что такое булева логика
Булева логика как основа аппаратного обеспечения и программирования компьютеров
Булева логика служит основой анализа обоснованности логических суждений, так как она охватывает многозначный характер заявлений, которые могут появиться. Суждения могут быть либо истинные, либо ложные. Этот метод из двух логических элементов имеет многозначный характер.
Эти бинарные операции используются сейчас в электронных вычислительных машинах при их проектировании и эксплуатации.
Открыл Булеву логику британский математик Джордж Буль. Эта логическая теория выступает как основа современных цифровых компьютеров и других электронных устройств. С этой точки зрения британский математик считается одним из основателей математической логики, который начал математический анализ мысли и исследования законов мысли. Он представил общий символический метод логического вывода на основе ‘закона мышления’, опубликованный в 1854 году.
Булева логика изучает логические операции над высказываниями. Высказывания могут быть истинными и ложными. Математика признали отцом современных информационных технологий и осознали что его идея была революционной.
Булева логика представляется собой самый простой из всех существующих и является основой вычислительной техники.
Компьютеры и логика неразделимые
Первые компьютеры были задуманы как автоматические арифметические системы и, хотя их создатели были в курсе, что закономерность должна что-то делать со всем этим, они не были на 100% уверены в том, как и почему.
С работ Буля началась современные рассуждения разъединившие пути с “законами мышления”. В том-то и дело, что сегодня у нас нет четкого представления, какие законы управляют мыслью. Если бы человек выяснил как управлять мыслью искусственный интеллект был бы закрыт.
Булева логика очень легко объясняется и понимается:
Например, если Р истинно, то Р не ложно так, если “сегодня понедельник” истинно, то следующий день (сегодня понедельник) является ложным. Мы часто переводим логическое выражение на русский язык “сегодня не понедельник”, и это легче осознать, что это ложь, если сегодня действительно понедельник.
Основные логические операции
Основные логические операции по Булю рассматриваемые со стороны их значений (истина или ложь)
Логическое умножение (конъюнкция) — И
Логическое сложение (дизъюнкция) — ИЛИ
В 1854 году Буль опубликовал расследование законов мышления, на которых основал математические теории логики и вероятностей. Британский математик подошел по новому сводя простую алгебру логики, включающую математику. Он указал на аналогии между алгебраическими символами и тем, что представляют собой логические формы. Он начал с алгебры логики называемой сейчас Булевой алгеброй, которая в настоящее время находит применение в программировании во всех областях деятельности человека.
Булева логика
Основоположником её является Дж. Буль, английский математик и логик, положивший в основу своего логического учения аналогию между алгеброй и логикой. Алгебра логики стала первой системой математической логики, в которой алгебраическая символика стала применяться к логическим выводам в операциях с понятиями, рассматриваемыми со стороны их объёмов. Буль ставил перед собой задачу решить логические задачи с помощью методов, применяемых в алгебре. Любое суждение он пытался выразить в виде уравнений с символами, в которых действуют логические законы, подобные законам алгебры.
Впоследствии усовершенствованием алгебры логики занимались У. С. Джевонс, Э. Шрёдер, П. С. Порецкий, Ч. Пирс, Г. Фреге, разработавший теорию исчисления высказываний, Д. Гильберт, добившийся успехов в области применения метода формализации в операциях с логическими высказываниями. Внесли свой вклад Б. Рассел, придавший вместе с А. Уайтхедом, математической логике современный вид; И. И. Жегалкин, заслугой которого явилась дальнейшая разработка исчисления классов и значительное упрощение теории операций логического сложения; В. И. Гливенко вынес предмет алгебры логики далеко за рамки изучения объёмных операций с понятиями.
Алгебра логики в её современном изложении занимается исследованием операций с высказываниями, то есть с предложениями, которые характеризуются только одним качеством — истинностным значением (истина, ложь). В классической алгебре логики высказывание одновременно может иметь только одно из двух истинностных значений: «истина» или «ложь». Алгебра логики исследует также высказывания — функции, которые могут принимать значения «истина» и «ложь» в зависимости от того, какое значение будет придано переменной, входящей в высказывание — функцию.
Содержание
Определение
Базовыми элементами, которыми оперирует алгебра логики, являются высказывания.
а логический ноль 0 и логическая единица 1 — константы.
Также используются названия:
Аксиомы
Логические операции
Простейший и наиболее широко применяемый пример такой алгебраической системы строится с использованием множества B, состоящего всего из двух элементов:
Как правило, в математических выражениях Ложь отождествляется с логическим нулём, а Истина — с логической единицей, а операции отрицания (НЕ), конъюнкции (И) и дизъюнкции (ИЛИ) определяются в привычном нам понимании. Легко показать, что на данном множестве B можно задать четыре унарные и шестнадцать бинарных отношений и все они могут быть получены через суперпозицию трёх выбранных операций.
История
Своим существованием наука «алгебра логики» обязана английскому математику Джорджу Булю, который исследовал логику высказываний. Первый в России курс по алгебре логики был прочитан П. С. Порецким в Казанском государственном университете.
Булева алгебра (алгебра логики)
Понятие алгебры логики
На этом уроке знакомимся с алгеброй логики (булевой алгеброй). Одним из её основателей стал английский математик Джордж Буль (1815-1864), который был из довольно бедной семьи, а в юности зарабатывал переводами сочинений древнегреческих философов. За этим занятием его и посетила мысль о том, что высказываниям можно присваивать значения 1 («истина») и 0 «ложь».
Итак, алгебра логики (булева алгебра) — это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Алгебра логики позволяет закодировать любые утверждения, истинность или ложность которых нужно доказать, а затем манипулировать ими подобно обычным числам в математике.
Создание алгебры логики в середине ХIХ века в трудах Джорджа Буля представляло собой попытку решать традиционные логические задачи алгебраическими методами.
Пусть функция от n переменных и любой из её аргументов могут принимать значения только из множества <0, 1>. Тогда эта функция называется логической, или булевой, или переключательной, или функцией алгебры логики. Описанную функцию часто называют также булевым вектором. Количество функций от n переменных равно 2 в степени n. То же самое можно сказать и иначе: число различных n-мерных булевых векторов равно 2 в степени n. А число различных функций алгебры логики от этих векторов равно уже
.
Значениям переменной в булевой алгебре соответствуют состояниям элементов микросхем компьютера или любого другого электронного устройства: сигнал присутствует (логическая «1») или сигнал отсутствует (логический «0»).
На логических элементах, реализующих булевы функции, строятся логические схемы электронных устройств.
Часто оказывается, что изначально построенное логическое выражение можно упростить, используя аксиомы, теоремы и законы алгебры логики.
Логические функции
Логические функции одной переменной
Функция | Название | Обозначение |
Константа нуля | ||
Повторение x | ||
Логическое отрицание, инверсия, «НЕ» | ||
Константа единицы |
Переменная | Логические функции | |||
x | ||||
0 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 |
Логические функции двух переменных
Функция | Название | Обозначение |
Константа нуля | | |
Логическое умножение, конъюнкция, «И» | | |
Запрет по | | |
Переменная | ||
Запрет по | | |
Переменная | ||
Сложение по модулю 2, отрицание эквивалентности, исключающее «ИЛИ» | | |
Логическое сложение, дизъюнкция, «ИЛИ» | | |
Функция Пирса (Вебба), «ИЛИ-НЕ» | | |
Логическая равнозначность, эквиваленция | | |
Отрицание | ||
Правая импликация | | |
Отрицание | ||
Левая импликация | | |
Функция Шеффера, «И-НЕ» | | |
Константа единицы | |
Ниже дана таблица истинности для логических функций от двух переменных.
X1 | 0 | 0 | 1 | 1 |
X2 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | |
0 | 0 | 1 | 0 | |
0 | 0 | 1 | 1 | |
0 | 1 | 0 | 0 | |
0 | 1 | 0 | 1 | |
0 | 1 | 1 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 0 | 1 | |
1 | 0 | 1 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 0 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 0 | |
1 | 1 | 1 | 1 |
Ответить на контрольные вопросы, а затем посмотреть ответы
Контрольный вопрос 2. Какие из функций не являются ФАЛ одной переменной (и одна, и вторая в варианте ответа):
Булев базис (логический базис)
Любую булеву функцию с произвольным количеством аргументов можно построить через подстановку элементарных функции вместо аргументов (суперпозицию). Набор простейших функций, с помощью которого можно выразить любые другие, сколь угодно сложные логические функции, называется функционально полным набором, или логическим базисом.
Инверсия (логическое отрицание, «НЕ»)
.
0 | 1 |
1 | 0 |
Конъюнкция (логическое умножение, «И»)
.
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Дизъюнкция (логическое сложение, «ИЛИ»)
.
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Аналитическое представление логических функций
Дизъюнктивная нормальная форма
.
X1 | X2 | f |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Конъюнктивная нормальная форма
.
X1 | X2 | f |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
Способы описания логических функций
Применяются следующие способы описания логических функций:
Номер набора | f |
0 | 0 |
1 | 1 |
2 | 0 |
3 | 0 |
4 | 1 |
5 | 1 |
6 | 0 |
7 | 1 |
X1 | X2 | X3 | f |
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
Пример числового описания логических функций
или
.
Пример аналитического описания логических функций
Пример координатного описания логических функций
Пример графического описания логических функций
Аксиомы алгебры логики
Аксиомы конъюнкции
.
Аксиомы дизъюнкции
.
Аксиомы отрицания
если , то
; если
, то
.
Теоремы алгебры логики
Теоремы исключения констант
.
Теоремы идемпотентности (тавтологии, повторения)
.
.
Теорема противоречия
.
Теорема «исключённого третьего»
.
Теорема двойного отрицания (инволюции)
.
Законы алгебры логики
Ассоциативный (сочетательный) закон
.
Коммутативный (переместительный) закон
.
Дистибутивный (распределительный) закон
.
.
Законы де Моргана (законы общей инверсии или дуальности)
.
.
Закон поглощения (элиминации)
.
Закон склеивания (исключения)
.