что такое белок как химическое соединение
Белки
Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями.
Образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:
Макромолекулы белков имеют стереорегулярное строение, исключительно важное для проявления ими определенных биологических свойств.
Структуры белков
Первичная структура — последовательность α-аминокислотных звеньев в полипептидной цепи | Вторичная структура – спиральная структура полипептидной цепи, закрепленная водородными связями между группами N-H и С=О |
Химические свойства белков
Качественные реакции на белки
Денатурация белка
Это разрушение структуры белка при нагревании, изменении кислотности среды, действии излучения, спирта, тяжелых металлов, радиации.
Пример денатурации — свертывание яичных белков при варке яиц.
Денатурация бывает обратимой и необратимой.
Анализируя продукты гидролиза, можно установить количественный состав белков.
3.8.2. Белки
Белки — высокомолекулярные органические соединения, состоящие из остатков аминокислот, соединённых в длинную цепочку пептидной связью.
В состав белков живых организмов входит всего 20 типов аминокислот, все из которых относятся к альфа-аминокислотами, а аминокислотный состав белков и их порядок соединения друг с другом определяются индивидуальным генетическим кодом живого организма.
Одной из особенностей белков является их способность самопроизвольно формировать пространственные структуры характерные только для данного конкретного белка.
первичная | последовательность соединения остатков аминокислот | |
вторичная | ||
третичная |
Из-за специфики своего строения белки могут обладать разнообразными свойствами. Например, белки, имеющие глобулярную четвертичную структуру, в частности белок куриного яйца, растворяются в воде с образованием коллоидных растворов. Белки, обладающие фибриллярной четвертичной структурой в воде не растворяются. Фибриллярными белками, в частности, образованы ногти, волосы, хрящи.
Химические свойства белков
Гидролиз
Белок + nH2O => смесь из α-аминокислот
Денатурация
Разрушение вторичной, третичной и четвертичной структур белка без разрушения его первичной структуры называют денатурацией. Денатурация белка может протекать под действием растворов солей натрия, калия или аммония – такая денатурация является обратимой:
Денатурация же протекающая под действием излучения (например, нагрева) или обработке белка солями тяжелых металлов является необратимой:
Так, например, необратимая денатурация белка наблюдается при термической обработке яиц в процессе их приготовления. В результате денатурации яичного белка его способность растворяться в воде с образованием коллоидного раствора исчезает.
Качественные реакции на белки
Биуретовая реакция
Если к раствору, содержащему белок добавить 10%-й раствор гидроксида натрия, а затем небольшое количество 1 %-го раствора сульфата меди, то появится фиолетовое окрашивание.
раствор белка + NаОН(10%-ный р-р) + СuSO4 = фиолетовое окрашивание
Ксантопротеиновая реакция
растворы белка при кипячении с концентрированной азотной кислотой окрашиваются в желтый цвет:
раствор белка + HNO3(конц.) => желтое окрашивание
Белок: функции, нормы, особенности и источники
Материал проверила и прокомментировала Горбачёва Наталья Леонидовна, диабетолог, диетолог, эндокринолог, ведущий специалист сети клиник «Семейная»
Что такое белок
Белки — главный строительный материал организма. Он участвует в создании мышц, сухожилий, органов и кожи, а также нужен для производства ферментов, гормонов, нейромедиаторов и различных молекул, которые выполняют множество важных функций. Белки состоят из более мелких молекул, аминокислот, которые соединяются вместе, как бусы на нитке. Эти связанные аминокислоты образуют длинные белковые цепи, которые затем складываются в сложные формы. Некоторые аминокислоты организм производит самостоятельно, другие можно восполнить только с помощью еды.
Функции белка в организме
Рост мышц и повышение выносливости
Организму необходим протеин, ведь мышцы в основном состоят из белка. Как и большинство тканей тела, мышцы динамично разрушаются и восстанавливаются, поэтому им необходим строительный материал для роста. Чтобы мышечная масса увеличивалась, в организме должен быть положительный белковый баланс. Его также называют азотным, из-за высокого содержания этого элемента в протеине. Употребление белка помогает не только нарастить мышцы при занятиях спортом, но и предотвратить их потерю, если вы придерживаетесь строгих диет [1] [2].
Биохимические процессы
Белки — ферменты, они помогают тысячам биохимических реакций, происходящих внутри клеток организма [3]. В том числе активируют метаболизм посредством объединения с другими молекулами — субстратами. Ферменты также могут функционировать и вне клетки, например, пищеварительные — лактоза и сахароза, которые помогают переваривать сахар. От их количества зависит пищеварение, свертывание крови и энергетический баланс. Дисбаланс некоторых ферментов может привести к сбоям в работе большинства систем организма [4].
Гормональный баланс
Некоторые белки представляют собой гормоны, которые как химические посредники помогают взаимодействовать различным клеткам организма. Их производят эндокринные ткани и железы, а затем белки транспортируются по внутренним органам. Эти гормоны делят на три группы: белок и пептиды, стероиды и амины [5].
Структура тканей
Некоторые белки являются волокнами, придающими жесткость клеткам: кератин, коллаген и эластин. Они помогают формировать каркас тканей тела [6]. Кератин — строительный материал для кожи, волос и ногтей, коллаген — структурный белок костей, кожи, связок и сухожилий, а эластин позволяет тканям возвращаться в первоначальную форму после растяжений и сокращений.
Правильный pH
Белок играет жизненно важную роль в регулировании концентрации кислот и оснований в крови и других жидкостях организма [7]. Этот баланс измеряется с помощью шкалы pH от 0 до 14, где 0 — максимально кислый, 7 — нейтральный, 14 — наиболее щелочной. Протеины — один из способов регулирования этих показателей. Например, гемоглобин — тоже белок, из которого состоят эритроциты. Он связывает небольшое количество кислоты, помогая поддерживать нормальный уровень pH в крови.
Хороший иммунитет
Белки помогают формировать иммуноглобулины или антитела для борьбы с инфекцией [8] [9]. Антитела — белки в крови, которые помогают защитить организм от бактерий и вирусов. Вырабатывая их в качестве реакции на вторжение чужеродных элементов, клетки в дальнейшем лучше противостоят похожим заболеваниям.
Баланс жидкости
Альбумин и глобулин — белки крови, которые помогают сохранить баланс жидкости в организме, удерживая воду в клетках [10] [11]. При недостатке протеина могут возникать отеки, так как жидкость вытесняется в промежутки между клетками [12].
Нормализация веса
Белок важен для тех, кому необходимо нормализовать вес. Некоторые эксперименты ученых подтверждают, что увеличение количества белка в рационе ведет к повышению скорости метаболизма и снижению аппетита [13]. Протеин хорошо насыщает, в результате чего реже хочется перекусывать, снижается объем порций в основных приемах пищи [14] [15]. В одном из исследований женщины 12 недель употребляли белковую пищу в количестве 30% от дневной калорийности рациона. В среднем каждая из участниц эксперимента потеряла порядка пяти килограмм веса, сохранив здоровые пищевые привычки [16].
Норма белка в день
Если вы каждый день едите продукты животного происхождения, такие как мясо, рыбу, яйца или молочные продукты, вы, вероятно, получаете достаточно белка. Если придерживаетесь растительной диеты, получить незаменимые аминокислоты, необходимые организму, будет сложнее. Среднестатистические нормы протеина в рационе на один килограмм веса:
В некоторых случаях требуется больше белка, например, в периоды болезни, интенсивных занятий спортом, а также при беременности и кормлении грудью [17] [18]. Данные о точном количестве вещества разнятся, поэтому правильно будет проконсультироваться с лечащим врачом, который подберет индивидуальный рацион, исходя из особенностей организма. Так, авторы одного исследования утверждают, что беременным женщинам в день необходимы 1,2–1,52 г протеина на один кг веса [19]. Другие врачи рекомендуют потреблять дополнительно 1,1г белка на кг веса [20]. Суточная норма белка во время грудного вскармливания составляет 1,3 г на килограмм в день плюс 25 дополнительных граммов [21].
Активным людям требуется больше белка, чем тем, кто ведет малоподвижный образ жизни. Спортсменам, предпочитающим тренировки на выносливость, необходимо около 1,2–1,4 г на каждый кг веса [22] [23]. Достаточное количество протеина необходимо для предотвращения развития заболеваний, таких как остеопороз. Пожилым людям, а также тем, кто восстанавливается после травмы или операции, требуется до 1–1,3 г на один кг массы тела [24] [25].
Сколько белка в яйцах, курице и твороге
Эти продукты врачи и диетологи чаще всего упоминают как отличные источники протеина:
Яйца. Содержат 6-7 г белка на штуку среднего размера. Содержатся они именно в белковой части яйца. Поэтому в фитнес-меню часто присутствуют блюда без желтка, но на самом деле, при сбалансированном рационе нет смысла от них отказываться.
Курица. Если необходимо добавить белка в рацион, выбирайте куриную грудку — в ней больше волокон и меньше жира. На 100 г продукта — 27% белка. Оптимальный ингредиент для повышения уровня белка в организме, если вы не придерживаетесь растительной диеты.
Творог. В 200-граммовой пачке творога содержится 35 г белка, что соответствует почти трети среднестатистической дневной нормы. Отдавайте предпочтение творогу средней жирности, так как обезжиренного усваивается меньше необходимым микроэлементов.
Продукты, богатые белком
В первую очередь, протеин попадает в организм из животных продуктов. Средние показатели белка на 100 г продукта:
Вегетарианцам и веганам стоит позаботиться о наличии растительного белка в рационе. Это могут быть бобовые, крупы, соевые и цельнозерновые продукты:
Норма белка в моче и крови
Лучший способ проверить, хватает ли организму белка, — сдать анализы, например биохимический анализ крови. В норме концентрация белка в крови взрослого человека должна составлять 62–86 г/л, а у детей — от 45 до 80 г/л. Снижение этих показателей возникает в результате ряда заболеваний, в том числе первичных иммунодефицитов, нарушениях обмена веществ, дисфункциях желудочно-кишечного тракта, а также дефицита протеина в рационе.
Превышение нормы встречается редко, но оно может указывать на хронические тяжелые инфекции (такие как туберкулез), ускоренный распад эритроцитов, системные опухоли или обезвоживание организма.
С-реактивный белок — фракция протеинов плазмы, которая повышается при наличии в организме воспалительного процесса. Синтезируется в ответ на попадание в кровь токсинов патологических микроорганизмов и обезвреживает их путем их связывания, а также запускает иммунные реакции. С-реактивный белок в норме отсутствует в крови (либо его показатели не превышают 0,4 мг/л). Большие значения указывают на развитие патологий: инфекционных и вирусных заболеваний, панкреатита, пиелонефрита, гепатита, язвенного колита и онкологии.
Помимо крови, белок учитывают в анализе мочи. Небольшое его количество встречается и у здоровых людей, в норме — до 140 мг/л (до 0,140 г/л). При активной физической нагрузке показатели не должны превышать 250 мг/сутки (0,250 г/л). Для того, что точнее узнать потери белка с мочой, необходимо проводить исследование его концентрации в суточных анализах. Их назначают при заболеваниях мочевыделительной системы и почек, инфекциях, а также для контроля осложнений, в том числе при приеме препаратов, оказывающих нефротоксическое действие — поражение почек.
Переизбыток белка
Высокое потребление белка может нанести вред людям с заболеваниями почек [26]. Двумя основными факторами риска почечной недостаточности являются высокое кровяное давление (гипертония) и диабет. И то, и другое провоцируется переизбытком белка [27] [28]. Точное количество необходимого протеина варьируется в зависимости от возраста, состояния здоровья и образа жизни. Исследование с участием здоровых мужчин, занимающихся силовыми тренировками, показало, что ежедневное употребление 3 г белка на кг массы тела в течение года не имело никаких неблагоприятных последствий для здоровья [29]. Даже 4,4 г на кг веса в течение двух месяцев не вызывало никаких побочных эффектов [30].
Нет никаких доказательств того, что потребление белка в разумных количествах причиняет вред здоровым людям. Напротив, существует множество доказанных преимуществ. Однако, если у вас заболевание почек, следует следовать советам врача и ограничить потребление протеинов.
Богатое белками, но бедное жирами и углеводами питание — нагрузка на почки и печень. Переизбыток белка на фоне нехватки других необходимых организму веществ выражается в проблемах с пищеварением, неприятном запахе изо рта и постоянной жажде.
Недостаток белка
Помимо показателей медицинских анализов есть и другие признаки недостатка протеина, которые вы можете заметить перед походом к врачу.
Постоянный голод
Белки насыщают и заряжают энергией надолго, но в качестве перекуса многие из нас используют не белковые продукты, а содержащие углеводы: бананы, печенье, конфеты, выпечку и бутерброды. Еда, богатая углеводами, приводит к быстрому подъему уровня сахара (и мы чувствуем себя сытыми) и такому же быстрому падению (через полчаса мы снова голодны). Этот же эффект вызывает тягу к сладкому: организму не хватает сил, а конфета — самый быстрый способ их получить. Правда, ненадолго.
Слабые волосы и ногти
Ногти и волосы — это тоже белок, а точнее, кератин. Для их здоровья регулярное потребление белковой пищи абсолютно необходимо, иначе организму неоткуда будет брать строительный материал. При дефиците белка волосы становятся тонкими, слабыми и тусклыми, плохо растут и секутся, а ногти начинают ломаться и расслаиваться.
Медленное заживление ран
Если даже маленькая царапина заживает дольше недели, это тоже может быть признаком недостатка белка. Он входит в состав клеток мышечной ткани, кожи и крови, поэтому, если макроэлемента не хватает, на ремонт повреждений у организма уходит гораздо больше времени.
Частые инфекционные болезни
По мнению доктора Алиссы Рамси из американской Академии питания и диетологии, белок также необходим для построения клеток иммунной системы — если вы едите мало белковых продуктов, со временем защита организма может ослабеть.
Без белка замедляется выработка интерферона и лизоцима, «защитников», отбивающих атаки патогенов. Иммунитет перестает справляться с бактериями и вирусами, и мы болеем чаще. Причем любыми инфекционными заболеваниями: у людей на низкобелковой диете часто диагностируют инфекции.
Отеки
Дефицит белка приводит к нарушению водно-солевого баланса, из-за чего жидкость скапливается в тканях. Результат — мешки под глазами и опухшее по утрам лицо, отеки лодыжек и стоп, чувство тяжести в ногах, которое появляется уже в середине дня, даже если вы носите удобную обувь.
Снижение веса
У нашего организма свои приоритеты. Если белка не хватает, то все поступающие протеины направляются туда, где они жизненно необходимы, то есть к внутренним органам. Мышцам при этом почти ничего не достается, и они начинают уменьшаться в объеме. Правда, снижение мышечной массы при белковой недостаточности заметить трудно — за счет отеков вес может оставаться относительно стабильным или снижаться очень медленно. Зато вы точно заметите другие признаки постепенной атрофии мышечной ткани — слабость и быструю утомляемость. Люди, желающие скорректировать вес, часто отказываются от жиров или белка, но это ошибка. Важно соблюдать баланс: основу правильной диеты составляют мясо, рыба (или продукты с высоким содержанием белка растительного происхождения), крупы и овощи.
Плохое настроение
Белок, помимо всего прочего, важен для синтеза нейромедиатора серотонина. Именно он отвечает за хорошее настроение и стрессоустойчивость. Недостаток серотонина приводит не только к хандре, плаксивости и мрачным мыслям, но и к бессоннице, повышенной тревожности, нервозности и склонности взрываться по пустякам.
Комментарии эксперта
Горбачёва Наталья Леонидовна, диабетолог, диетолог, эндокринолог, ведущий специалист сети клиник «Семейная»
«Правильный белковый обмен веществ — баланс между распадом и синтезом белков. Организму должно хватать аминокислот для построения новых соединений. Степень усвоения белка зависит от его происхождения и способа термической обработки. Элемент не способен накапливаться в организме, его излишки выводятся с помощью почек. Поэтому чрезмерное потребление белка негативно сказывается на их состоянии
Причинами нарушений белкового обмена могут стать наследственные заболевания: подагра, а также тяжелые состояния, такие как онкопатологии, следствие радиационного облучения и прочее. Но в большинстве случаев у взрослого человека симптомы нарушения биосинтеза белков говорят о несбалансированном рационе питания.
Недостаток белков — актуальная проблема. Одних она настигает при избавлении от лишнего веса, других — при вегетарианстве, а третьих — из-за заболеваний пищеварительной и эндокринной систем. Дефицит белков может не проявляться клинически, но последствия недостатка протеина довольно печальны:
Если биосинтез белков нарушен на этапе построения, человек может страдать от белкового отравления. Характерными признаками интоксикации являются поражение печени и почек, нарушения работы ЖКТ. Переизбыток белка влияет на центральную нервную систему вплоть до серьезных поражений при врожденных нарушениях обмена веществ. При ухудшении самочувствия необходимо сдать анализы и получить рекомендации специалиста. »
БЕЛКИ
Белки (синоним протеины) — высокомолекулярные азотистые органические соединения, являющиеся полимерами аминокислот. Белки — основная и необходимая составная часть всех организмов.
Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение и др.) обеспечиваются деятельностью ферментов (см.), являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, напр, сократительный белок мышц (актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий), покровы организма (кожа, волосы, ногти и т. п.), состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества.
Роль белков в живом организме подчеркивается уже самим их названием «протеины» (греческий protos первый, первичный), предложенным Мульдером (G. J. Mulder, 1838), который обнаружил, что в тканях животных и растений содержатся вещества, напоминающие по своим свойствам яичный белок. Постепенно было установлено, что белки представляют собой обширный класс разнообразных веществ, построенных по одинаковому плану. Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существовании белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.
Содержание
Химический состав и структура белков
Белки содержат в среднем около 16% азота. При полном гидролизе белки распадаются с присоединением воды до аминокислот (см.). Молекулы белков представляют собой полимеры, которые состоят из остатков около 20 различных аминокислот, относящихся к природному L-ряду, то есть имеющих одинаковую конфигурацию альфа-углеродного атома, хотя их оптическое вращение может быть неодинаковым и не всегда направленным в одну сторону. Аминокислотный состав разных белков неодинаков и служит важнейшей характеристикой каждого белка, а также критерием его ценности в питании (см. раздел Белки в питании). Некоторые белки могут быть лишены тех или иных аминокислот. Например, белки кукурузы— зеин не содержит лизина и триптофана. Другие белки, напротив, очень богаты отдельными аминокислотами. Так, протамин лосося — сальмин содержит свыше 80% аргинина, фиброин шелка — около 40% глицина (аминокислотный состав некоторых белков представлен в табл. 1).
Таблица 1. АМИНОКИСЛОТНЫЙ СОСТАВ НЕКОТОРЫХ БЕЛКОВ (в весовых процентах аминокислот белка)
Альбумин сыворотки быка
При неполном (обычно ферментативном) гидролизе белков, помимо свободных аминокислот, образуется ряд веществ с относительно небольшими молекулярными весами, называемых пептидами (см.) и полипептидами. В белках и пептидах аминокислотные остатки соединены между собой так называемой пептидной (кислотно-амидной) связью, образуемой карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты:
В зависимости от числа аминокислот такие соединения называют ди-, три-, тетрапептидами и т. д., например:
Длинные пептидные цепи (полипептиды), состоящие из десятков и сотен аминокислотных остатков, образуют основу структуры белковой молекулы. Многие белки состоят из одной полипептидной цепи, в других белках имеется две или более полипептидных цепей, соединенных между собой и образующих более сложную структуру. Длинные полипептидные цепи одинакового аминокислотного состава могут давать огромное число изомеров за счет различной последовательности отдельных аминокислотных остатков (подобно тому как из 20 букв алфавита можно составить множество различных слов и их сочетаний). Поскольку различные аминокислоты могут входить в состав полипептидов в разных соотношениях, число возможных изомеров становится практически бесконечным, и для каждого индивидуального белка последовательность аминокислот в полипептидных цепях является характерной и уникальной. Эта последовательность аминокислот определяет первичную структуру белка, которая в свою очередь определяется соответствующей последовательностью дезоксирибонуклеотидов в структурных генах ДНК данного организма. К настоящему времени изучена первичная структура многих белков, главным образом белковых гормонов, ферментов и некоторых других биологически активных белков. Последовательность аминокислот определяют путем ферментативного гидролиза беков и получения так называемых пептидных карт при помощи двухмерной хроматографии (см.) и электрофореза (см.). Каждый пептид исследуется на концевые аминокислоты до и после обработки аминополипептидазой — специфическим ферментом, последовательно отщепляющим аминоконцевые (N-концевые) аминокислоты, и карбоксиполипептидазой, отщепляющей карбоксиконцевые (С-концевые) аминокислоты. Для определения N-концевых аминокислот применяют реактивы, соединяющиеся со свободной аминогруппой концевой аминокислоты. Обычно используют динитрофторбензол (1-фтор-2,4-динитробензол), дающий динитрофенильное производное с N-концевой аминокислотой, которое затем может быть идентифицировано после гидролиза и хроматографического разделения гидролизата. Наряду с динитрофторбензолом, предложенным Сангером (F. Sanger), применяется также обработка фенилизотиоцианатом по Эдману (P. Edman). При этом с концевой аминокислотой образуется фенилтиогидантоин, который легко отщепляется от полипептидной цепи и может быть идентифицирован. Для определения С-концевых аминокислот применяют нагревание пептида в уксусном ангидриде с тиоцианатом аммония. В результате конденсации получается кольцо тиогидантоина, включающее радикал концевой аминокислоты, который затем легко отщепить от пептида и установить характер С-концевой аминокислоты. Последовательность аминокислот в белке устанавливают на основании последовательности пептидов, полученных с применением разных ферментов и с учетом специфичности каждого фермента, расщепляющего белок по пептидной связи, образованной определенной аминокислотой. Таким образом, определение первичной структуры белка представляет собой весьма кропотливую и длительную работу. Нашли успешное применение различные методы прямого определения последовательности аминокислот при помощи рентгеноструктурного анализа (см.) или путем масс-спектрометрии (см.) производных пептидов, получаемых при гидролизе белка разными ферментами.
Пространственно полипептидные цепи часто образуют спиральные конфигурации, удерживаемые при помощи водородных связей и образующие вторичную структуру белка. Чаще всего встречается так называемая а-спираль, в которой на один виток приходится 3,7 аминокислотных остатков.
Отдельные аминокислотные остатки в одной и той же или в разных полипептидных цепях могут быть соединены между собой при помощи дисульфидных или эфирных связей. Так, в молекуле мономера инсулина (рис. 1) дисульфидными связями соединены между собой 6 и 11-й остатки цистеина А-цепи и 7 и 20-й остатки цистеина А-цепи соответственно с 7 и 19-м остатками цистеина В-цепи. Такие связи придают полипептидной цепи, имеющей обычно спирализованные и неспирализованные участки, определенную конформацию, называемую третичной структурой белка.
Под четвертичной структурой белка подразумевают образование комплексов из мономерных белковых молекул. Так, например, молекула гемоглобина состоит из четырех мономеров (двух альфа-цепей и двух бета-цепей). Четвертичная структура фермента лактатдегидрогеназы представляет собой тетрамер, состоящий из 4 мономерных молекул. Эти мономеры бывают двух типов: Н, характерный для сердечной мышцы, и М, характерный для скелетных мышц. Соответственно встречается 5 разных изоферментов лактатдегидрогеназы, представляющих собой тетрамеры из разных сочетаний этих двух мономеров — НННН, НННМ, ННММ, НМММ и ММММ. Структура белка определяет его биологические свойства, и даже небольшое нарушение конформации может весьма существенно отразиться на ферментативной активности или других биологических свойствах белка. Тем не менее наиболее важное значение имеет первичная структура белка, определяемая генетически и в свою очередь часто определяющая высшие структуры данного белка. Замена даже одного аминокислотного остатка в полипептидной цепи, состоящей из сотен аминокислот, может весьма существенно изменить свойства данного белка и даже полностью лишить его биологической активности. Так, например, гемоглобин, встречающийся в эритроцитах при серповидноклеточной анемии, отличается от нормального гемоглобина А лишь заменой остатка глутаминовой кислоты в 6-м положении р-цепи на остаток валина, то есть заменой лишь одной из 287 аминокислот. Однако этой замены достаточно для того, чтобы измененный гемоглобин обладал резко нарушенной растворимостью и в значительной мере утратил свою основную функцию переноса кислорода к тканям. С другой стороны, в строго определенной структуре инсулина (рис. 1) характер аминокислотных остатков в 8, 9 и 10-м положениях цепи А (между двумя остатками цистеина), по-видимому, не имеет существенного значения, поскольку эти три остатка обладают видовой специфичностью; в инсулине быка они представлены последовательностью ала-сер-вал, у овцы — ала-гли-вал, у лошади — тре-гли-иле, а в инсулине человека, свиньи и кита — тре-сер-иле.
Физико-химические свойства
Молекулярный вес большинства белков составляет от 10—15 тысяч до 100 тысяч, однако имеются белки с молекулярным весом 5—10 тысяч и несколько миллионов. Условно полипептиды с молекулярным весом ниже 5 тысяч относят к пептидам. Большинство белковых жидкостей и тканей организма (например, белки крови, яиц и др.) растворимы в воде или в растворах солей. Белки обычно дают опалесцирующие растворы, которые ведут себя как коллоидные. Имея в своем составе много гидрофильных групп, белки легко связывают молекулы воды и находятся в тканях в гидратированном состоянии, образуя растворы или гели. Многие белки богаты гидрофобными остатками и нерастворимы в обычных растворителях белков. Такие белки (например, коллаген и эластин соединительной ткани, фиброин шелка, кератины волос и ногтей) имеют фибриллярный характер, и их молекулы вытянуты в длинные волокна. Растворимые белки обычно представлены молекулами клубкообразной, глобулярной, формы. Однако разделение белков па глобулярные и фибриллярные не абсолютно, поскольку некоторые белки (например, актин мышц) способны обратимо превращаться из глобулярной конфигурации в фибриллярную в зависимости от условий среды.
Подобно аминокислотам белки являются типичными амфотерными электролитами (см. Амфолиты), то есть меняют свой электрический заряд в зависимости от pH среды. В электрическом поле белки движутся к аноду или к катоду в зависимости от знака электрического заряда молекулы, который определяется как свойствами данного белка, так и pH среды. Это движение в электрическом поле, называемое электрофорезом, применяют для аналитического и препаративного разделения белка, как правило различающихся по своей электрофоретической подвижности. При определенном pH, называемом изоэлектрической точкой (см.), неодинаковом для разных белков, число положительных и отрицательных зарядов молекулы равно друг другу, и молекула в целом электронейтральна и не движется в электрическом поле. Это свойство белка используется для их выделения и очистки методом изоэлектрической фокусировки, заключающемся в электрофорезе белка в градиенте pH, создаваемом системой буферных растворов. При этом можно подобрать такое значение pH, при котором нужный белок выпадает в осадок (поскольку растворимость белка в изоэлектрической точке наименьшая), а большинство «загрязняющих» белков останется в растворе.
Помимо pH, растворимость белков существенно зависит от присутствии и концентрации солей в растворе. Высокие концентрации солей одновалентных катионов (чаще всего применяют сернокислый аммоний) осаждают большинство белков. Механизм такого осаждения (высаливания) заключается в связывании ионами солей воды, образующей гидратную оболочку белковых молекул. Вследствие дегидратации растворимость белков понижается и они выпадают в осадок. Таков же механизм осаждения белков спиртами и ацетоном. Осаждение белков высаливанием или органическими жидкостями, смешивающимися с водой, применяют для разделения и выделения белков с сохранением их природных (нативных) свойств. При определенных условиях осаждения белки можно получить в кристаллическом виде и хорошо очистить от других белков и небелковых примесей. Ряд процедур такого рода применяют для получения кристаллических препаратов многих ферментов или других белков. Нагревание растворов белков до высокой температуры, а также осаждение белка солями тяжелых металлов или концентрированными кислотами, особенно трихлоруксусной, сульфосалициловой, хлорной, приводит к коагуляции (свертыванию) белка и образованию нерастворимого осадка. При таких воздействиях лабильные молекулы белка денатурируют, теряют свои биологические свойства, в частности ферментативную активность, становятся нерастворимыми в исходном растворителе. При денатурации нарушается нативная конфигурация белковой молекулы, и полипептидные цепи образуют беспорядочные клубки.
При ультрацентрифугировании белки осаждаются в поле ускорения центробежной силы со скоростью, зависящей главным образом от размеров белковых частиц. Соответственно для определения молекулярных весов белков применяют определение констант седиментации в ультрацентрифуге, а также скорости диффузии белков, фильтрование их через молекулярные сита, определение электрофоретической подвижности при электрофорезе в специальных условиях и некоторые другие методы.
Методы обнаружения и определения белков
Качественные реакции на белках основаны на их физико-химических свойствах или на реакциях определенных химических групп в молекуле белка. Однако, поскольку в состав молекулы белка входит большое количество разнообразных химических группировок, реакционная способность белков очень велика и ни одна из качественных реакций на белки не является строго специфичной. Заключение о присутствии белка может быть сделано лишь на основании совокупности ряда реакций. При анализе биологических жидкостей, например мочи, где могут появляться лишь определенные белки и известно, какие вещества могут мешать реакции, бывает достаточно даже одной реакции для установления присутствия или отсутствия белков. Реакции на белки подразделяют на реакции осаждения и цветные реакции. К первым относится осаждение концентрированными кислотами, причем в клинической практике чаще всего применяют осаждение азотной кислотой. Характерной реакцией является также осаждение белков сульфо-салициловой или трихлоруксусной кислотами (последняя часто применяется не только для обнаружения белков, но и для освобождения жидкостей от белков). Присутствие белков может быть обнаружено также но свертыванию при кипячении в слабокислой среде, осаждением спиртом, ацетоном и рядом других реактивов. Из цветных реакций весьма характерна биуретовая реакция (см.) — фиолетовое окрашивание с ионами меди в щелочной среде. Эта реакция зависит от присутствия в белках пептидных связей, образующих с медью окрашенное комплексное соединение. Название биуретовой реакции происходит от продукта нагревания мочевины биурета (H2N-CO-NH-CO-NH2), являющегося простейшим соединением, дающим эту реакцию. Ксантопротеиновая реакция (см.) заключается в желтом окрашивании осадка белков при воздействии концентрированной азотной кислотой. Окрашивание появляется вследствие образования продуктов нитрования ароматических аминокислот, входящих в состав белковой молекулы. Реакция Миллона дает ярко-красное окрашивание с солями ртути и азотистой кислотой в кислой среде. На практике обычно используют азотную кислоту, которая всегда содержит небольшую примесь азотистой. Реакция специфична для фенольного радикала тирозина и поэтому получается только с белков, содержащими тирозин. Реакция Адамкевича обусловлена радикалом триптофана. Она дает фиолетовое окрашивание в концентрированной серной кислоте с уксусной к-той (см. Адамкевича реакция). Реакция получается при замене уксусной кислоты на различные альдегиды. При использовании уксусной кислоты реакция обусловлена глиоксиловой кислотой, содержащейся в уксусной как примесь. Количественно белки определяют обычно по белковому азоту, то есть по содержанию общего азота в осадке белков, отмытом от низкомолекулярных веществ, растворимых в осадителе. Азот в биохимических исследованиях и при клинических анализах обычно определяют методом Кьельдаля (см. Кьельдаля метод). Общее содержание белка в жидкостях часто определяют колориметрическими методами, в основе которых лежат разные модификации биуретовой реакции. Часто пользуются методом Лаури, в котором применяется реактив Фолина на тирозин в сочетании с биуретовой реакцией (см. Лаури метод).
Классификация белков
Из-за относительно больших размеров белковых молекул, сложности их строения и отсутствия достаточно точных данных о структуре большинства белков еще нет рациональной химической классификации белков. Существующая классификация в значительной мере условна и построена главным образом на основании физико-химических свойств белков, источников их получения, биологической активности и других, нередко случайных, признаков. Так, по физико-химическим свойствам белки делят на фибриллярные и глобулярные, на гидрофильные (растворимые) и гидрофобные (нерастворимые) и т. п. По источнику получения белки подразделяют на животные, растительные и бактериальные; на белки мышечные, нервной ткани, кровяной сыворотки и т. п.; по биологической активности — на белки-ферменты. белки-гормоны, структурные. Белки, сократительные белки, антитела и т. д. Следует, однако, иметь в виду, что из-за несовершенства самой классификации, а также вследствие исключительного многообразия белков многие из отдельных белков не могут быть отнесены ни к одной из описываемых здесь групп.
Все белки принято делить на простые, или протеины (собственно белки), и сложные, или протеиды (комплексы белков с небелковыми соединениями). Простые белки являются полимерами только аминокислот; сложные, помимо остатков аминокислот, содержат также небелковые, так называемые простетические группы.
Среди простых белков (протеинов) различают альбумины (см.), глобулины (см.) и ряд других белков.
Альбумины — легко растворимые глобулярные белки (например, альбумины сыворотки крови или яичного белка); растворяются в воде и солевых растворах с выпадением в осадок лишь при насыщении раствора сульфатом аммония.
Глобулины отличаются от альбуминов нерастворимостью в воде и выпадением в осадок при полунасыщении раствора сульфатом аммония. Глобулины обладают более высоким, чем альбумины, молекулярным весом и иногда содержат в своем составе углеводные группировки.
К протеинам относятся и растительные белки — проламины (см.), встречающиеся обычно совместно с глютелинами (см.) в семенах злаков (рожь, пшеница, ячмень и др.), образуя основную массу клейковины. Эти белки растворимы в 70—80% спирте и нерастворимы в воде; они богаты остатками пролина и глутаминовой кислоты. К проламинам относятся также глиадин пшеницы, зеин кукурузы, гордеин ячменя.
Склеропротеины (протеинонды, альбуминоиды) — структурные белки, нерастворимые в воде, в разведенных щелочах, кислотах и солевых растворах. К ним относятся фибриллярные белки главным образом животного происхождения, весьма устойчивые к перевариванию пищеварительными ферментами. Эти белки подразделяют на белки соединительной ткани: коллаген (см.) и эластин (см.); белки покровов — волос, ногтей и копыт, эпидермиса— кератины (см.), для которых характерно высокое содержание серы в виде остатка аминокислоты — цистина; белки коконов и других секретов шелкоотделительных желез насекомых (например, паутины) — фиброин (см.), состоящие более чем наполовину из остатков глицина и аланина.
Особую группу протеинов составляют протамины (см.) — сравнительно низкомолекулярные белки основного характера (в отличие от альбуминов, глобулинов и других тканевых белков, имеющих изоэлектрическую точку обычно в слабокислой среде). Протамины встречаются в сперме некоторых рыб и других животных и состоят более чем наполовину из диаминомонокарбоновых кислот. Так, протамины сельди — клупеин и лосося — сальмин содержат около 80% аргинина. Другие протамины содержат, помимо аргинина, также лизин или лизин и гистидин.
Гистоны (см.) — ядерные белки менее щелочного характера, так же как и протамины, обычно находятся в комплексе с дезоксирибонуклеиновыми кислотами (см.), имеют несколько более высокий молекулярный вес, содержат меньше, чем протамины, диаминомонокарбоновых кислот.
Сложные белки делят на ряд классов в зависимости от характера простетической группы. Нуклеопротеиды (см.) представляют собой комплексы белков с нуклеиновыми кислотами. Это высокомолекулярные, часто надмолекулярные образования, например хроматин (см.), рибосомы (см.), многие вирусы (см.), осуществляющие важнейшие жизненные функции, связанные с передачей наследственной информации, биосинтезом белков и регуляцией этих процессов.
Мукопротеиды (см.) содержат мукополисахариды кислого характера. К ним относятся группоспецифические вещества крови, муцины и мукоиды слизей, синовиальной жидкости.
Фосфопротеиды (см.) включают остатки фосфорной кислоты, обычно связанные сложноэфирной связью с остатком аминокислоты серина. Фосфопротеиды встречаются в клеточных ядрах, в молоке (см. Казеины), в яичном желтке.
Металлопротеиды (см.) — сложные белки, содержащие те или иные металлы или содержащие металлорганические (простетические) группы. К ним относятся многие ферменты, в особенности оксидоредуктазы.
В особую группу выделяют хромопротеиды (см.) — белки, содержащие окрашенные группировки. Многие из них содержат металлы, например гемоглобин (см.) или хлорофилл (см.) и другие пигменты (см.). Присутствие металла и хромопротеидах не обязательно (например, родопсин сетчатки глаза).
Липопротеиды (см.) — комплексы белков с разными липидами (см.) — широко распространены в составе биологических мембран. В сыворотке крови липопротеиды выполняют функции транспорта липидов в организме.
Биосинтез белков
Белки поступают в организм человека и животных с нищей и являются главным источником пищевого азота. В процессе пищеварения белки подвергаются гидролизу до аминокислот, в виде которых всасываются в кровь и подвергаются дальнейшим превращениям. Особую роль играют незаменимые аминокислоты, которые определяют пищевую ценность белков. Начиная с всасывания в кровь, обмен белков является, по существу, обменом аминокислот. Белковый обмен, или аминокислотный обмен, представляет собой основную часть азотистого обмена (см.).
Биосинтез белков протекает во всех клетках живых организмов и обеспечивает обновленце белков организма, процессы обмена веществ и их регуляцию, а также рост и дифференцировку органов и тканей. Белки синтезируются в тканях из свободных аминокислот при участии нуклеиновых кислот (см.). Процесс биосинтеза белков протекает с потреблением энергии, аккумулированной в виде АТФ (см. Аденозинфосфорные кислоты). При биосинтезе белков обеспечивается образование определенных белков строго специфической структуры, которая закодирована в структурных генах (цистронах) дезоксирибонуклеиновой кислоты, находящейся главным образом в хроматине ядер клеток (см. Генетический код). Информация, определяющая первичную структуру белков, передается на особый тип рибонуклеиновых кислот (РНК), называемых информационными, или матричными, РНК (мРНК), в виде комплементарной последовательности нуклеотидов. Этот процесс получил название транскрипции. мРНК соединяется с рибосомами (см.), представляющими собой рибонуклеопротеидные гранулы, более чем наполовину состоящие из особой рибосомной РНК (рРНК), синтезируемой также на специальных цистронах (генах) ДНК. Рибосомы состоят из двух субчастиц, на которые они способны обратимо диссоциировать при понижении концентрации ионов магния. Большая и малая субчастицы рибосом содержат но одной молекуле РНК с молекулярной массой соответственно около 1,7×10 6 и 0,7×10 6 и по нескольку десятков молекул белков. Соединившись с рибосомами, мРНК образует полирибосомы, или полисомы, на которых и происходит синтез полипептидных цепочек, образующих первичную структуру белков. Прежде чем соединиться с рибосомами аминокислоты активируются, затем соединяются с низкополимерными РНК-переносчиками, или транспортными РНК (тРНК) в виде комплексов, с которыми они и поступают в рибосомы. Общая схема биосинтеза белков представлена на рис. 2.
Активация аминокислот происходит при взаимодействии их с АТФ с образованием аминоациладенилата и освобождением пирофосфата: аминокислота + АТФ = аминоациладенилат + пирофосфат. Аминоациладенилат представляет собой смешанный ангидрид, образованный остатком фосфорной к-ты аденозинмонофосфата и карбоксильной группой аминокислоты, и является активированной формой аминокислоты. С аминоациладенилата остаток аминокислоты переносится на тРНК, специфичную для каждой аминокислоты, и в виде аминоацил-тРНК поступает в рибосомы. Образование аминоациладенилата и перенос аминокислотного остатка на тРНК катализируются одним и тем же ферментом (аминоациладенилатсинтетазой, или аминоацил-тРНК-синтетазой), строго специфичным для каждой аминокислоты и каждой тРНК. Все тРНК имеют сравнительно небольшой молекулярный вес (около 25 000) и содержат около 80 нуклеотидов. Они имеют крестообразную конфигурацию, напоминающую клеверный лист, причем нуклеотидная цепь образует двунитчатую структуру, удерживаемую комплементарными основаниями, и переходит в однонитчатую только в области петель. Начало нуклеотидной цепи, обычно представленное 5′-гуаниловым нуклеотидом, находится вблизи концевой, часто обменивающейся группировки из двух остатков цитидиловой кислоты и аденозина со свободной 3′-OH-группой, к которой и присоединяется остаток аминокислоты. На петле, находящейся у противоположного конца молекулы тРНК, имеется триплет оснований, комплементарный к триплету, кодирующему данную аминокислоту (кодону), и называемый антикодоном. Нуклеотидная последовательность многих тРНК уже установлена, известна и их полная структура.
Определенная последовательность аминокислот в первичной структуре синтезируемой полипептидной цепи обеспечивается информацией, записанной в последовательности нуклеотидов мРНК, отражающей соответствующую последовательность в цистронах ДНК. Каждая аминокислота кодируется определенными триплетами нуклеотидов мРНК. Эти триплеты (кодоны) представлены в табл. 2. Их расшифровка позволила установить нуклеотидный код РНК, или аминокислотный код, то есть способ, при помощи которого происходит трансляция, или перевод информации, записанной в последовательности нуклеотидов РНК в первичную структуру белков, или последовательность аминокислотных остатков в полипептидной цепи.
Таблица 2. РНК-АМИНОКИСЛОТНЫЙ КОД
Первый нуклеотид кодона (с 5′-конца)
Второй нуклеотид кодона
Третий нуклеотид кодона (с 3’-конца)
Примечание: У — уридиловая кислота, Ц — цитидиловая кислота, А — адениловая кислота, Г — гуаниловая кислота. Три буквы обозначают соответствующий аминокислотный остаток: напр.. Фен — фенилаланин. Иле — изолейцин, Глу — глутаминовая кислота, Глн — глутамин и т. п. Триплеты УАА, УАГ, УГА не кодируют аминокислот, но определяют терминацию полипептидной цепи.
Как видно из таблицы, из 64 возможных триплетов (61 кодируют определенные аминокислоты, то есть являются «смысловыми». Три триплета — УДА, УАГ и УГА — не кодируют аминокислот, однако их роль заключается в завершении (терминации) синтеза растущей полипептидной цепочки. Код является вырожденным, то есть почти все аминокислоты кодируются более чем одним триплетом нуклеотидов. Так, 3 аминокислоты — лейцин, аргинин и серии — кодируются шестью кодонами, 2 — метионин и триптофан — имеют только по одному кодону, а остальные 15 — от 2 до 4. Процесс трансляции осуществляется при помощи тРНК, нагруженных аминокислотами. Аминоацил-тРНК присоединяется своим комплементарным триплетом (антикодоном) к кодону мРНК в рибосоме. К соседнему кодону мРНК присоединяется другая аминоацил-тРНК. Первая тРНК при этом присоединяет свой аминокислотный остаток карбоксильным концом к аминогруппе второй аминокислоты, с образованием дипептида, а сама освобождается и отделяется от рибосомы. Далее, по мере продвижения рибосомы но цепи мРНК от 5′-конца к З’-концу, присоединяется третья аминоацил-РНК; происходит соединение дипептида карбоксильным концом с аминогруппой третьей аминокислоты с образованием трипептида и освобождением второй тРНК и так до тех пор, пока рибосома не пройдет весь участок, кодирующий данный белок на мРНК, соответствующий цистрону ДНК. Затем происходит терминация синтеза белков, и образовавшийся полипептид освобождается от рибосомы. За первой рибосомой в полисоме следует вторая, третья и т. д., которые последовательно считывают информацию на одной и той же нити мРНК в полисоме. Таким образом, рост полипептидной цепи происходит с N-конца к карбоксильному (С-) концу. Если подавить синтез белков, например, при помощи антибиотика пуромицина, то можно получить недостроенные полипептидные цепи с незавершенным на разных этапах С-концом. Аминоацил-тРНК присоединяется сначала к малой рибосомной субчастице, а затем переносится на большую субчастицу, на которой и происходит рост полипептидной цепочки. Согласно гипотезе А. С. Спирина во время работы рибосомы при биосинтезе белков происходит повторяющееся смыкание и размыкание субчастиц рибосом. Для воспроизведения синтеза белков вне организма, помимо рибосом, мРНК и аминоацил-тРНК, необходимо присутствие гуанозинтрифосфата (ГТФ), который расщепляется до ГДФ и снова регенерирует в процессе роста поли пептидной цепи. Необходимо также присутствие нескольких белковых факторов, выполняющих, по-видимому, ферментативную роль. Эти так называемые трансферные факторы взаимодействуют друг с другом и для своей активности требуют присутствия сульфгидрильных групп и ионов магния. Помимо собственно трансляции (то есть роста полипептидной цепи в определенной последовательности, соответствующей структурному гену ДНК и передаваемой последовательностью нуклеотидов в мРНК), особую роль играет начало (или инициация) трансляции и завершение (или терминация) ее. Инициация белкового синтеза в рибосоме, по крайней мере в бактериях, начинается с особых кодонов — инициаторов в мРНК — АУГ и ГУГ. Сначала с таким кодоном связывается малая субчастица рибосомы затем к ней присоединяется формилметионил-тРНК, с которой и начинается синтез полипептидной цепи. В силу особых свойств этой аминоацил-тРНК она способна переноситься на большую субчастнцуг подобно пептидил-тРНК, и таким образом начинать рост полипептидной цепи. Для инициации необходимы ГТФ и белковые факторы инициации (известно три). Терминация роста полипептидной цепи происходит на «бессмысленных» кодонах УАА, УАГ или УГА. По-видимому, эти кодоны связываются с особым белковым фактором терминации, который в присутствии еще одного фактора способствует освобождению полипептида.
Компоненты системы биосинтеза белков синтезируются главным образом в клеточном ядре. На матрице ДНК в процессе транскрипции происходит синтез всех типов РНК. участвующих: в этом процессе: рРНК, мРНК и тРНК. Так, рРНК и мРНК синтезируются в виде очень больших молекул и еще в клеточном ядре проходят процесс «созревания», в ходе которого часть (весьма значительная для мРНК) молекул отщепляется и подвергается распаду, не выходя в цитоплазму, а функционирующие молекулы, являющиеся частью первоначально синтезированных, поступают в цитоплазму к местам белкового синтеза. Прежде чем попасть в состав полисом, мРНК, по-видимому, с момента синтеза связывается с особыми белковыми частицами, «информоферами», и в виде рибонуклеопротеидного комплекса переносится к рибосомам. Рибосомы, очевидно, также «дозревают» в цитоплазме, часть белков присоединяется к предшественникам рибосом, выходящим из ядра, уже в цитоплазме. Следует отметить, что у низших, безъядерных организмов (прокариотов), к которым относятся бактерии, сине-зеленые водоросли и вирусы, имеются некоторые отличия от высших организмов в компонентах системы биосинтеза белков, и в особенности в его регуляции. Рибосомы у прокариотов несколько меньше по размерам и отличаются по составу, процесс транскрипции и трансляции непосредственно связан в одно целое. Вместе с тем у высших ядерных организмов (эукариотов) образование РНК происходит и в органеллах цитоплазмы, митохондриях и хлоропластах (у растений), обладающих собственной системой синтеза белка и собственной генетической информацией в виде ДНК. По своему устройству система белкового синтеза в митохондриях и хлоропластах аналогична таковой у прокариотов и существенно отличается от системы, имеющейся в ядре и цитоплазме высших животных и растений.
Регуляция биосинтеза белков представляет весьма сложную систему и позволяет клетке быстро и четко реагировать на изменения в окружающей клетку среде путем прекращения или индукции синтеза различных белков, часто обладающих ферментативной активностью. У бактерий подавление синтеза белков осуществляется главным образом при помощи особых белков — репрессоров (см. Оперон), синтезируемых специальными генами-регуляторами. Взаимодействие репрессора с метаболитом, поступающим из среды или синтезируемым в клетке, может подавить или, наоборот, активировать его, регулируя таким образом синтез одного белка или нескольких взаимосвязанных белков, в особенности ферментов, синтезирующихся также взаимосвязанно на одном опероне. У высших организмов в процессе дифференцировки ткани теряют способность к синтезу ряда белков и специализируются на синтезе меньшего числа белков, необходимых для функции данной ткани, например мышц. Такое блокирование синтеза ряда белков происходит, по-видимому, на уровне генома (см.) при помощи ядерных белков — гистонов (см.), связывающих нефункциональные участки ДНК. Однако при регенерации, злокачественном росте и других процессах, связанных с дедифференцировкой, такие заблокированные участки могут дерепрессироваться и поставлять мРНК для синтеза необычных для данной ткани белков. Тем не менее и у высших организмов имеет место регуляция синтеза белков в ответ на те или иные стимулы. Так, действие ряда гормонов заключается в индукции синтеза белков в ткани, являющейся «мишенью» данного гормона. Такая индукция, по-видимому, происходит путем связывания гормона с особым белком данной ткани и активацией гена посредством образованного комплекса.
Процесс биосинтеза белков и его регуляция требуют чрезвычайной четкости, точности и слаженности работы всех компонентов системы. Даже небольшие нарушения этой точности приводят к нарушению первичной структуры белков и тяжелым патологическим последствиям. Генетические нарушения, например, замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности. Такие изменения лежат в основе врожденных нарушений обмена веществ, к которым, по существу, относятся все наследственные болезни (см.). С другой стороны, целый ряд белков и ферментов может различаться не только у разных биологических видов, но и у разных индивидуумов, сохраняя при этом свою биологическую активность. Нередко такие белки обладают разными иммунологическими и электрофоретическими свойствами. В популяциях человека описаны многие примеры так называемого полиморфизма белков, когда у разных индивидуумов, а иногда и у одного и того же индивидуума можно обнаружить два или несколько неодинаковых белков, обладающих одной и той же функцией, как, например, гемоглобин (см.), гаптоглобин (см.) и некоторые другие.
Белки в питании
Среди многочисленных пищевых веществ белкам принадлежит наиболее важная роль. Они являются источниками незаменимых аминокислот и так называемого неспецифического азота, необходимых для синтеза белков человеческого организма. Выраженная недостаточность белков в питании приводит к тяжелым нарушениям функции организма (см. Алиментарная дистрофия). От уровня снабжения белками в большой степени зависит состояние здоровья, физического развития и- работоспособности человека, а у детей раннего возраста в определенной мере и умственное развитие. Если учесть все производимые для питания растительные и животные белки, то в среднем на каждого жителя Земли придется около 58 г в день. В действительности более половины населения, особенно развивающихся стран, не получает этого количества белка. Глобальный дефицит пищевого белка должен быть отнесен к числу наиболее острых экономических и социальных проблем современности (см. Кризис белковый). В связи с этим установление оптимальных уровней содержания белка в пищевых рационах приобретает первостепенную важность.
В наибольших количествах белки требуются в периоды интенсивного роста. Однако и в организме, достигшем зрелости, процессы жизнедеятельности связаны с непрерывной тратой белковых веществ и, следовательно, необходимостью воспол нения этих потерь с пищей. В соответствии с рекомендациями Экспертной группы ФАО/ВОЗ расчет потребности в белковом азоте следует проводить по формуле: R=1,1(Ub+Fb+S+G), где R — потребность в белковом азоте; Ub — выделение азота с мочой; Fb — выделение азота с калом; S — потеря азота за счет десквамации эпидермиса, роста волос, ногтей, выделения азота с потом при неинтенсивном потении; G — удержание азота в процессе роста (расчет ведется на 1 кг массы в день).
Коэффициент 1,1 отражает добавочные траты белков (в среднем 10%), возникающие в результате стрессовых реакций и неблагоприятных воздействий на организм. Границы индивидуальных вариаций потребностей в белках принимаются равными ±20%. Официальные рекомендации экспертной группы ФАО/ВОЗ отражены в табл. 3.
Таблица 3. СРЕДНЕСУТОЧНАЯ ПОТРЕБНОСТЬ В БЕЛКАХ (при условии его полного усвоения)*
Потребность (в г на 1 кг массы тела в день)