что такое длительность фронта импульса
Фронт сигнала
Часто фронт сигнала называют «передним фронтом», а спад сигнала — «задним фронтом». Иногда фронтом сигнала называют переход логического сигнала или переменной из состояния «FALSE» в состояние «TRUE» и обратный переход из состояния «TRUE» в «FALSE» — спадом логического сигнала. Длительности фронта (время нарастания) и спада (время спада) физически реализуемых сигналов занимают конечное время.
Идеализированный фронт сигнала (сокращённо — ИФС) производит переход из одного состояния в другое без задержек во времени, то есть длительность фронта равна нулю. На практике принцип ИФС используется в квантовых вычислениях.
Фронт сигнала — одно из ключевых понятий в теории триггеров в электронике. Например, триггеры со счетным входом, D-триггеры, JK-триггеры изменяют своё состояние, в зависимости от реализации, по фронту или спаду входных сигналов, которые обычно называют тактирующими сигналами, но эти сигналы не обязательно, и даже редко, являются периодическими тактирущими импульсами.
Связанные понятия
При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.
В статье описаны некоторые типовые применения операцио́нных усили́телей (ОУ) в аналоговой схемотехнике.
Mультипле́ксор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Лекция Общие характеристики импульсных сигналов.
Сигнал — физический процесс, несущий информацию. По природе физического процесса делятся на электромагнитные, в частности электрические (телефония, радио, телевидение, мобильная связь, ЛВС, Интернет), световые (оптоволоконный кабель), звуковые (общение людей), пневматические и гидравлические (определенные отрасли автоматики)и др.
Сигнал имеет Информативный (несущий информацию) и Неинформативный (не несущий информацию) параметр. П-р: если информацию несет амплитуда гармонического сигнала, то частота и фаза этого сигнала будут неинформативными.
Импульсные сигналы — сигналы, информацию в которых несут параметры импульсов. Импульс — кратковременное отклонение физического процесса от установленного значения. Кратковременное отклонение имеет не абсолютное, а относительное значение, т. е. длительность отклонения меньше или сопоставима с длительностью процесса.
Импульсные сигналы имеют преимущества перед непрерывными сигналами: средняя мощность импульсного сигнала значительно меньше средней мощности непрерывного сигнала при сопоставимой информационной емкости. Кроме того, в паузах между импульсами одного сигнала можно передавать импульсы другого сигнала и тем самым увеличить информационную вместимость канала. Одним из специальных видов импульсных сигналов есть сигналы цифровой и компьютерной техники.
Существуют два вида импульсов: видеоимпульсы и радиоимпульсы. Видеоимпульсы — это кратковременное отклонение физического параметра, несущего информацию, от установленного значения. Радиоимпульс — это отрезок высокочастотного колебания определенной формы. Радиоимпульсы широко используют для передачи информации каналами радиосвязи, в телевидении и радиолокации. На практике используют Последовательности импульсов, повторяющиеся через определенный интервал времени.
Импульсные сигналы бывают Периодичными и Непериодичными. Периодичными считаются сигналы, значения которых повторяются через определенный промежуток времени.
По форме импульсы делятся на: прямоугольные, треугольные, пилоподобные и др. Формы реальных импульсов отличаются от идеальных, вследствие искажений и помех, действующих в каналах импульсных устройств.
Параметры импульсов:
Фронт — начальная часть импульса, характеризующая нарастание информативного параметра.
Спад — информативный параметр падает до установленного значения.
Вершина — часть импульса, находящегося между передним и задним фронтами.
Амплитуда — наибольшее отклонение информативного параметра сигнала от установленного значения.
Длительность импульса Т1— отрезок времени, измеренный на уровне, соответствующему половине амплитуды.
Период повторения импульсов Т в импульсной последовательности — интервал времени между двумя соседними импульсами в импульсной последовательности.
Длительность фронта импульса — это время τF нарастания импульса от 0,1 до 0,9 амплитудного значения, или время спада τB от 0,9 до 0,1 амплитудного значения.
Среднее квадратичное значение импульса — значение постоянного напряжения, который за одинаковые промежутки времени при одинаковых значениях сопротивления выделяет такую же самую мощность.
Неравномерность вершины δ — разница значений в начале и в конце импульса.
Выброс на вершине b1— кратковременное отклонение сигнала на вершине импульса в начальной его части.
Выброс в паузе B2— кратковременное отклонение сигнала после завершения действия импульса.
1.2. Виды импульсных сигналов и способы их отображения.
Импульсные сигналы могут отображаться в Аналитической (в виде уравнения) и Графической формах.
П-р:
Виды сигналов по характеру изменения сигнала во времени и по информативному параметру:
1) непрерывные (аналоговые) по информативному параметру и по времени сигналы
2) непрерывные (аналоговые) по информативному параметру и дискретные по времени сигналы — удобно обрабатывать современными измерительными приборами, поэтому аналоговые сигналы исследуемых объектов чаще всего превращают в дискретные сигналы. (Дискретизация) Интервал времени между соседними значениями дискретного сигнала называется Интервалом или Периодом дискретизации; величина, обратная к периоду дискретизации — Частота дискретизации; Дискретизация бывает Равномерная и Неравномерная.
3) непрерывные (аналоговые) по времени сигналы и квантованные (дискретные) по информативному параметру определены в любой момент времени. Превращение непрерывных сигналов в квантованные — квантование сигнала. Интервал между двумя соседними разрешенными уровнями — Квант. Квантование бывает Равномерное и Неравномерное.
4) сигналы дискретные по времени и квантованные по уровню могут иметь только определенные разрешенные уровни. Именно такие сигналы используются в современных информативных технологиях и обрабатываются современными компьютерными и микропроцессорными средствами.
Логические сигналы. Логические (булевы) величины, т. е. величины, которые могут принимать одно из двух возможных значений 0 или 1. На практике используют два вида логических сигналов: Импульсные и Потенциальные. Если на начальных этапах развития цифровой техники широко использовались импульсные логические сигналы, то сейчас они почти полностью вытеснены потенциальными логическими сигналами.
Импульсный логический сигнал принимает значение логической 1, если в течении определенного, заранее определенного интервала времени существует импульс определенной амплитуды, и значение логического 0, если в течении этого интервала времени такой импульс отсутствует. Система потенциальных логических сигналов считается Положительной, если логической 1 соответствует высший, а логическому 0 низший с двух возможных уровней, и отрицательной (инверсной), если логической 1 соответствует низший, а логическому 0 — высший с двух возможный уровней.
Входные и выходные сигналы реальных цифровых устройств имеют не два уровня или значения, а бесконечно большое количество значений в заданном диапазоне. Для того, чтобы такие сигналы несли логическую информацию, диапазон возможных значений этих сигналов делят на такие поддиапазоны (зоны): поддиапазон (зона) логического 0; поддиапазон (зона) логической 1; запрещенная зона, разделяющая две первые зоны.
То, что одному значению логической величины ставится в соответствие бесконечно большое количество значений с определенного диапазона, является избыточностью в кодировании информации. Чем больше степень избыточности в кодировании информации, тем выше степень помехоустойчивости этой информации, т. е. логические сигналы являются наиболее помехоустойчивыми сигналами.
Типичные элементарные сигналы и их характеристики.
Единичный импульсный сигнал δ(T);
Единичный ступенчатый сигнал U(T);
Гармонический сигнал X(T);
Экспоненциальный сигнал.
Единичный импульсный сигнал имеет площадь равную единице, т. е. произведение длительности импульса Тi на амплитуду импульса =1. Единичный ступенчатый сигнал описывается таким аналитическим выражением:
Гармонический сигнал используется для исследования амплитудно-частотных и фазочастотных характеристик импульсных устройств.
Экспоненциальный сигнал описывается таким аналитическим выражением:
1.2.Генераторы импульсных сигналов.
Устройства, предназначенные для генерации импульсов.
По форме импульсов генераторы делятся на Генераторы прямоугольных импульсов и генераторы импульсов Не прямоугольной формы, в частности генераторы пилообразных импульсов.
Чтобы получить импульсы прямоугольной формы с крутыми фронтами, широко применяются так называемые Релаксационные генераторы, принцип которых основан на использовании усилителей с положительной обратной связью. Эти генераторы могут работать в одном из таких режимов: ожидания, автоколебания, синхронизации и деления частоты.
В режиме ожидания генератор имеет одно стойкое состояние. Внешний импульс запуска вызывает прыжкоподобный переход генератора в новое нестойкое состояние. В этом состоянии, которое называется квазистойким, или временно стойким, в генераторе происходят довольно медленные изменения, которые в конце концов приводят к обратному прыжку к начальному стойкому состоянию. Длительность пребывания генератора во временно стойком состоянии, т. е. длительность импульса, определяется параметрами элементов генератора. Основные требования: стабильность длительности генерированного импульса и стойкость его начального состояния.
В автоколебательном режиме генератор не имеет стойкого состояния, а имеет два временно стойких состояния. Переход с одного временно стойкого состояния в другое и назад осуществляется прыжком без влияния какого-либо внешнего фактора. Во время этого процесса генерируются импульсы, амплитуда, длительность и период которых полностью определяются параметрами элементов генератора. Основным требованием к таким генераторам является высокая стабильность частоты импульсов.
Режим синхронизации и деления частоты применяется для генерации импульсов, частота которых равна или кратна частоте импульсов синхронизации, которые попадают на генератор из-вне.
Мультивибраторы.
Мультивибратор — одни из наиболее распространенных генераторов прямоугольных импульсов. Мультивибратор представляет собой двухкаскадный резистивный усилитель с глубокой положительной обратной связью.
Мультивибратор — это устройство, которое поочередно пребывает в двух временно стойких (квазистойких) состояниях. Как активные элементы в мультивибраторе используются биполярные и полевые транзисторы, логические интегральные микросхемы, операционные усилители.
Транзисторы мультивибратора пребывают поочередно в одном из двух режимов: в режиме отсечки и режиме насыщения.
Казалось бы при полной симметрии схемы после ее включения токи транзисторов и напряжения на конденсаторов и на электродах транзисторов должны быть одинаковыми, а состояние схемы устойчивым. Однако этого никогда не происходит, т. к. идеальной симметрии схемы добиться практически невозможно. Любая, даже самая незначительная асимметрия мгновенно приведет к тому, что один из транзисторов закроется, а другой будет открыт и доведен до режима насыщения.
Пусть ток коллектора транзистора Т2 оказался несколько больше коллекторного тока транзистора Т1. Это приведет к увеличению падения напряжения на резисторе R4 и к снижению отрицательного потенциала на коллекторе транзистора Т2. Через конденсатор С2 изменение потенциала коллектора транзистора Т2 передается на базу транзистора Т1.Это приведет к уменьшения тока коллектора Т1 и к увеличению отрицательного потенциала на коллектора этого транзистора. Через конденсатор С1 изменение потенциала коллектора транзистора Т1 передается на базу транзистора Т2, что вызывает дополнительное увеличение тока коллектора этого транзистора. Далее процесс повторяется и в конечном итоге транзистор Т2 полностью откроется и войдет в режим насыщения, а транзистор Т1 закроется. Этот процесс протекает лавинообразно и поэтому очень быстро, практически мгновенно.
Схема транзисторного мультивибратора.
2. Электронные ключи и логические элементы.
2.1. Общие сведения о ключевых элементах.
Ключевым элементом, или просто ключом называется устройство для открывания или закрывания канала, по которому передается энергия. По физической природе ключи делятся на электрические (электронные), пневматические, гидравлические, оптические и др.
Ключи могут пребывать в одному из двух состояний: замкнутом или разомкнутом. В замкнутом состоянии ключ имеет незначительное сопротивление, в идеальном случае нулевое. В разомкнутом состоянии, наоборот, сопротивление ключа большое, в идеальном случае бесконечно большое.
Переход ключа из одного состояния в другое осуществляется скачком, за незначительный промежуток времени, под действием сигнала управления ключом. Идеальным ключом называется ключ, который в замкнутом состоянии имеет нулевое сопротивление, и бесконечно большое сопротивление в разомкнутом состоянии.
Нормально замкнутые — ключ пребывает в замкнутом состоянии при условии отсутствии сигнала управления.
Нормально разомкнутые — ключ пребывает в разомкнутом состоянии при условии отсутствии сигнала управления.
Переключатели — под действием управляющего сигнала переходит с нормально замкнутого состояния в разомкнутый.
По способу включения ключи делятся на Последовательные и Параллельные.
По роду переключаемой величины ключи делятся на ключи Напряжения и ключи Тока.
Коммутаторы — устройства, предназначенные для соединения или коммутации одного входного канала передачи сигналов на вход одного из выходных каналов передачи сигналов или наоборот, одного из входных каналов передачи сигналов на вход выходного.
Реальные ключи характеризуются такими параметрами:
1.Сопротивление в замкнутом и разомкнутом состоянии.
2.Длительность перехода ключа из замкнутого состояния в разомкнутый и, наоборот, переход ключа из разомкнутого состояния в замкнутый.
3.Максимально допустимый ток замкнутого ключа.
4. Максимально допустимое напряжение замкнутого ключа
Аналоговые ключи.
Аналоговые ключи имеют два состояния: замкнутый и разомкнутый, и предназначены для передачи входного сигнала на выход с высокой точностью и без искажений в замкнутом состоянии.
Фронт сигнала
Из Википедии — свободной энциклопедии
Фро́нтом сигна́ла в электронике называется переход аналогового импульсного сигнала, в частности, цифрового сигнала из состояния «ноль» (нижний уровень) в состояние «единица» (верхний уровень) (нарастание сигнала). Переход из состояния «единица» в состояние «ноль» называют спадом сигнала. При этом подразумевается, что для сигналов напряжения нарастание сигнала — это его увеличение относительно некоторого узла цепи, которому приписан нулевой потенциал — «земле», например, от нуля до максимального. Для импульсных сигналов тока принимается нарастание модуля тока, независимо от его направления в рассматриваемом узле электрической цепи.
Часто фронт сигнала называют «передним фронтом», а спад сигнала — «задним фронтом». Иногда фронтом сигнала называют переход логического сигнала или переменной из состояния «FALSE» в состояние «TRUE» и обратный переход из состояния «TRUE» в «FALSE» — спадом логического сигнала. Длительности фронта (время нарастания) и спада (время спада) физически реализуемых сигналов занимают конечное время.
Фронт сигнала — одно из ключевых понятий в теории триггеров в электронике. Например, триггеры со счетным входом, D-триггеры, JK-триггеры изменяют своё состояние, в зависимости от реализации, по фронту или спаду входных сигналов, которые обычно называют тактирующими сигналами, но эти сигналы не обязательно, и даже редко, являются периодическими тактирущими импульсами.
Импульсный режим работы: формы импульсов, описание, параметры
Импульсный режим работы электронного устройства характерен резкими изменениями токов и напряжений. При этом в промежутках времени между этими изменениями токи и напряжения меняются сравнительно мало. Импульсный режим широко используется в устройствах как силовой, так и информативной электроники.
Часто активные приборы (например, транзисторы) устройства электроники, работающего в импульсном режиме, используются как ключи, т. е. основную долю времени находятся или в открытом, или в закрытом состоянии, и только в течение очень коротких отрезков времени находятся в промежуточном состоянии. Это так называемый ключевой режим работы активных приборов.
Дадим соответствующие пояснения. Пусть в устройстве используется силовой транзистор, работающий в режиме ключа. В открытом состоянии транзистор находится в режиме насыщения (напряжение на транзисторе мало), а в закрытом — в режиме отсечки (ток через транзистор мал). Тогда мощность, идущая на нагрев транзистора, мала как в его открытом, так и закрытом состояниях. Эта мощность возрастает в момент переключения транзистора из одного состояния в другое.
Но процесс переключения протекает достаточно быстро, и в среднем мощность оказывается малой.
Импульсные сигналы
Рассмотрим основные термины. Обратимся для примера к идеализированному импульсу, который называют трапецеидальным (рис. 3.1, а).
Участок импульса АВ называют фронтом, участок BC— вершиной, участок CD — срезом; отрезок времени AD — основанием. Иногда участок АВ называют передним фронтом, а участок CD — задним фронтом.
На рис. 3.1, б приведены другие идеализированные импульсы характерных форм и даны их названия.
Обратимся к идеализированному, но более сложному по форме импульсу (рис. 3.2, а).
Участок импульса, соответствующий отрицательному напряжению, называется хвостом импульса, или обратным выбросом.
Для величин, указанных на рисунке, обычно используют следующие названия:
Обратимся к периодически повторяющимся импульсам (рис. 3.3).
В этом случае используются следующие параметры: f = 1/T, Q = T/tn, Kз= 1/Q = tn/T
Электрический импульс
Электрический импульс — кратковременный всплеск электрического напряжения или силы тока в определённом, конечном временном промежутке. Различают видеоимпульсы — единичные колебания какой-либо формы и радиоимпульсы — всплески высокочастотных колебаний. Видеоимпульсы бывают однополярные (отклонение только в одну сторону от нулевого потенциала) и двухполярные.
Характеристики импульсов
Форма импульсов
Важной характеристикой импульсов является их форма, визуально наблюдать которую, можно, например, на экране осциллографа. В общем случае форма импульсов имеет следующие составляющие: фронт — начальный подъём, относительно плоская вершина (не для всех форм) и срез (спад) — конечный спад напряжения. Существует несколько типов импульсов стандартных форм, имеющих относительно простое математическое описание, такие импульсы широко применяются в технике
Кроме импульсов стандартной, простой формы иногда, в особых случаях, используются импульсы специальной формы, описываемой сложной функцией, существуют также сложные импульсы, форма которых имеет в значительной степени случайный характер, например, импульсы видеосигнала.
Параметры импульсов
В общем случае импульсы характеризуются двумя основными параметрами — амплитудой (размахом — разностью напряжений между пьедесталом и вершиной импульса) и длительностью (обозначается τ или tи). Длительность пилообразных и треугольных импульсов определяется по основанию (от начала изменения напряжения до конца), для остальных типов импульсов длительность принято брать на уровне напряжения 50 % от амплитуды, для колоколообразных импульсов иногда используется уровень 10 %, длительность искусственно синтезированных колоколообразных импульсов (с чётко выраженным основанием) и полуволн синусоиды часто измеряется по основанию.
Для разных типов импульсов также вводят дополнительные параметры, уточняющие форму или характеризующие степень её неидеальности — отклонения от идеальной. Например, для описания неидеальности прямоугольных импульсов используются такие параметры, как, длительности фронта и среза (спада) (для идеального прямоугольного импульса они равны нулю), неравномерность вершины, а также размер выбросов напряжения после фронта и среза, возникающих в результате переходных паразитных процессов.
Спектральное представление импульсов
Кроме временного представления импульсов, наблюдаемого по осциллографу, существует спектральное представление, выраженное в виде двух функций — амплитудного и фазового спектра.
Спектр одиночного импульса является непрерывным и бесконечным. Амплитудный спектр прямоугольного импульса имеет чётко выраженные минимумы по шкале частот, следующие с интервалом, обратным длительности импульса.
Многократные импульсы
Импульсные посылки (серии импульсов)
Иногда импульсы используются или возникают не поодиночке, а группами, которые называются сериями импульсов или импульсными посылками, в том случае, когда они формируются преднамеренно для передачи куда-либо. Импульсная посылка может нести какую-либо информацию единичного характера или служить в качестве идентификатора. Информационные посылки прямоугольных импульсов, в которых значимыми величинами являются количество импульсов, их временное расположение или длительности импульсов называются кодово-импульсными посылками или, в некоторых областях техники, кадрами, фреймами. Кодирование информации в посылках может быть осуществлено разными способами: двоичный цифровой код, время-импульсный код, код Морзе, набор заданного количества импульсов (как в телефонном аппарате). Во многих случаях импульсные посылки используются не поодиночке, а в виде непрерывных последовательностей посылок.
Импульсные последовательности
Импульсной последовательностью называется достаточно продолжительная последовательность импульсов, служащая для передачи непрерывно меняющейся информации, для синхронизации или для других целей, а также генерируемых непреднамеренно, например, в процессе искрообразования в коллекторно-щёточных узлах. Последовательности подразделяются на периодические и непериодические. Периодические последовательности представляют собой ряд одинаковых импульсов, повторяющихся через строго одинаковые интервалы времени. Длительность интервала называется периодом повторения (обозначается T), величина, обратная периоду — частотой повторения импульсов (обозначается F). Для последовательностей прямоугольных импульсов дополнительно применяются ещё две однозначно взаимосвязанных друг с другом параметра: скважность (обозначается Q) — отношение периода к длительности импульса и коэффициент заполнения — обратная скважности величина; иногда коэффициент заполнения используют и для характеристики квазипериодической и случайной последовательностей, в этом случае он равен среднему отношению суммы длительностей импульсов за достаточно большой промежуток времени к длительности этого промежутка. Спектр периодической последовательности является дискретным и бесконечным для конечной последовательности, конечным для бесконечной. Среди непериодических последовательностей с, технической точки зрения, наибольший интерес представляют квазипериодические и случайные последовательности (на практике используются псевдослучайные). Квазипериодические последовательности представляют собой последовательности импульсов, период которых или другие характеристики варьируются вокруг средних значений. В отличие от спектра периодической последовательности, спектр квазипериодической последовательности является, строго говоря, не дискретным, а гребенчатым, с незначительным заполнением между гребнями, однако, на практике этим иногда можно пренебречь, так, например, в телевизионной технике для создания полного видеосигнала к сигналу чёрно-белого изображения добавляют сигнал цветности таким образом, что гребни его спектра оказываются между гребнями чёрно-белого видеосигнала.
Импульсы как носители информации
По характеру информации импульсные сигналы могут использоваться однократно (разовое сообщение о событии) или для непрерывной передачи информации. Последовательности импульсов могут передавать дискретизированную по времени аналоговую информацию или цифровую, возможны также случаи, когда в единый, в физическом смысле, сигнал вложено два вида информации, например, телевизионный сигнал с телетекстом.
Для представления информации используются различные характеристики как собственно импульсов, так и их совокупностей, как по отдельности, так и в сочетаниях
Таким образом, можно выделить несколько обобщённых типов импульсных сигналов, несущих непрерывную информацию