что такое бесконечность в математике определение
Бесконечность
Бесконечность — концепция, используемая в математике, философии и естественных науках. Бесконечность какого-то понятия или атрибута некоторого объекта означает невозможность указать для него границы или количественную меру. Точное значение этого термина несколько различается в зависимости от области применения — математика, физика, философия, теология или повседневная жизнь.
Содержание
Потенциальная и актуальная бесконечность
Когда говорят, что некоторая величина потенциально бесконечна, то имеется в виду, что она может быть неограниченно увеличена. Альтернативой является понятие актуальной бесконечности, которая означает, что рассматривается (как реально существующая) величина, не имеющая конечной меры. Пример: второй постулат Евклида утверждает не бесконечность длины прямой линии, а всего лишь то, что «прямую можно непрерывно продолжать». Это потенциальная бесконечность. Если же рассмотреть всю бесконечную прямую, то она даёт пример актуальной бесконечности.
Именно Аристотель сделал большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников представления о ней:
Бесконечность в культуре и философии
Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.
Математическому происхождению символа бесконечности предшествовал [3] религиозный аспект. Подобные символы были найдены среди Тибетских наскальных гравюр; змея, кусающая свой хвост, или змея бесконечности, часто изображается в форме такого символа.
Понятие бесконечности получило развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии бесконечность долгое время рассматривалась также как атрибут пространства и времени; в наши дни это дискуссионный вопрос космологии. Например, древнейшим, первым известным, встречающимся в совершенно различных культурах символом бесконечности является змей Уроборос, иногда разворачиваемый в виде перевёрнутой восьмёрки.
Бесконечность в математике
В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. [источник не указан 106 дней] К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие (биекцию), а целые числа включены в действительные. Таким образом, в этом случае «число элементов» (мощность) одного множества «бесконечней» «числа элементов» (мощности) другого. Основоположником этих понятий был немецкий математик Георг Кантор.
В математическом анализе ко множеству действительных чисел добавляются два символа и
, применяющиеся для определения граничных значений и сходимости. Сто́ит отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы, как и многие другие, были введены для сокращения записи более длинных выражений.
Символ
В 1655 году Джон Валлис издаёт большой трактат «О конических сечениях» (De sectionibus conicis), где на стр. 5 появляется придуманный им [4] [5] символ бесконечности: ∞. В Юникоде бесконечность обозначена символом ∞ (U+221E), он включён в типографскую раскладку Бирмана версии 2.0 ( AltGr + 8 ).
Знак бесконечности символ. Что значит символ бесконечности
Что такое бесконечность простыми словами
Это понятие используется везде и постоянно, но означает «бесконечность» всегда немного разное.
Бесконечность в математике
Развитие математики началось с геометрии, а это целиком прикладная наука: измерять землю для посевов, проектировать строительную площадку. Откуда же в геометрии бесконечность может взяться?
Она просто не нужна. Здесь она не имеет практического смысла…
И вот, что удивительно, еще в 300 году до Нашей Эры в «Началах» Эвклида уже есть упоминание о бесконечной прямой. В том смысле, что продолжать прямую можно бесконечно. Значит ли это, что первый человек в истории написавший труд о математике, создавший «Эвклиову геометрию», описал в нем бесконечность? Не совсем.
Да, прямая — бесконечна, а вот отрезок прямой имеет свой размер. Но на практике бесконечность прямой означала лишь то, что ее длинна не важна. Когда дело доходило до реальных измерений, все величины в геометрии имели свой размер.
Бесконечность бывает двух видов:
Потенциальная бесконечность — что-то что можно в принципе продолжать бесконечно.
Актуальная бесконечность — действительно бесконечная величина.
Например, ряд натуральных чисел бесконечен (можете попробовать посчитать сами), к любому числу х всегда можно добавить +1.
Бесконечность, это не число!
Хотя мы иногда и осуществляем с ним операции так же как и с числами. Но нельзя сказать, что есть число больше бесконечности
В математике считают что:
x+ ∞ = ∞ ∞ — x = ∞ x * ∞ = ∞ ∞ / x = ∞ ∞ + ∞ = ∞
Простыми словами, бесконечность в математике, это не какое-то очень большое число, а специальная абстракция которая применяется когда это необходимо.
Знак бесконечности впервые появился в 17 веке. По есть несколько вариантов его происхождения:
Бесконечность в физике
Если математика целиком состоит из абстракций, то физика, конечно же, наука которая изучает реальность. Есть ли бесконечность в физике?
Может ли быть бесконечной сила, ускорение или масса? Наверное — нет. А напряжение или сила тока? Тоже нет? Но все-таки место для бесконечного найдется.
Например, условно бесконечной может быть амплитуда колебаний. Если частота вынужденных колебаний будет равна собственной частоте системы, произойдет резонанс, амплитуда будет увеличиваться до бесконечности, а значит система разрушится.
В релятивистской физике все еще интереснее. При движении частицы с массой не равной нулю со скоростью света, ее энергия стремится к бесконечности. Скорость распространения гравитации — также считается бесконечной.
Но что интересно, в начальный момент Большого взрыва вселенная пребывала в состоянии сингулярности, когда температура вещества была бесконечной как и его плотность.
Но в большинстве случаев все зависит от решаемой задачи. Например, при расчетах орбит для спутников, массу земли считают бесконечной (потому, что она настолько больше массы спутника, что нет смысла учитывать эту разницу), а вот если рассматривать ту же массу в системе Земля — Луна, пренебречь ею уже не получится.
Бесконечна ли вселенная?
При этом мы не видим ничего, кроме счета направленного в сторону Земли. Если бы размер Вселенной был конечен, логично было бы ожидать, что свет обогнув конечное пространство вернулся бы назад. Но этого нет.
Мы действительно ограничены в наблюдениях и не можем видеть ничего за так называемым «горизонтом частиц» (его еще называют горизонтом космического света). Но это из-за того, что свет от самых дальних звезд еще не успел дойти до нас с момента Большого взрыва. А что за горизонтом? Бесконечность? Или все-таки существуют границы?
Есть несколько вариантов:
Что же говорит наука?
Критическая плотность
Ученые космологи знают как рассчитать конечность пространства. Для этого используется показатель «плотности реликтового излучения». И это 0,00001 массы протона в одном кубическом сантиметре вещества, очень немного. Для измерения этого значения в 2001 году был запущен специальный аппарат WMAP ( Wilkinson Microwave Anisotropy Probe), так что информация проверена.
В существующей модели нашего с вами пространства (Модели Фридмана) возможны три варианта. Средняя плотность может быть больше, меньше или равна критической.
Если объяснить это простыми словами, то — большая плотность означает большую массу вещества, которая в свою очередь искривит пространство-время до замкнутого состояния. Малая плотность, наоборот, не позволит замкнутся и намекает на бесконечность пространства времени.
*»плоская», здесь не означает, двухмерная, как лист бумаги, это математическая абстракция описывающая свойство кривизны пространства.
Итак, что же такое бесконечность на самом деле? Все зависит от точки зрения и обстоятельств. В одном случае — философская абстракция ничего не значащая в реальном мире, в другом, вполне понятная величина.
Число пи пример бесконечности
Анна Снаткина и Кирилл Сафонов снова снимаются в одном сериале спустя 14 лет Художник ярко разрисовал трансформаторные будки, чтобы спасти их от вандалов Канадец танцует от радости, поставив вакцину от Covid19 (видео)
Отличным примером бесконечности является число пи. Математики используют для числа пи символ, потому что невозможно записать все число целиком. Пи состоит из бесконечного количества чисел. Оно часто округляется до 3,14 или даже 3,14159, но неважно, сколько цифр записано после запятой, ведь невозможно добраться до конца числа.
Космология и бесконечность
Космологи изучают Вселенную, неудивительно, что понятие бесконечности играет для них важную роль. Есть ли границы у Вселенной или она бесконечна?
Этот вопрос до сих пор остается без ответа. Наша Вселенная расширяется, но куда? И где предел этого расширения? Даже если у физической Вселенной и существуют границы, у нас все еще есть теория мультивселенной, которая рассматривает существование бесконечного количества Вселенных, в которых могут быть отличные от нашей законы физики.
МАТЕМАТИЧЕСКАЯ БЕСКОНЕЧНОСТЬ
Полезное
Смотреть что такое «МАТЕМАТИЧЕСКАЯ БЕСКОНЕЧНОСТЬ» в других словарях:
Бесконечность в математике — Бесконечность в математике. «Математическое бесконечное заимствовано из действительности, хотя и бессознательным образом, и поэтому оно может быть объяснено только из действительности, а не из самого себя, не из математической абстракции»… … Большая советская энциклопедия
Бесконечность — I Бесконечность в философии, понятие, употребляемое в двух различных смыслах: качественная Б., выражаемая в законах науки и фиксирующая универсальный (всеобщий) характер связей явлений; количественная Б., выступающая как неограниченность… … Большая советская энциклопедия
АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — одна из осн. абстракций (идеализации) классич. (теоретико множеств.) математики и классич. математич. логики. Состоит в отвлечении от невозможности полного обозрения к. л. бесконечного образования (бесконечной совокупности элементовк. л.… … Философская энциклопедия
ФОРМАЛЬНАЯ ЛОГИКА — наука, занимающаяся анализом структуры высказываний и доказательств, обращающая основное внимание на форму в отвлечении от содержания. Определение «формальная» было введено И. Кантом с намерением подчеркнуть ведущую особенность Ф.л. в подходе к… … Философская энциклопедия
ФОРМАЛИЗМ в математике — одно из осн. направлений в основаниях математики (и логики), к рое в качестве гл. задачи в области обоснования математики считает доказательство непротиворечивости отд. математич. теорий и – в идеале – всей математики в целом. Задача эта… … Философская энциклопедия
ПРОСТРАНСТВО — фундаментальное (наряду с временем) понятие человеческого мышления, отображающее множественный характер существования мира, его неоднородность. Множество предметов, объектов, данных в человеческом восприятии одновременно, формирует сложный… … Философская энциклопедия
РАССЕЛ — (Russell) Бертран (1872 1970) англ. философ, ученый и общественный деятель. Лауреат Нобелевской премии по литературе (1950). Р. учился и в дальнейшем преподавал в Кембриджском ун те. Он неоднократно приглашался для преподавания в ун ты др. стран … Философская энциклопедия
МНОЖЕСТВ ТЕОРИЯ — математик, теория, изучающая точными средствами проблему бесконечности. Предмет М. т. свойства множеств (совокупностей, классов, ансамблей), гл. обр. бесконечных. Осн. содержание классич. М. т. было разработано нем. математиком Г.… … Философская энциклопедия
КАНТОР — (Cantor), Георг (3 марта 1845 – 6 янв. 1918) – математик и мыслитель, создатель множеств теории, имеющей своим осн. объектом бесконечные множества. Род. в Петербурге. С 1872 – проф. ун та в Галле. Умер в Галле в психиатрич. клинике. К созданию… … Философская энциклопедия
КРОНЕКЕР — (Kronecker), Леопольд (7 дек. 1823 – 29 дек. 1891) – нем. математик. С 1883 – проф. ун та в Берлине. Интересовался вопросами искусства и философии. Филос. аспект взглядов К. выражен в его требовании ограничения понятия бесконечности [согласно К … Философская энциклопедия
Что такое бесконечность?
Философские науки
Похожие материалы
Как в философии появилась бесконечность?
Философия, говоря по определению, как бы сфера плюральности. Философия возможно больше исследует, чем действительное. В этом ее блеск и нищета. Бесконечность появилась уже не из философской сферы, а религиозной. Потому что актуальная бесконечность пришла в европейскую мысль, когда произошло обращение Европы к христианству, пришла ближневосточная культура, библейские предсказания о Боге, монотеизм. То есть Бог бесконечен, бесконечно мудрый, Бог есть бесконечно милостивый (в христианском богословии). Для античности Бог был конечен, вот тогда и начались попытки осмыслить это философии. (Программа Александра Гордона «Осознание и признание бесконечности. Что собой представляет эта величина?»; 2016-04-17)
Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, философия, или повседневная жизнь. Бесконечность появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ. (Доклад профессора, доктора философских наук Кармина Анатолия Соломонович; 2016-04-17)
Как заметил Аристотель, мышление человеческое – это вещь особенная. Оно, как он пишет, не останавливается, то есть мышление не может остановится. Вы сказали один, два, три, пошли дальше. На три нельзя остановиться должно быть что-то четверное, то есть принцип математической индукции. Где граница? Мы не можем досчитать до бесконечности, к примеру до миллиона, но это займет очень много времени. Если мы оборвем счет, то мы будем знать, что оборвали счет. На самом деле можно считать дальше. Отсюда возникает понятие, которое уже носит математический характер, потенциальная бесконечность.
Потенциальная бесконечность – бесконечно продолжающийся процесс. Например, бесконечное число рядов, бесконечная линия, прямая линия в геометрии.
Затем философы стали думать о том, а нет ли такой бесконечности, которая была бы действительно неограниченна, то есть не имела бы никакой границы в реальности. Это Бог. Бог – это все, все создано богом. Если Бог это все, то его нельзя определить, то есть Бог не имеет никаких пределов, границ не потому, что он практически бесконечен, он теоретически бесконечен. Но как он бесконечен? У него, что потенциальная бесконечность? Он актуально бесконечен.
Понятие актуально бесконечен впервые появилось в философии, то есть какая-то субстанция. Есть конечный мир, а есть бесконечное что-то за пределами нашего мира – трансцендентное.
Вселенная актуально бесконечна в математическом смысле. Если провести прямую линию от земли куда-то в даль, она вся отдана вселенной со своей бесконечностью. А если в вселенная может продолжаться и расширятся, то она потенциально бесконечна. Как устроена вселенная? Вселенная – бесконечное пространство, она трех мерна. (Доклад профессора, доктора философских наук Кармина Анатолия Соломоновича; 2016-04-17)
Также бесконечность неразрывно связана с обозначением бесконечно малого, к примеру, ещё Аристотель сказал:
«… всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела. Поэтому бесконечность потенциальна, никогда не действительна; какое бы число делений не задали, всегда потенциально можно поделить на большее число. «
Бесконечность изменяется во времени, но всему этому есть логика. Например, человеческим открытиям, знаниям и бесконечность тоже развивается логически.
Если заглянуть в древнюю философию, то категория бесконечности вообще не отличалась от категории неопределенности. Можно сделать вывод, что бесконечность – это нечто неопределенное. Именно так, слово бесконечность понималось в древности. Отсюда возникло понятие, понятие практическая бесконечность, то есть мы считаем бесконечным то, что практически для нас не имеет видимых границ. Например, у А.С. Пушкина «Евгений Онегин»:
«И бесконечный котильон
Ее томил, как тяжкий сон.»
(Доклад профессора, доктора философских наук Кармина Анатолия Соломоновича; 2016-04-17)
То есть бесконечность – нечто большое, бесконечное.
Как бесконечность стала предметом точной науки?
Если посмотреть на математику XIX века, она представляла собой конфедерацию математических теорий, каждая их которых формировала свой взгляд на бесконечное. Скажем, геометрия, в ней было бесконечное перечисление параллельных прямых, в анализе – это были бесконечно большие или бесконечно малые величины. Но общим подходом было то, что математика в целом понимала бесконечность, как нечто отрицательное, нечто противоположное в конечному. (Программа Александра Гордона «Осознание и признание бесконечности. Что собой представляет эта величина?»; 2016-04-17)
Понятие бесконечности в физике и математике
Рассматривая различные случаи использования понятия бесконечности в науке, нельзя не заметить, что смысл этого понятия меняется в зависимости от обстоятельства, в которых оно употребляется.
В физике бесконечным считается то, что по отношению к изучаемым явлениям чрезвычайно велико или чрезвычайно мало. Например, при изучении движения тел около земной поверхности можно считать расстояние от Земли до Солнца бесконечно большим и соответственно действие солнечного тяготения на них бесконечно малым. Как справедливо отмечает Г. И. Наан, «во всех физических задачах бесконечность означает просто «достаточно далеко». Это могут быть и парсеки (в астрономии), и километры или метры (в электродинамике), и даже миллиардные и значительно меньшие доли сантиметра в теории атомного ядра». (Г. И. Наан Общие вопросы космологии «Труды шестого совещания по вопросам космогонии», Изд в АН СССР, 1959, 256 с.)
Тем самым бесконечность выступает здесь как бесконечное лишь в строго определенном отношении, будучи в других отношениях конечным.
Понимаемую таким образом бесконечность можно назвать «физической» бесконечностью. «Физическая» бесконечность позволяет получать ценные научные выводы, достаточно строгие и точные.
«Физическая» бесконечность – научная абстракция, с помощью которой мы получаем возможность выразить определенные, объективно существующие отношения между вещами. Но она отражает эти отношения односторонне, упрощенно. Поэтому в каждом конкретном случае область ее использования ограничена.
В отличии от абстракции «физической» бесконечности математическое понимание бесконечного выступает, как абстракция «более высокого ранга». (Кармин А. С. Постановка проблемы бесконечности в современной науки. Ленинград, 1965, 124 с.)
Различают два основных вида математической бесконечности: потенциальная и актуальная. Первая, как я уже сказала выше, означает неограниченно продолжающийся процесс, вторая – актуально, налично существующую в виде завершенного целого бесконечную величину. С помощью этих абстракций в различных разделах математики создаются разные математические образы бесконечного. Математическая бесконечность начинает тогда казаться образцом, которому, как идеалу, должна следовать природа. Однако реальная бесконечность природы не должна обязательно подчиняться нашим математическим представлениям о бесконечности. «Идеальная потребность математика вовсе не есть принудительный закон для реального мира» (Ф. Энгельс. Анти-Дюринг. Госполитиздат, 1953, стр. 49).
Значит, математические абстракции бесконечности имеют реальный смысл лишь как выражение бесконечного количества некоего качества. Но в природе все имеет меру, и всякое качество связано с определенными границами присуще ему количественных изменений.
Как мы вообще приходим к понятию бесконечности?
Допустим, что мы начинаем считать, двигаясь по натуральному ряду чисел. Можно ли путем такого движения и счета получить понятие бесконечности, т. е. можно ли дойти до такого числа, которое необходимо было бы назвать бесконечным? Конечно, нельзя. Сколько бы мы ни двигались по натуральному ряду чисел, мы никогда не дойдем до бесконечности. Следовательно, целых чисел мало для конструкции понятия бесконечности; тут нужны совсем другие подходы.
Если не хватает натурального ряда чисел, возьмем числовое инобытие и посмотрим, не встретим ли мы здесь категорию бесконечного числа. Однако, что такое инобытие? Инобытие числа, если его брать в чистом виде, во всем абсолютно противоположно числу: число есть четкая раздельность, инобытие числа–сплошная неразличимость; число – устойчивость и прерывность, числовое инобытие – неуловимая подвижность и алогическая непрерывность. В таком виде взятое, числовое инобытие никакого отношения к бесконечности не имеет.
Бесконечность прежде всего есть нечто; сущность же инобытия заключается именно в том, что оно не есть нечто (иначе оно было бы бытием, а не инобытием), а существует оно всегда только в отношении числа и бытия. О числовом инобытие нельзя ни того, что он конечен, ни того, что он бесконечен. Об инобытии, если его брать в чистом виде, невозможно никакое утверждение. Оно живет именно размывом и становлением. Таким образом, бесконечного числа на этом пути мы не можем достигнуть. Тут повторяется, собственно говоря, то же бессилие, что и в случае с целым числом. В крайнем случае чистое инобытие приводит к беспредельному становлению, при котором ни о какой новой точке становления нельзя сказать, что эта точка бесконечно удалена от начала становления. Инобытие делает как бы бессильный жест в сторону бесконечности, но не дает самой бесконечности. (Лосев А.Ф. Хаос и Структура. – Москва «Мысль», 1997, 495-496 с.)
О сказанном выше, я задаюсь вопросом, есть ли такое состояние мысли – мысль о бесконечности? Мне кажется, что нет. Это, как и движение по натуральному ряду чисел, есть не конструкция бесконечности, а лишь бессильный жест в сторону бесконечности и полная невозможность сказать о ней что-нибудь положительное.
Бесконечность как философская категория
В наиболее широком смысле понятие бесконечности использует философия. Действительно, диалектический материализм рассматривает бесконечность как ее атрибут.
Рассматривая бесконечность в наиболее широком плане, диалектика материалистическая философия получает возможность выделить то наиболее общее и существенное, что характеризует бесконечность, как атрибут материи и что как или иначе лежит в основе всех научных представлений о ней, поскольку все они являются в конечном счете представлениями об одном и том же. Таким образом, научно философское, диалектик материалистическое понимание бесконечности может рассматривать как обобщение различных абстракций бесконечности, используемых в науке.
Категория бесконечности тесно связана с категориями абсолютного и относительного. Абсолютное и относительное в материальном мире образует нереальное единство. Любые конкретные процессы, состояния, свойства, качества материи являются относительными. Но в их постоянном движении, изменении, превращении выявляется абсолютное.
Таким образом, абсолютное существует не само по себе «в чистом виде», а лишь через относительное. Однако, появляясь в относительности, абсолютное не может быть сведено к нему. Эта противоречивая взаимосвязь и выражается категорией бесконечности. Бесконечность представляет собой не что иное, как способ разрешения противоречия между абсолютным и относительным, способ из взаимного перехода друг в друга.
Особенности постановки проблемы бесконечности в философии и естественных теориях
Как я уже говорила, существует некоторое различие между употреблением понятия абсолютности в философии и его употреблением в естественных теориях.
Философия рассматривает понятие абсолютности в самом общем значении, считая абсолютным лишь то, что непреложно всеобще для мира «в целом», для материи «вообще». В философском понимании абсолютны лишь наиболее общие законы и атрибуты бытия: например, движение, пространство и время, закон перехода количественных изменений в качественные.
Любой естественнонаучный закон в этом более узком смысле абсолютен, ибо иначе он вообще не был бы законом. Каждая конкретная научная теория, имея перед собой всегда определенную конкретную область исследования, считает абсолютным то, что непреложно в данной области, то есть то, сто абсолютно не «вообще», а лишь в отмеченном более узком смысле.
Таким образом, он и абсолютен и относителен, и это не смешение понятий, а отражение диалектической противоречивости объективного мира.
Следовательно, в отличии от философии, понятие абсолютного в рамках всякой естественнонаучной теории есть абстракция. Эта абстракция нужна и полезна, но она теряет силу тогда, когда невозможно отвлечься от изменения данных условий и приходится учитывать новые, иные условия.
Реальная бесконечность природы есть выражение ее абсолютного характера – абсолютного в самом полном и широком смысле слова. Так как в философии речь идет именно об «абсолютном в общем», «безусловно абсолютном», то она вырабатывает наиболее общие понятия бесконечности, отражающие реальную конечность природы в общем виде.
Таким образом, наиболее общая постановка проблемы бесконечности дает только философия. Поскольку она относится к конкретным свойствам и состояниям материи, а не ко всей материи вообще.
Бесконечность пространства
Если говорить о пространстве вообще как универсальной форме существования материи, то оно выступает как абсолютное в самом широком смысле. Как говорилось выше, что это абсолютное пространство бесконечно, и бесконечность его есть реальная бесконечностью.
Исходя из этого можно сказать, что на некотором этапе развития науки, когда придется рассматривать пространство в новых отношениях и перед ними раскроются новые, более общие свойства и формы его, тогда ограниченность абстракции будет обнаружена и мы столкнемся с необходимостью считать «наше» физическое пространство конечным.
Парадокс обнаруженный А. Л. Зельмановым, находит рациональное объяснение, что не инвариантность бесконечности, то есть «дурная» пространственная бесконечность – это относительность бесконечности конкретного определенного физического пространства. Значит, о бесконечности можно говорить только в определенных отношениях, абстрагируясь от других отношений, в которых оно является конечным.
Также находит подтверждение в исследованиях А. З. Петрова о том, что реальная бесконечность пространства гораздо сложнее, чем «дурная» бесконечность. Она важна не только в физических, но и философских отношениях. Путем анализа алгебраической структуры уравнений Эйнштейна А. З. Петров показал, что имеются три различных типа пространства. Но если в бесконечной Вселенной имеются пространства различных типов, то «дурная» бесконечность становится бессмысленной.
Если в этих условиях реальная бесконечность пространства отожествляется с его «дурной» бесконечностью, то невозможно считать пространство бесконечным. Это, вероятно, послужило причиной того, что некоторые ученые, стоящие на позициях диалектического материализма, стали пытаться вообще пересмотреть положение марксистской философии о бесконечности пространства. Например, Э. Кольман.
В заключении хочу сказать, что бесконечность или бесконечное столь же познаваемо, как и непознаваемо, и раскрытие его сущности может происходить лишь в виде «бесконечного асимптотического прогресса» (по положению Энгельса), то есть все атрибуты и законы материи оказываются одновременно специфическими и частными для всего мира, например, пространство, время, движение, системность. Когда мы говорим о том, что мир есть единое связное целое, то можно определить, что здесь подразумевается понятие «целое». Поскольку Вселенная бесконечна, то о ней нельзя говорить, как о какой-то замкнутой системе, иначе говоря какую бы конкретную систему любого порядка и масштабов мы ни взяли, она будет входить во Вселенную. По моему суждению, во Вселенной нет единого количественного закона развития всех систем, а положение во Вселенной как едином связном целом означает лишь признание материального единства мир (то есть общность материи, как некой субстанции, как носителя многообразных свойств и отношений), подчинение всех объектов тем всеобщим законам, которые исследуются диалектическим материализмом. А диалектический материализм в свою очередь это система взглядов на окружающий мир.