислений растёт по экспоненте.
Второй пример касается интересной математической задачи. С помощью генераторных выражений, itertools.combinations и itertools.permutations вычислим количество инверсий перестановки, а затем суммируем количество инверсий во всех перестановках в списке.
В статье рассмотрели особенности использования итераторов, генераторов и модуля itertools в Python. Вопросы и пожелания пишите в комментариях.
Адаптированный перевод статьи A Study of Python’s More Advanced Features Part I: Iterators, Generators, itertools by Sahand Saba. Мнение адмнистрации «Хекслета» может не совпадать с мнением автора оригинальной публикации.
Понимание итераторов в Python
Особенности, с которыми вы часто можете столкнуться в повседневной деятельности
1. Использование генератора дважды
Как мы видим в этом примере, использование переменной squared_numbers дважды, дало ожидаемый результат в первом случае, и, для людей незнакомых с Python в достаточной мере, неожиданный результат во втором.
2. Проверка вхождения элемента в генератор
Возьмём всё те же переменные:
А теперь, дважды проверим, входит ли элемент в последовательность:
Получившийся результат также может ввести в заблуждение некоторых программистов и привести к ошибкам в коде.
3. Распаковка словаря
Для примера используем простой словарь с двумя элементами:
Результат будет также неочевиден, для людей, не понимающих устройство Python, «под капотом»:
Последовательности и итерируемые объекты
По-сути, вся разница, между последовательностями и итерируемымыи объектами, заключается в том, что в последовательностях элементы упорядочены.
Так, последовательностями являются: списки, кортежи и даже строки.
Отличия цикла for в Python от других языков
А с итерируемыми объектами, последовательностями не являющимися, не будет:
Цикл for использует итераторы
Как мы могли убедиться, цикл for не использует индексы. Вместо этого он использует так называемые итераторы.
Итераторы — это такие штуки, которые, очевидно, можно итерировать 🙂
Получить итератор мы можем из любого итерируемого объекта.
Для этого нужно передать итерируемый объект во встроенную функцию iter :
Реализация цикла for с помощью функции и цикла while
Чтобы сделать это, нам нужно:
Теперь мы знакомы с протоколом итератора.
А, говоря простым языком — с тем, как работает итерация в Python.
Функции iter и next этот протокол формализуют. Механизм везде один и тот же. Будь то пресловутый цикл for или генераторное выражение. Даже распаковка и «звёздочка» используют протокол итератора:
Генераторы — это тоже итераторы
Генераторы тоже реализуют протокол итератора:
В случае, если мы передаём в iter итератор, то получаем тот же самый итератор
Итератор не имеет индексов и может быть использован только один раз.
Протокол итератора
Теперь формализуем протокол итератора целиком:
Итераторы работают «лениво» (en. lazy). А это значит, что они не выполняют какой-либо работы, до тех пор, пока мы их об этом не попросим.
Таким образом, мы можем оптимизировать потребление ресурсов ОЗУ и CPU, а так же создавать бесконечные последовательности.
Итераторы повсюду
Мы уже видели много итераторов в Python.
Я уже упоминал о том, что генераторы — это тоже итераторы.
Многие встроенные функции является итераторами.
Так, например, enumerate :
Создание собственного итератора
Так же, в некоторых случаях, может пригодится знание того, как написать свой собственный итератор и ленивый итерируемый объект.
В моей карьере этот пункт был ключевым, так как вопрос был задан на собеседовании, которое, как вы могли догадаться, я успешно прошёл и получил свою первую работу:)
Таким образом мы написали бесконечный и ленивый итератор.
А это значит, что ресурсы он будет потреблять только при вызове.
Не говоря уже о том, что без собственного итератора имлементация бесконечной последовательности была бы невозможна.
А теперь вернёмся к тем особенностям, которые были изложены в начале статьи
1. Использование генератора дважды
В данном примере, список будет содержать элементы только в первом случае, потому что генераторное выражение — это итератор, а итераторы, как мы уже знаем — сущности одноразовые. И при повторном использовании не будут отдавать никаких элементов.
2. Проверка вхождения элемента в генератор
А теперь дважды проверим, входит ли элемент в последовательность:
В данном примере, элемент будет входить в последовательность только 1 раз, по причине того, что проверка на вхождение проверяется путем перебора всех элементов последовательности последовательно, и как только элемент обнаружен, поиск прекращается. Для наглядности приведу пример:
Как мы видим, при создании списка из генераторного выражения, в нём оказываются все элементы, после искомого. При повторном же создании, вполне ожидаемо, список оказывается пуст.
3. Распаковка словаря
Так как распаковка опирается на тот же протокол итератора, то и в переменных оказываются именно ключи:
Выводы
Последовательности — итерируемые объекты, но не все итерируемые объекты — последовательности.
Итераторы — самая простая форма итерируемых объектов в Python.
Любой итерируемый объект реализует протокол итератора. Понимание этого протокола — ключ к пониманию любых итераций в Python.