что такое газообмен определение в биологии
Газообмен
Газообмен — обмен газов между организмом и внешней средой, т. е. дыхание. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяются образующийся в нём углекислый газ и незначительное количество др. газообразных продуктов метаболизма. Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь.
Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются CO2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и, в конечном итоге, выделяющегося из него CO2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма CO2 к поглощённому за то же время O2 называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающееся на 1 л потребленного O2 (калорический эквивалент кислорода), равно 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. По потреблению O2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии.
Газообмен (соответственно и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается.
При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3–6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности газообмен непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, так как потребность организма в O2 превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление O2, используемого для покрытия кислородного долга, то есть для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление O2 может увеличиваться с 200–300 мл/мин. в состоянии покоя до 2000–3000 при работе, а у хорошо тренированных спортсменов — до 5000 мл/мин. Соответственно увеличиваются выделение CO2 и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции.
Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях газообмена важен для нормирования питания. Исследования изменений газообмена при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене.
Сравнительное постоянство газообмена при значительных изменениях парциального давления O2 в окружающей среде, нарушениях работы органов дыхания и т. п. обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в газообмене и регулируемых нервной системой.
У человека и животных газообмен принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18–22 °C). Количества потребляемого при этом O2 и освобождающейся энергии характеризуют основной обмен. Для исследования применяются методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого O2 и выделяемого CO2. Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый CO2, а количество потребленного из системы O2 определяют либо измерением равного ему количества автоматически поступающего в систему O2, либо по уменьшению объёма системы.
Газообмен у человека происходит в альвеолах легких и в тканях тела.
Газообмен
Из Википедии — свободной энциклопедии
Газообмен — обмен газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяется образующийся в нём углекислый газ и незначительное количество др. газообразных продуктов метаболизма. Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь.
Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются CO2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и, в конечном итоге, выделяющегося из него CO2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма CO2 к поглощённому за то же время O2 называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающееся на 1 л потребленного O2 (калорический эквивалент кислорода), равно 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. По потреблению O2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии.
Газообмен (соответственно и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается.
При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3–6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности газообмен непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, так как потребность организма в O2 превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление O2, используемого для покрытия кислородного долга, то есть для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление O2 может увеличиваться с 200–300 мл/мин. в состоянии покоя до 2000–3000 при работе, а у хорошо тренированных спортсменов — до 5000 мл/мин. Соответственно увеличиваются выделение CO2 и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции.
Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях газообмена важен для нормирования питания. Исследования изменений газообмена при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене.
Сравнительное постоянство газообмена при значительных изменениях парциального давления O2 в окружающей среде, нарушениях работы органов дыхания и т. п. обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в газообмене и регулируемых нервной системой.
У человека и животных газообмен принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18–22 °C). Количества потребляемого при этом O2 и освобождающейся энергии характеризуют основной обмен. Для исследования применяются методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого O2 и выделяемого CO2. Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый CO2, а количество потребленного из системы O2 определяют либо измерением равного ему количества автоматически поступающего в систему O2, либо по уменьшению объёма системы.
Газообмен у человека происходит в альвеолах легких и в тканях тела.
ГАЗООБМЕН
Полезное
Смотреть что такое «ГАЗООБМЕН» в других словарях:
газообмен — газообмен … Орфографический словарь-справочник
Газообмен — Газообмен обмен газов между организмом и внешней средой, т. е. дыхание. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяются образующийся в нём… … Википедия
ГАЗООБМЕН — ГАЗООБМЕН, в биологии поглощение и выделение газа, особенно кислорода и углекислого газа, у живых организмов. У животных и других организмов, которые получают энергию в результате расщепления пищи в процессе химической реакции, называемой… … Научно-технический энциклопедический словарь
ГАЗООБМЕН — процесс постоянного обмена газов (О2, CO2, N и др.) между организмом и окружающей средой при дыхании, фотосинтезе и др. У животных газообмен совершается всей поверхностью тела или через специальные органы (легкие, жабры и др.), у растений через… … Экологический словарь
ГАЗООБМЕН — ГАЗООБМЕН, газообмена, мн. нет, муж. (научн.). Поглощение организмом кислорода и выделение углекислоты посредством дыхания. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
газообмен — сущ., кол во синонимов: 1 • обмен (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ГАЗООБМЕН — ГАЗООБМЕН, т. е. обмен газов между организмом человека или животных и внешней средой, являясь одним из основных жизненных процессов, состоит в поглощении извне кислорода и в отдаче во внешнюю среду угольной кислоты и паров воды (а также газов,… … Большая медицинская энциклопедия
газообмен — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN gas exchange … Справочник технического переводчика
ГАЗООБМЕН — поглощение л. из воздуха кислорода и отдача в окружающую среду углекислоты. Различают легочный и кожный Г. Последний составляет 1 2% от общего. В покое л. вдыхает 40 80 л воздуха в минуту и потребляет около 250 куб. см кислорода на 1 кг веса за … Справочник по коневодству
Газообмен — I Газообмен совокупность процессов обмена газов между организмом и окружающей средой; состоит в потреблении кислорода и выделении углекислого газа с незначительными количествами газообразных продуктов и паров воды. Интенсивность Г.… … Медицинская энциклопедия
ГАЗООБМЕН
Смотреть что такое ГАЗООБМЕН в других словарях:
ГАЗООБМЕН
ГАЗООБМЕН
(биологическое) обмен газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступает кислород, который потребляетс. смотреть
ГАЗООБМЕН
газообмен м. Обмен газов (1*1) между организмом и внешней средой в процессе дыхания, фотосинтеза и т.п.
ГАЗООБМЕН
газообмен м. тк. ед. биохим.interchange of gases
ГАЗООБМЕН
ГАЗООБМЕН
ГАЗООБМЕН (биол.), обмен газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступает кислород, к-рый потребляется вс. смотреть
ГАЗООБМЕН
Газообмен — см. Газы (физиол.).
ГАЗООБМЕН
IГазообме́нсовокупность процессов обмена газов между организмом и окружающей средой; состоит в потреблении кислорода и выделении углекислого газа с нез. смотреть
ГАЗООБМЕН
ГАЗООБМЕН
обмен газов между организмом и внешней средой. Г. состоит в потреблении клетками и тканями кислорода из окружающей среды и выделении из организма образующихся в нём углекислого газа и незначит. кол-в др. газообразных продуктов обмена веществ. Каждая клетка организма в процессе обмена веществ постоянно использует кислород для окисления органич. веществ. Конечная утилизация питат. веществ и использование их энергии для жизнедеятельности организма, образование тепла и поддержание постоянной темп-ры тела у теплокровных животных невозможны без постоянно совершающегося Г. Потребность в кислороде тем выше, чем выше организовано животное. У различных представителей животного мира Г. осуществляется разными путями: у простейших — посредством диффузии газов через поверхность тела, у высокоорганизованных животных — через системы органов дыхания и кровообращения. В Г. участвует и кожа. Механизмы Г. сводятся к внешнему (лёгочному) и тканевому (клеточному) дыханию. Г. суммарно отражает интенсивность окислительновосстановит, процессов, происходящих во всех органах и тканях; регулируется нервной системой как непосредственно, так и через эндокринную систему. Интенсивность Г. зависит от возраста, пола, продуктивности, физиол. состояния животного, экологич. условий и др. факторов (напр., Г. увеличивается после приёма корма, богатого белками, при мышечной деятельности), К нарушению Г. может привести изменение состава или парциального давления газов во вдыхаемом воздухе, патология системы внешнего и тканевого дыхания. Исследование Г.— один из методов изучения интенсивности и характера обмена веществ и энергии. У с.-х. животных Г. исследуют для разработки нормативов научно обоснованного кормления и содержания различных групп животных. Изучение Г. важно для оценки динамики заболевания и эффективности его лечения.
ГАЗООБМЕН
с закрытием носа пинцетом, или при помощи плотно пригнанной к лицу маски, под которую подходят нос и рот. Последний способ является более предпочтительным, т. к. первый весьма тягостен даже для привычного к нему человека, но во всяком случае дышать при опытах приходится против нек-рого, хотя бы и небольшого, сопротивления соединительных трубок, клапанов, поглотительных сред и т. п. В силу этого переход от свободного дыхания к дыханию в аппарат всегда связан с изменением (б. ч. в сторону усиления) обычного типа дыхания, и требуется время для того, чтобы организм привык к новым условиям и б. или м. восстановил свое нормальное дыхание. Кроме того, колебания в физ. и психическом состоянии подопытного субъекта, трудно или вовсе не учитываемые экспериментатором, также могут существенно влиять на результаты кратковременных опытов. В виду всего вышесказанного представляется рациональным для большинства, по крайней мере, случаев
вести опыты не менее 1 /2часа,и лишь в исключительных случаях, и то при определении одного кислорода, еще допустимо ограничиваться минутными сроками.—Длительные опыты, при которых человек или животное обычно помещаются в дыхательные камеры большей или меньшей емкости, дают возможность определения общего Г., и притом в условиях совершенно свободного нормального дыхания. Продолжительность длительных опытов может колебаться в пределах от нескольких часов до нескольких суток, однако, при исследовании Г., как и общего обмена веществ, единицей времени считаются сутки. Жизнь человека, рассматриваемая с точки зрения интенсивности жизненных процессов и лежащих в основе их процессов обмена веществ и энергии, представляет некоторую волнообразную линию, повторяющимся периодом к-рой являются сутки, заключающие в себе как время проявления наибольшей жизнедеятельности (день), так и время отдыха (ночь). Всем известным выражением этого является повторяющаяся суточная кривая t° человека с максимумом в вечерние и минимумом в ранние утренние часы. Суточные колебания жизненных процессов можно уподобить пульсаторным колебаниям кривой кровяного давления, и как эта последняя слагается не только из пуль-саторных колебаний, но также из дыхательных и волн Траубе, так и суммарная кривая интенсивности жизненных процессов слагается из суточных колебаний и колебаний с большим периодом, зависящих от пола, возраста и др. факторов. Поскольку, однако, эти последние колебания распространяются на периоды жизни, значительно большие суток, постольку определение суточного Г. дает результаты, характерные (стандартные) для целого большого периода жизни. Так, суточный Г. мужчины в 30 лет будет при прочих равных условиях характерным для него и в возрасте 35 и даже 40 лет. Кроме того, как уже сказано выше, определение суточного Г. (вместе с анализом мочи, собранной за тот же промежуток времени) дает основание для суждения о действительном распаде веществ и расходе энергии, а вместе с тем и для расчета потребности в пище. Сопоставляя сказанное о значении кратковременных и длительных опытов по исследованию Г., легко видеть, что обе категории взаимно дополняют друг друга и каждая имеет свою особую сферу приложения в общей совокупности научных проблем газообмена. Методика исследования Г. Основные принципы всей разнообразной современной методики даны, как это справедливо подчеркивает Р. Тигерштедт (R. Tigerstedt), в последней четверти XVIII в. в трудах Лавуазье (Lavoisier) по дыханию животных и человека. Один из этих принципов в очень совершенной форме был осуществлен франц. физиком Реньо (Regnault) и его сотрудником Рейзе (Reiset) в 1849 г., другой—Пет-тенкофером и Фойтом (Pettenkofer, Voit) в 1860 г., при чем аппараты и тех и других авторов рассчитаны на суточные опыты. Дыхательный аппарат Реньо (см. рисунок 2) состоит из колокола 11 (в к-рый помещается животное), герметически пришлифованного к под- ставке и окруженного водной оболочкой дд для поддержания постоянства t°. Животное поглощает из воздуха колокола 03 и выдыхает в него С02. Последняя поглощается едким кали в сосудах КОН и Koh, сообщающихся между собой и связанных системой
трубок d и е с JR. Сосуды эти посредством коромысла W поочередно поднимаются и опускаются, при чем в поднимающийся насасывается воздух из В, а из опускающегося выталкивается вВ. Т. о., воздух в В все время взбалтывается и освобождается от С02, а т.к. в то же время животное поглощает кис-л’ород, то давление воздуха будет падать, и притом соответственно потреблению кислорода. Для автоматического пополнения этих потерь В связывается с резервуаром О, где находится кислород под постоянным давлением и откуда через клапан С02 он поступает в Л. Количество потребленного кислорода определяется по убыли его из О, а количество С02—по прибыли в весе сосудов с КОН с соответствующими поправками по данным анализа воздуха в В под конец опыта (приспособление для взятия пробы воздуха из В на схеме не указано). Т. о., способ Реньо дает возможность прямого опытного определения 02 и С02 и непрямого—паров воды—по уравнению А +02— С02— Нг0=£, где А—вес животного до опыта, В—после опыта (если животное принимало пищу и питье или пускало мочу и кал, то соответственные весовые величины должны быть введены в уравнение с соответств. знаком). Рейзе в 1863 году и Гоппе-Зейлер (Норре-Seyler) в 1894 году использовали принцип Реньо для устройства дыхательного аппарата, первый—для животных средней величины (овцы, свиньи и пр.), второй— для человека. Результаты у Гоппе-Зейлера получились мало удовлетворительными, т. к. вентиляция оказалась совершенно недостаточной. Исходя из того же уравнения, что и Реньо, Петтенкофер предполагал осуществить непрямое определение кислорода при прямом определении С02 и Н20 в воздухе, просасываемом через камеру, которая могла быть больших размеров, т. к. герметичности не требовалось.В его аппарате (см.рис.3) для человека металлическая камера Z, емкостью около 13 куб. м, имела около 6 кв. м площади пола, была снабжена окном и дверью с отверстием а для входа воздуха. В ней помещались кровать, стол и стул, и оставалось место для движений. Насос РР1( приводимый в движение паром, просасывал воздух через камеру, через бак, наполнен- ный кусками пемзы, смоченными водой, и через большие газовые часы С, указывавшие общее количество прошедшего воздуха. От магистрали х по ветви п отводится насосом М ток воздуха (ок. ут^-ТоЖо всего объема) для анализа, при чем в К серной кислотой поглощаются пары воды, а в В титрованным раствором Ва (ОН)2—углекислота. Часы в конце ветви показывают объем воздуха, отсосанного для анализа. (В действительности трубка те разветвлялась па 3 ветви, каждая из которых была оборудована так, ка\с указано на схеме; следовательно, параллельно производилось 3 анализа.) Наконец, от отверстия а для вхождения воздуха в камеру начиналась ветвь N (также в действительности тройная), служившая для анализа воздуха, входящего в камеру. Количество поглощенной воды определялось взвешиванием К, а количество СО2—титрованием. Опыты самого Петтенкофера показали непригодность способа для определения кислорода (гл. обр., из-за адсорпции стенками камеры паров воды), и потому приходилось ограничиваться определением одной С02. Благодаря возможности вести опыты над человеком и крупными животными способ Петтенкофера получил широкое распространение, и по его образцу было построено много аппаратов, при чем нек-рые исследователи получали б. или м. удовлетворительные результаты и по отношению к кислороду. Наиболее удачно принцип Петтенкофера использован Голдейном (Haldane, 1892). Его аппарат, предназначенный для малых животных, имеет небольшую камеру,
к-рая взвешивается вместе с животным до и после опыта, чем устраняется ошибка в определении водяных паров; кроме то го,воздух, просасываемый через камеру, до входа в нее освобождается от С02 и Н20, а по выходе проводится через поглотители in toto, и, следовательно, данные для уравнения получаются непосредственно из опыта без тысячекратного увеличения ошибок анализа. Важное значение возможно более точного определения кислорода, потребляемого человеком при различных условиях, явилось стимулом для конструкции уже в текущем столетии ряда аппаратов (Этуотер и Бенедикт, Шатерников, Hagemann, Zuntz и др.), основанных на принципе Реньо, для длительных опытов на человеке и крупных животных. Эти аппараты представляют (см. рисунок 4) герметически запираемую систему со включенным в нее насосом (D) двойного действия, осуществляющим циркуляцию воздуха в системе, при чем воздух из камеры (А) проходит через ряд поглотителей (и охладителей) и вновь возвращается в камеру освобожденным
от СО г и большей части Ы20, потери же кислорода восполняются из за-рис. 4. пасных резервуаров
Рисунок 5. предназначена для задержки масла, увлекаемого током воздуха из насоса, две следующие банки (с и й) с H2S04 служат для полного освобождения воздуха от паров воды. Отсюда воздух идет в банку е с натронной известью и в банку / с H2S04 для поглощения паров воды, отдаваемых натронной известью. Наконец, в банке д воздух вновь увлажняется и идет в трубку Ь,г. К трубкам h1 и h2 промыкается исследуемый субъект (см. рисунок 7), дышащий через мундштук х, причем нос зажимается клеммой у. Кислород доставляется в аппарат из бом- бы и, и количество его измеряется газовыми часами (на рис. не изображены). Количество углекислоты определяется по весу склянок
е и / до и после опыта. Для регистрации дыхательных движений на место баллона г вставляется чувствительный спирометр, показания которого регистрируются на кимографе. Весьма компактный аппарат скон-•струирован Книп-‘ пингом. Вся система состоит из спирометра С,наполняемо го кислородом,насоса D и промывной склянки Е с раство-
ром КОН (см. рисунок 8). Движения колокола спирометра регистрируются на кимографе. Размеры спирометра таковы, что запаса кислорода в нем хватает на 10—15 минут опыта при полном покое субъекта. При окончании опыта отмыкают субъекта от аппарата поворотом трехходового крана, но продолжают поддерживать циркуляцию воздуха в аппарате для полного поглощения СО 2, которую затем определяют волюметриче-ски, вытесняя ее из щелочи серной кислотой, не разнимая аппарата и отсчитывая количество СО 2 по подъему колокола спирометра. Устройство поглотительного прибора Книппинга дано на рис. 9, из к-рого видно, что поворотом крана H2S04 из верхнего шара перепускается в нижнее отделение прибора, где находится
показан на рис. 13 спереди и на рис. 14 сзади. Субъект дышит через маску Л, вдыхая через В и выдыхая через клапан С в £>, где находится раствор щелочи (с—увлажнитель), и через клапан F наружу. В а и о17 т. е. до и после щелочи, имеются отводные пути в плоские склянки М и N, наполненные ртутью. Вовремя опытартуть равномерно по каплям выпускается в приемник h (см. рисунок 14), расположенный на пружинах и опускающийся по мере перетекания в него I ртути соответственно опусканию уровня ртути в М vi N. Определив количество СО 2, поглощенной щелочью Q, и процент СО2 в воздухе, отведенном до щелочи р и после щелочи q, можно вывести следующее уравнение,
принимая за х неизвестный объем выдохну- того воздуха 100-? х.р Too» ■ Рисунок 13.
Интенсивность Г. стоит в тесной связи с хим. процессами, лежащими в основе жизнедеятельности клеточных элементов тканей и органов нашего тела. Поэтому возможно большее подавление этой жизнедеятельности вызывает соответствующее понижение Г., делая его в пределе минимальным. Этот минимальный Г., определяемый у человека натощак и при самом строгом покое, получил название «основного обмена», т. е.» необходимого для поддержания основных функций организма. Величина эта, будучи, очевидно, условной,тем не менее довольно постоянна для одного и того же индивидуума. На основной обмен влияют,- с одной стороны, вес тела, его длина, его поверхность, возраст и пол, а с другой—различные эндогенные факторы, например, состояние эндокринного аппарата. Так, при ги-пфтиреове основной обмен повышен, при гипотиреозе — понижен. Это влияние на основной обмен внутренних факторов придает его исследованию цену клии. метода. В нижеследующей таблице приведены данные по основному газообмену Магнус-Л еви и Фалька (Magnus-Levy, Falk), с одной стороны, и Бенедикта, с другой, для мужчин весом 60—70 кг в расчете на 1 кг и 1 мин.