что такое гармоники основной частоты
Гармоники в электрических сетях: причины, источники, защита
Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.
Что такое гармоники?
Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине.
Гармоники и их сложение
Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.
По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.
Причины и источники гармоник в электрических сетях
Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.
Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:
Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.
Категории и принцип разделения
В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:
Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.
Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.
Возможные последствия
В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:
Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.
Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.
Рис. 2. Развитие тока в нейтрали
Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.
Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник.
Защита от гармоник
Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.
Рис. 3. Схема LC-фильтра
Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.
При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.
За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.
Рис. 5 Принцип действия активного кондиционера гармоник
Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.
Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.
Гармоники в электрических сетях — что это и чем они опасны
В данной статье мы рассмотрим что такое гармоники, фундаментальную частоту и сложные формы волны из-за гармоник, в конце статьи подведем краткие итоги по этой теме.
Что такое гармоники
Гармоники — это нежелательные более высокие частоты, которые накладываются на основную форму волны, создавая искаженную волновую картину.
В цепи переменного тока сопротивление ведет себя точно так же, как в цепи постоянного тока. То есть ток, протекающий через сопротивление, пропорционален напряжению на нем. Это связано с тем, что резистор является линейным устройством, и если приложенное к нему напряжение представляет собой синусоидальную волну, ток, протекающий через него, также является синусоидальной, поэтому разность фаз между двумя синусоидами равна нулю.
Как правило, при работе с переменными напряжениями и токами в электрических цепях предполагается, что они имеют чистую и синусоидальную форму с присутствием только одного значения частоты, называемого «основной частотой», но это не всегда так.
В электрическом или электронном устройстве или цепи, которая имеет вольт-амперную характеристику, которая не является линейной, то есть ток, протекающий через нее, не пропорционален приложенному напряжению. Чередующиеся сигналы, связанные с устройством, будут отличаться в большей или меньшей степени от сигналов идеальной синусоидальной формы. Эти типы сигналов обычно называют несинусоидальными или сложными сигналами.
Сложные сигналы генерируются обычными электрическими устройствами, такими как индукторы с железной сердцевиной, переключающие трансформаторы, электронные балласты в люминесцентных лампах и другие такие сильно индуктивные нагрузки, а также формы выходного напряжения и тока генераторов переменного тока, генераторов и других подобных электрических машин. В результате форма волны тока не может быть синусоидальной, даже если форма волны напряжения есть.
Также большинство электронных схем переключения источников питания, таких как выпрямители, кремниевые выпрямители (SCR), силовые транзисторы, преобразователи питания и другие подобные твердотельные переключатели, которые отключают и измельчают источники питания синусоидальной формы волны для управления мощностью двигателя или преобразования синусоидального источника переменного тока в постоянный. Эти переключающие схемы имеют тенденцию потреблять ток только при пиковых значениях источника переменного тока, и, поскольку форма сигнала переключающего тока не является синусоидальной, результирующий ток нагрузки, как говорят, содержит гармоники.
Несинусоидальные сложные формы волны создаются путем «сложения» серии синусоидальных частот, известных как «гармоники». Гармоники — это обобщенный термин, используемый для описания искажения синусоидальной формы волны сигналами разных частот.
Тогда независимо от формы сложную форму волны можно математически разделить на отдельные компоненты, называемые основной частотой и рядом «гармонических частот». Но что мы понимаем под «фундаментальной частотой»?
Последствия гармоник и защита
По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом. В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.
Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.
Важно! При наличии большого количества гармоник возможны однофазные КЗ с пробоем на землю. Также большое количество гармоник приводит к перегрузке нейтрали, что снижает степень защищенности системы.
Для защиты от гармоник в устройстве используются различные схемы. Основные:
— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;
— применение конденсаторов (выполняют роль компенсатора реактивной мощности);
— применение фильтров гармоник.
Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.
Подробнее о гармониках можно указать из следующего видео:
Причины появления гармоник и их последствия
Гармоники — это искажения (отклонения от заданных параметров) синусоиды колебаний частоты и напряжения, вызванные сторонними факторами. Простая резистивная нагрузка имеет одинаковые формы синусоиды.
Синусоида колебаний в асинхронном двигателе
В линейных схемах (источник тока и нагрузка – резистор) синусоида идеально симметричная, и разность между синусоидами отсутствует. Однако в эту идеально гармоничную картину в сложных системах неизбежно вносятся помехи и добавляются новые гармоники. В современных реалиях одной из основных причин возникновения «вредоносных» гармоник являются разнообразные твердотельные силовые полупроводниковые устройства. Преобразователи частоты, тиристоры, диоды, устройства плавного пуска, другие элементы энергосистемы создают гармоники.
Также источниками гармоник могут быть мощные потребители тока, трансформаторы, сварочное оборудование, системы промышленного освещения, выпрямители.
Теоретически, все нагрузки являются источниками гармоник и передают их в энергосистему. При этом источник энергии производит гармонику одной частоты (ее называют несущей).
Предотвратить это явление невозможно, можно лишь снизить его негативное влияние на оборудование. Если этого не сделать, энергосистема может столкнуться с серьезными проблемами, так как гармоники представляют собой нечто вроде паразитных токов, которые в первую очередь нарушают эффективность энергосистемы.
Так, несинусоидальность напряжения может привести к повышенному нагреву двигателя и созданию моментов вращения, которые приводят к вибрациям. В целом, гармоники способны вызвать повреждение конденсаторов, изоляции и короткие замыкания, перегрев и перегрузку трансформаторов, нарушить работу систем связи, чувствительной электроники и защитных устройств, основанных на измерении сопротивления.
Категории и принцип разделения
В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:
Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.
Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.
Мониторинг качества электрической энергии и обнаружение гармоник
Присутствие гармоник лучше всего определять по результатам мониторинга качества электроэнергии, а не после аварийных отключений и поломок оборудования.
Мониторинг является обязательной частью безопасного функционирования сложных энергосистем. Современные анализаторы качества электроэнергии позволяют контролировать множество параметров тока, включая гармоники. Например, трехфазные анализаторы PITE 3561 могут выполнять разовые или долговременные (до 40 суток) тесты энергосистемы, выявляя в том числе гармонические искажения каждой из трех фаз.
Анализатор качества электроэнергии PITE-3561-1500A
Подобные анализаторы дают возможность записать диаграмму гармоник, увидеть пиковые и средние значения, чтобы провести анализ и найти источник проблемы. Без подобных приборов невозможно своевременно обнаружить опасные гармоники, особенно в сложных системах со множеством нелинейных потребителей.
Способы защиты от высших гармоник для частотных преобразователей
Преобразователи частоты содержат инверторы и ШИМ-модуляторы, которые являются источниками искажения напряжения в сети. Это отрицательно сказывается как на работе электродвигателей, так и на качестве электроэнергии в сети. Для защиты от этого явления используют различные фильтры.
Эти устройства устанавливают во входной и выходной цепях преобразователей частоты. Для защиты от искажений формы напряжения и тока применяют:
При выборе фильтра необходимо убедиться, что конкретная модель преобразователя частоты совместима с типом защитного устройства. Эта информация указана в технической документации ПЧ. Компания «Данфосс» выпускает несколько линеек частотных преобразователей со встроенными фильтрами высших гармоник. Это избавляет от необходимости рассчитывать характеристики устройств и расходов на покупку дополнительного оборудования.
FAQ по гармоникам
Что такое гармоники?
Гармоники – это синусоидальные волны суммирующиеся с фундаментальной. Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.
Основной частотой 50 Гц(т.е. 1-я гармоника = 50 Гц 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.
Когда возникают гармоники?
Гармонические искажения возникают при работе нелинейных потребителей тока (в том числе частотных преобразователей).
Какие гармоники не появляются от работы ПЧ?
При работе от преобразователя частоты не появляются четные гармоники.
Чем опасны гармоники по току?
Гармонические искажения тока вызывают перегрев силового трансформатора, повышенное потребление реактивной мощности, увеличение потерь в меди силовых проводов и трансформатора. Они являются причиной появления гармоник по напряжению.
Чем опасны гармоники по напряжению?
Наличие гармонических искажений по напряжению приводят к выходу из строя оборудования.
Как бороться с гармониками?
Гармонические искажения можно уменьшать при помощи входных фильтров. Например, в серии VLT HVAC Basic FC 101 имеется встроенный фильтр гармоник на звене постоянного тока.
Сложные формы волны
Обратите внимание, что красные формы волны, приведенные выше, являются фактическими формами сигналов, видимыми нагрузкой, из-за гармонического содержания, добавляемого к основной частоте.
Основной сигнал также можно назвать сигналом 1й гармоники. Поэтому вторая гармоника имеет частоту, в два раза превышающую частоту основной, третья гармоника имеет частоту, в три раза превышающую основную, а четвертая гармоника имеет частоту, в четыре раза превышающую основную, как показано в левом столбце.
Правый столбец показывает сложную форму волны, сгенерированную в результате эффекта между добавлением основной формы волны и форм гармонических колебаний на разных частотах гармоник. Обратите внимание, что форма результирующего сложного сигнала будет зависеть не только от количества и амплитуды присутствующих частот гармоник, но также и от соотношения фаз между основной или базовой частотой и отдельными частотами гармоник.
Для второй гармоники:
Е 2 = V 2max (2 * 2πƒt) = V 2max (4πƒt) = V 2max (2ωt)
Для третьей гармоники:
E 3 = V 3max (3 * 2πƒt) = V 3max (6πƒt), = V 3max (3ωt)
Для четвертой гармоники:
E 4 = V 4max (4 * 2πƒt) = V 4max (8πƒt), = V 4max (4ωt)
Тогда уравнение, данное для значения сложной формы волны, будет иметь вид:
Гармоники обычно классифицируются по их названию и частоте, например, 2- й гармонике основной частоты при 100 Гц, а также по их последовательности. Гармоническая последовательность относится к векторному вращению гармонических напряжений и токов по отношению к основной форме волны в сбалансированной 3-фазной 4-проводной системе.
Гармоника прямой последовательности (4-й, 7-й, 10-й,…) будет вращаться в том же направлении (вперед), что и основная частота. Тогда как гармоника обратной последовательности (2-й, 5-й, 8-й,…) вращается в противоположном направлении (обратном направлении) основной частоты.
Как правило, гармоники прямой последовательности нежелательны, поскольку они ответственны за перегрев проводников, линий электропередач и трансформаторов из-за добавления сигналов.
С другой стороны, гармоники обратной последовательности циркулируют между фазами, создавая дополнительные проблемы с двигателями, поскольку противоположное вращение вектора ослабляет вращательное магнитное поле, необходимое для двигателей, и особенно асинхронных двигателей, заставляя их создавать меньший механический крутящий момент.
Другой набор специальных гармоник, называемых «тройками» (кратными трем), имеют нулевую последовательность вращения. Тройки — это кратные третьей гармоники (3-й, 6-й, 9-й, …) и т.д., отсюда и их название, и поэтому они смещены на ноль градусов. Гармоники нулевой последовательности циркулируют между фазой и нейтралью или землей.
В отличие от гармонических токов прямой и обратной последовательностей, которые взаимно компенсируют друг друга, гармоники третьего порядка не компенсируются. Вместо этого сложите арифметически в общем нейтральном проводе, который подвергается воздействию токов всех трех фаз.
В результате амплитуда тока в нейтральном проводе из-за этих тройных гармоник может быть в 3 раза больше амплитуды фазового тока на основной частоте, что делает его менее эффективным и перегретым.
Затем мы можем суммировать эффекты последовательности, кратные основной частоте 50 Гц:
Название | Основная | Вторая | Третья | Четвертая | Пятая | Шестая | Седьмая | Восьмая | Девятая |
Частота, Гц | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
Последовательность | + | — | 0 | + | — | 0 | + | — | 0 |
Обратите внимание, что та же самая гармоническая последовательность также применяется к основным сигналам 60 Гц.
Последовательность | Вращение | Гармонический эффект |
+ | Вперед | Чрезмерный эффект нагрева |
— | Обратный ход | Проблемы с крутящим моментом двигателя |
0 | Нет | Добавляет напряжения и / или токи в нейтральный провод, вызывая нагрев |
Фильтры гармоник
Мониторинг качества электроэнергии — первая линия обороны в борьбе с гармониками. Следующей являются специальные меры по снижению вреда от гармонических искажений.
Прежде всего — фильтры, которые подавляют гармоники. Это избирательное подавление гармоники, которая может нанести наибольший вред оборудованию. Так, в однофазных цепях это третья гармоника, фильтр запирает ее на участке фильтр-нагрузка, что снижает паразитный ток в проводнике. Недостатком фильтров является необходимость установки на каждой нелинейной нагрузке, создающей гармоники.
Фильтр эффективно запирает гармонику на участке. Пример гармоник, характерных для двигателей постоянного тока и многих двигателей переменного тока. Коэффициент искажения синусоидальности кривой на «A» составляет 26% — это высокий негативный показатель. Фильтр эффективно снижает его до 8% на «E».
Резюме по гармоникам
Гармоники — это высокочастотные сигналы, накладываемые на основную частоту, то есть частоту цепи, и которые достаточны для искажения формы волны. Величина искажения, применяемого к основной волне, будет полностью зависеть от типа, количества и формы присутствующих гармоник.
Гармоники были в достаточном количестве только в течение последних нескольких десятилетий с момента появления электронных приводов для двигателей, вентиляторов и насосов, цепей переключения электропитания, таких как выпрямители, преобразователи питания и тиристорные регуляторы мощности, а также большинства нелинейных электронных фаз с управлением нагрузки и высокочастотные (энергосберегающие) люминесцентные лампы. Это связано, главным образом, с тем фактом, что управляемый ток, потребляемый нагрузкой, не точно соответствует синусоидальным сигналам питания, как в случае выпрямителей или силовых полупроводниковых коммутационных цепей.
Гармоники в системе распределения электроэнергии в сочетании с источником основной частоты (50 Гц или 60 Гц) создают искажения формы сигналов напряжения и / или тока. Это искажения создают сложную форму волны, состоящую из ряда частот гармоник, которые могут оказать неблагоприятное воздействие на электрооборудование и линии электропередач.
Величина искажения формы волны, придающая сложной форме ее характерную форму, напрямую связана с частотами и величинами наиболее доминирующих гармонических компонентов, частота гармоник которых кратна (целым числам) основной частоты. Наиболее доминирующими гармоническими составляющими являются гармоники низкого порядка со 2- го по 19- е, причем тройки являются наихудшими.
Невозможно предотвратить, но можно обезопасить
Гармоники действительно невозможно уничтожить. Более того, высокочастотные гармоники легко распространяются через силовые кабели и антенны, через индукцию возникают в соседних цепях. Однако можно защитить энергосистему от вредоносного действия гармоник. Для этого гармоники направляются в отдельные колебательные контуры, в которых на определенной частоте реактивное сопротивление близко к нулю. Для сложных систем понадобится несколько таких контуров, но они обеспечат сокращение гармоник до безопасного уровня. При этом регулярный мониторинг качества электроэнергии позволит своевременно выявить гармоники.
Если вам нужна профессиональная консультация по диагностике электрооборудования, просто отправьте нам сообщение!