что такое гистерезис в электронике
Что такое гистерезис?
В сердечнике любого электромагнита после выключения тока всегда сохраняется часть магнитных свойств, называемая остаточным магнетизмом. Величина остаточного магнетизма зависит от свойств материала сердечника и достигает большего значения у закаленной стали и меньшего у мягкого железа.
Однако, как бы ни было мягко железо, остаточный магнетизм все же будет оказывать известное влияние в том случае, если по условиям работы прибора необходимо перемагничивание его сердечника, т. е. размагничивание до нуля и намагничивание в противоположном направлении.
Действительно, при всяком изменении направления тока в обмотке электромагнита необходимо (благодаря наличию в сердечнике остаточного магнетизма) сначала размагнитить сердечник, и только после этого он может быть намагничен в новом направлении. Для этого потребуется какой-то магнитный поток противоположного направления.
Иначе говоря, изменение намагничивания сердечника (магнитной индукции) всегда отстает от соответствующих изменений магнитного потока (напряженности магнитного поля), создаваемого обмоткой.
Представим себе простой электромагнит с железным сердечником. Проведем его через полный цикл намагничивания, для чего будем менять намагничивающий ток от нуля до величины ОМ в обоях направлениях.
Начальный момент: сила тока равна нулю, железо не намагничено, магнитная индукция В=0.
5-я часть: намагничивание, соответствующее процессу 1-й части, доведение магнитной индукции от нуля до + МА путем изменении тока от + ОН до + ОМ.
П ри уменьшении размагничивающего тока до нуля не все элементарные или молекулярные магниты приходят в прежнее беспорядочное состояние, но часть их сохраняет свое положение, соответствующее последнему направлению намагничивания. Это явление запаздывания или задерживания магнетизма и носит название гистерезиса.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое гистерезис в радиоэлектронике
Термин «гистерезис» происходит от греческого слова «запаздывание» и означает появление задержки в развитии одного физического явления по отношению к другому. Гистерезис играет большую роль в технике и, в частности, в электронике. Он проявляется каждый раз, когда выполняется операция сравнения двух величин с некоторой точностью.
Суть данного явления можно пояснить на примере работы термостата независимо от наличия или отсутствия электронного регулятора. Рассмотрим термостат, настроенный на поддержание температуры 20 °С с помощью электрического нагревателя. Если бы управляющая нагревателем биметаллическая пластина, деформирующаяся при изменении температуры, не обладала гистерезисом, нагреватель включался бы и выключался очень часто, что приведет к быстрому износу контактов. В действительности регулятор включается при 19 °С, а выключается примерно при 21 °С. При этом механическая инерционность биметаллической пластины и тепловая инерционность нагревателя порождают явление гистерезиса, переключение режимов происходит с небольшой частотой, а температура в термостате колеблется в некотором интервале вблизи заданного значения (рис. 1 а).
Рис. 1. Схема реализации гистерезиса
Устройство сравнивает регулируемое напряжение Uвх с опорным Uоп, которое задается с помощью батарейки. Результат сравнения выводится на светодиодный индикатор. Чтобы усилить проявление гистерезиса и снизить частоту мигания индикатора, используют резистор, через который часть выходного сигнала передается на вход операционного усилителя. При этом снижается коэффициент усиления каскада и задерживается включение и выключение индикатора.
Гистерезис в электротехнике. Магнитные свойства веществ
Любой электромагнитный сердечник после действия электрического тока какое-то время сохраняет магнитное поле (остаточный магнетизм). Эта величина зависит от свойств материала, но остаточный магнетизм всегда имеется. Чтобы перемагнитить сердечник, необходим магнитный поток обратного направления. Изменение магнитной индукции не успевает за изменением магнитного потока. Эта задержка по времени намагничивания сердечника из-за изменения направления магнитных потоков и именуется как гистерезис.
Чтобы понять всю сущность этого явления, необходимо рассмотреть способность веществ к намагничиванию.
Магнитные свойства веществ
Все вещества в окружающей нас природе в той или иной мере обладают магнитными свойствами. Еще в глубокой древности была известна удивительная способность некоторых минералов притягивать железные предметы. Среди многочисленных навигационных приборов, необходимых для прокладывания курса корабля или самолета, обязательно присутствует магнитный компас.
В точнейших измерительных приборах к числу основных деталей относятся постоянные магниты. Известно, что сильными магнитными свойствами обладает не только железо. Сюда входят кобальт, никель, сплавы на их основе и некоторые редкоземельные элементы. Все эти вещества и сплавы называют ферромагнетиками. Объединяет их способность к самопроизвольной спонтанной намагниченности.
Это свойство ферромагнетиков используют при создании постоянных магнитов. Наличие в атомах вещества нескомпенсированных магнитных моментов является необходимым условием возникновения ферромагнетизма.
В опыте Эйнштейна по величине закручивания при намагничивании образца было доказано, что ферромагнетизм связан со спиновыми магнитными моментами электронов. Обменное взаимодействие электронов при определенных соотношениях диаметра атома и внутренней незаполненной оболочки приводят к параллельной ориентации спинов.
Она возможна только при положительном значении интеграла обменной энергии.
В конечном счете, в ферромагнетике устанавливается такая ориентация спинов, которая обеспечивает минимальное значение суммы энергий магнитного и обменного взаимодействия.
Область с однородной спонтанной намагниченностью называют доменом. Энергетически наиболее выгодно такое расположение доменов, при котором они создают замкнутую магнитную цепь.
Между соседними доменами с различным направлением намагниченности имеются переходные слои, называемые границами или стенками домена. В них происходит постепенный поворот вектора намагниченности.
Ферромагнитные свойства у веществ существуют только в определенной области температуры. Температура, при которой ферромагнетики полностью теряют ферромагнитные свойства, называют точкой Кюри. Форму и величину доменов на поверхности ферромагнетика можно увидеть под микроскопом
В элементарной кристаллической ячейке железа ребра куба соответствуют направлению наиболее легкого намагничивания кристалла железа. Диагонали граней определяют направление среднего намагничивания.
Направление наиболее трудного намагничивания совпадает с диагоналями куба. Площадь на графике характеризует энергию магнитной анизотропии.
При отсутствии внешнего поля магнитные моменты доменов ориентированы по направлениям легкого намагничивания. В целом образец размагничен.
В слабых полях происходит рост доменов, направление намагниченности которых составляет меньший угол с направлением внешнего поля.
Этот процесс обратим. Если внешнее поле убрать, образец размагнитится. При увеличении внешнего поля происходит дальнейший рост доменов, который приостанавливается из-за дефектов кристалла. Когда поле достигает определенной величины, стенки растущих доменов скачком преодолевают препятствие. За счет этого препятствия кривая намагниченности имеет ступенчатый характер.
Скачкообразные изменения намагниченности создают в катушке соленоида импульсы напряжения. С дальнейшим увеличением поля вектор намагниченности поворачивается от оси легкого намагничивания в сторону внешнего поля, пока они не совпадут.
Гистерезис
Этот участок называют областью технического насыщения ферромагнетика, а соответствующую величину поля, полем насыщения. Если от этой величины поле уменьшить до нуля, в образце сохранится остаточное намагничивание.
Гистерезис – это явление отставания намагниченности от напряженности внешнего поля. Замыкающие домены, создавая замкнутую магнитную цепь, снижают поля рассеивания и уменьшают свободную энергию образца.
Его определяют, как разность величин магнитного насыщения ферромагнетика и намагниченности замыкающих доменов. Чтобы размагнитить образец, необходимо приложить к нему отрицательное поле, называемое коэрцитивной силой. Когда поле достигнет величины насыщения, произойдет полное перемагничивание ферромагнетика.
На графике можно определить еще одно свойство, которое имеет гистерезис. При очередном изменении поля кривая намагничивания замыкает петлю, которую называют петлей гистерезиса.
Гистерезисная петля для условия насыщения называется предельной петлей. Ее площадь пропорциональна потерям энергии на перемагничивание образца. Ферромагнетики намагничиваясь, изменяют свои линейные размеры. Это явление называют магнитострикцией.
Выделяются две основные группы ферромагнитных материалов:
Одно из основных требований к магнитомягким материалам – их высокая коэрцитивная сила. Магнитомягкие материалы намагничиваются до насыщения при небольших полях и имеют малые потери на перемагничивание. От этих параметров зависит потеря энергии трансформатора.
Например, в линии электропередач мощностью 100 х 10 6 ВА с трансформаторами на концах, ежегодные потери составляют около 5 миллионов киловатт-часов. Одним из лучших представителей магнитомягких материалов считают пермаллой – сплав железа и никеля. Намагниченность пермаллоя в слабых полях в десятки раз превосходит намагниченность железа. Магнитные упорядоченные структуры в некоторых веществах отличаются от магнитной структуры ферромагнетиков.
Если в железе, кобальте и никеле спиновые магнитные моменты направлены параллельно, то в хроме и марганце – антипараллельно. Такие вещества называют антиферромагнетиками.
В данном случае магнитные подрешетки с самопроизвольной намагниченностью компенсированы. Если в кристаллах вещества нет полной компенсации магнитных подрешеток, то его называют ферримагнетиком. Феррит – один из примеров ферримагнетиков, который широко используют в технике. Структура ферритов подобна структуре минералов шпинели, в котором ионы неферромагнитных металлов заменены ферромагнитными.
Гистерезис в электротехнике и электронике
Из многообразия примеров использования ферромагнитных материалов расскажем о применении их в запоминающих устройствах. Для оперативного запоминания информации используют память на ферритовых кольцах. Одного ферритового сердечника достаточно для запоминания одного бита информации. В качестве долговременных запоминающих устройств большой емкости служат специальные магнитные диски (триггеры Шмидта).
Также он используется в специальных гистерезисных электромоторах, устройствах шумоподавления (дребезг контактов, колебания и т.д.) при коммутации логических схем.
Что такое гистерезис в электротехнике и электронике?
Некоторые физические и другие системы с запаздыванием отвечают на различные воздействия, приложенные к ним. При этом отклик на воздействие во многом зависит от текущего состояния системы и определяется предысторией настоящего состояния. Для описания таких явлений применяется термин – гистерезис, что в переводе с греческого означает отставание.
Что такое гистерезис?
Говоря простым и понятным языком – гистерезис это ответная, запоздалая реакция некой системы на определённый раздражитель (воздействие). При устранении причины, вызвавшей ответную реакцию системы, либо в результате противоположного действия, она полностью или частично возвращается к первоначальному состоянию. Причём для такого явления характерно то, что поведение системы между крайними состояниями не одинаково. То есть: характеристики перехода от первоначального состояния и обратно – сильно отличаются.
Явление гистерезиса наблюдается:
Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.
Динамический гистерезис
Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.
По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.
Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.
Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.
Различают упругий гистерезис двух видов:
Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.
Петля гистерезиса
Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).
Рис. 1. Петля гистерезиса
Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.
Рис. 2. Динамическая петля
Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.
Гистерезис в электротехнике
Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.
На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.
Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.
Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).
Рис. 3. Классификация магнитных материалов
Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.
Рис. 4. Петли гистерезиса под действием изменения напряжённости поля
Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса.
В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.
Рис. 5. Механизм возникновения петли магнитного гистерезиса
В электротехнике гистерезисные свойства используются довольно часто:
Явления диэлектрического гистерезиса
У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.
Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.
На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.
Гистерезис в электронике
При срабатывании различных пороговых элементов, часто применяемых в электронных устройствах, требуется задержка во времени. Например, гистерезис используется в компаратороах или триггерах Шмидта с целью стабилизации работы устройств, которые могут срабатывать в результате помех или случайных всплесков напряжения. Задержка по времени исключает случайные отключения электронных узлов.
На таком принципе работает электронный термостат. При достижении заданного уровня температуры устройство срабатывает. Если бы не было эффекта задерживания, частота срабатываний оказалась бы неоправданно высокой. Изменение температуры на доли градуса приводило бы к отключению термостата.
На практике часто разница в несколько градусов не имеет особого значения. Используя устройства, обладающего тепловым гистерезисом, позволяет оптимизировать процесс поддержания рабочей температуры.
Что такое напряжение гистерезиса чем можно его обеспечить
Для обозначения запаздывающих процессов применяют специальное название гистерезис что это такое в электротехнике можно понять после изучения представленных ниже сведений. В общем определении подразумевается наличие определенной задержки на внешнее воздействие. Изменение системы зависит от ее предыдущего состояния. Данное явление отличается от инерционности нелинейностью рабочих характеристик.
Петля гистерезиса демонстрирует изменение намагниченности образца из ферромагнитного материала
Общие понятия гистерезиса
Основные определения процесса поясняют следующие практические примеры. Что такое гистерезис в экономике? При рассмотрении данной сферы деятельности можно изучить стандартную организацию экспорта товаров. Для освоения новой территории необходимо выполнить несколько действий:
На первоначальном этапе придется приложить достаточно большие усилия. Далее хорошо налаженный торговый механизм будет приносить прибыль в рабочем режиме. На этой стадии большее значение приобретают менее затратные контрольные функции. Если бизнес нужно будет перенести в другой регион, процесс повторяется аналогичным образом с определенной временной задержкой. Приведенный выше график наглядно демонстрирует изменение экономических параметров на примере физических величин.
Вещества и их магнитные свойства
Образцы, изготовленные из разных материалов, особым образом реагируют на воздействие магнитного поля. Основные различия определяются магнитной проницаемостью (μ). Это коэффициент (множитель), показывающий разницу векторного значения индукции (B) в этом веществе, по сравнению с вакуумом (B0):
Последняя группа отличается магнетизмом, который сохраняется после удаления внешнего воздействия.
К сведению. При нагреве ферромагнетика на определенном уровне (точка Кюри) магнитные свойства пропадают. Для железа этот показатель составляет +770°C.
Намагниченность (М) можно определить, как разницу между индукциями (B-B0), либо выразить через проницаемость следующей формулой:
Что такое гистерезис?
В сердечнике любого электромагнита после выключения тока всегда сохраняется часть магнитных свойств, называемая остаточным магнетизмом. Величина остаточного магнетизма зависит от свойств материала сердечника и достигает большего значения у закаленной стали и меньшего у мягкого железа.
Однако, как бы ни было мягко железо, остаточный магнетизм все же будет оказывать известное влияние в том случае, если по условиям работы прибора необходимо перемагничивание его сердечника, т. е. размагничивание до нуля и намагничивание в противоположном направлении.
Действительно, при всяком изменении направления тока в обмотке электромагнита необходимо (благодаря наличию в сердечнике остаточного магнетизма) сначала размагнитить сердечник, и только после этого он может быть намагничен в новом направлении. Для этого потребуется какой-то магнитный поток противоположного направления.
Иначе говоря, изменение намагничивания сердечника (магнитной индукции) всегда отстает от соответствующих изменений магнитного потока (напряженности магнитного поля), создаваемого обмоткой.
Виды гистерезиса в физике
Что является источником магнитного поля
Для решения практических электротехнических задач следует изучить подробно магнитный гистерезис. Полное представление об аналогичных явлениях на основе физических принципов можно получить после рассмотрения сегнетоэлектрических и упругих процессов.
Магнитный гистерезис
В соответствии с базовым определением, это явление обозначает отставание намагниченности (М) материала от изменяющегося воздействия внешнего поля. Для эксперимента можно собрать схему, в которой ток пропускают через соленоид. Регулируют уровень напряженности (Н) с помощью параллельного переменного резистора. Сердечник – из ферромагнетика.
Схема экспериментальной установки
Важно! Представленные зависимости следует рассматривать в комплексе с графиком на первом рисунке.
До начала эксперимента образец обладает нейтральными характеристиками. Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):
На определенном уровне показатель μ0*M увеличивается до предельного значения. Последующее изменение напряженности внешнего поля не оказывает на него никакого влияния.
Сегнетоэлектрический гистерезис
Причина особой формы графика в этом примере – образование поляризации без приложения сил внешнего поля. Такой эффект наблюдается в определенном температурном диапазоне. Соответствующие материалы называют сегнетоэлектриками.
Сегнетоэлектрики
На первом рисунке показана петля гистерезиса, где отмечены места:
На второй части (2) изображено хаотичное (а) и направленное (б) расположение доменов. Ориентацию вдоль линий электростатического поля применяют для создания конденсаторов с изменяемой емкостью.
К сведению. Как и в других веществах, при повышении температуры до уровня точки Кюри намагниченность пропадает.
Упругий гистерезис
Это явление объясняется особыми механическими свойствами отдельных материалов. Они сохраняют созданную достаточно сильным ударным воздействием форму. Типичный пример – изготовление изделий из металла с применением ковки.
Динамический гистерезис
Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.
По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.
Механизм возникновения петли гистерезиса
Для подробного изучения этого процесса нужно проанализировать отдельные участки кривой, обозначающей изменение индукции. Описание основных этапов:
Если уменьшить силовые параметры внешнего поля, образуется петля гистерезиса что это такое показывать можно на первой картинке (по направлению стрелок). Следует обратить внимание, что кривые отличаются. Запаздывание индукции соответствует базовым принципам явления. При нулевой напряженности B≠0. Эту величину называют остаточной индукцией. Данная особенность объясняет понятный процесс создания постоянного магнита. Сердечник сохраняет соответствующие свойства даже после отключения источника питания.
Намагниченность можно убрать повешением температуры до уровня точки Кюри определенного материала. Аналогичный результат получают с помощью соответствующего внешнего силового поля (-Hc). Эта напряженность создает коэрцитивную силу, достаточную для размагничивания сердечника из стали либо другого ферромагнетика. Завершенный полностью цикл называют петлей магнитного гистерезиса.
Энергия намагничивания
Петля считается несимметричной в том случае, когда максимумы поля Н1, которые прикладываются в обратном и прямом направлениях, не являются одинаковыми. Выше была описана петля, которая характерна для медленного процесса перемагничивания. При них происходит сохранение квазиравновесных связей между значениями Н и М. Нужно обратить внимание на то, что при намагничивании или размагничивании происходит отставание М от Н. И это приводит к тому, что вся та энергия, которая приобретается ферромагнитным материалом во время намагничивания, отдается не полностью при прохождении цикла размагничивания. И вот эта разница идет вся в нагрев ферромагнетика. И петля магнитного гистерезиса оказывается в этом случае несимметричной.
Применение гистерезиса в электротехнике и электронике
Намагниченность материалов и особенности переходных процессов следует учитывать при создании двигателей и трансформаторов. При эксплуатации этого оборудования в цепях переменного тока часть потребляемого электричества необходимо использовать для перемагничивания установленного сердечника. Аналогичные явления наблюдаются при работе коммутационных аппаратов. Изучение гистерезиса помогает увеличить КПД силовых машин и преобразователей напряжения, обеспечить необходимую скорость переключения реле.
Триггер Шмидта
На рисунке показана передаточная характеристика триггера Шмидта. Изменение выходного сигнала с определенным запаздыванием применяют для устранения ошибок при передаче информации. Обычный инвертор реагирует на импульсные помехи немедленным переключением. В данном случае временная задержка выполняет полезные функции фильтра. Она помогает корректно воспринимать управляющие сигналы в сложных условиях эксплуатации.
Такие решения применяют в электронике для исключения проблем при дребезге контактов. Расчетное замедление рабочих реакций можно пояснить с помощью типового терморегулятора. Если такое устройство создано без гистерезиса, переключения будут выполняться слишком часто. Однако в реальных условиях (отопление помещения) вполне достаточна точность ±3°C. Увеличив ширину петли, можно установить оптимальный диапазон для поддержания заданного температурного режима.
Теория гистерезиса
Стоит учитывать, что гистерезиса происходит также при вращении поля Н, а не только при его изменении по знаку и величине. Называется это гистерезисом магнитного вращения и соответствует изменению направления намагниченности М с изменением направления поля Н. Возникновение гистерезиса магнитного вращения наблюдается также при вращении исследуемого образца относительно фиксированного поля Н.
Кривая намагничивания характеризует также магнитную структуру домена. Структура изменяется при прохождении процессов намагничивания и перемагничивания. Изменения зависят от того, насколько смещаются границы доменов, от воздействий внешнего магнитного поля. Абсолютно все, что способно задержать все процессы, описанные выше, переводит ферромагнетики в нестабильное состояние и является причиной того, что возникает гистерезис магнитный.
Нужно учесть, что гистерезис зависит от множества параметров. Намагниченность меняется под воздействием внешних факторов — температуры, упругого напряжения, следовательно, возникает гистерезис. При этом появляется гистерезис не только намагниченности, но и всех тех свойств, от которых он зависит. Как можно видеть отсюда, явление гистерезиса можно наблюдать не только при намагничивании материала, но и при других физических процессах, связанных прямо или косвенно с ним.
Гистерезис является комплексным понятием процессов, происходящих в системах и веществах, которые способны в себе накапливать различную энергию, при этом скорость и интенсивность ее нарастания отличается от кривой ее убывания при снятии воздействия. В переводе же с греческого языка понятие гистерезис переводится как отставание, поэтому и понимать его следует как запаздывание одного процесса по отношению к другому. При этом совсем необязательно, чтобы эффект гистерезиса был характерен только магнитным средам.
Это свойство проявляется во многих других система и средах:
Особенно часто используют понятие при осуществлении регулирования температурных режимов в системах отопления.
Использование графического изображения гистерезиса для расчётов
Для наглядного эксперимента можно собрать простую схему, представленную ниже:
Эксперимент
После подключения к осциллографу на экране можно наблюдать петлю гистерезиса. Это изображение с учетом реального масштаба можно использовать для расчетов и оценки характеристик созданной катушки. В следующем списке приведено соответствие отдельных отрезков рассмотренным выше параметрам:
К сведению. По установленной площади петли можно определить потери. Размер этой области соответствует работе, которая затрачена на компенсацию коэрцитивных сил. Эта энергия разогревает ферромагнетик и фактически расходуется впустую.
Площадь магнитного гистерезиса
Материалы с магнитными свойствами разделяют на две группы по ширине петли гистерезиса. Магнитомягкие (узкий график) отличаются сравнительно небольшой коэрцитивной силой и соответствующими меньшими энергетическими затратами. Такие изделия применяют для изготовления электродвигателей, приводов, трансформаторов напряжения.
Магнитомягкие и магнитотвердые материалы
Магнитотвердые отличаются увеличенным временем реакции на воздействие внешним полем. Эти материалы используют для создания микросхем памяти, постоянных магнитов.
Что влияет на петлю гистерезиса?
Казалось бы, гистерезис – это больше внутренний эффект
, который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.
В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.
В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис
. Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.