чем выше температура тем влажность воздуха ниже

Чем выше температура тем влажность воздуха ниже

Метеорологи измеряют или говорят о влажности различными способами. Одним из ключевых измерений, которые они используют, является относительная влажность, потому что это определяет, насколько сухой воздух на самом деле ощущается. Относительная влажность зависит как от количества влаги в воздухе, так и от температуры. Если вы поднимаете температуру, сохраняя постоянную влажность, относительная влажность уменьшается.

Равновесный

Вода конденсируется с образованием жидкости и испаряется с образованием газа все время. Чем больше жидкой воды, тем быстрее она испаряется; чем больше водяного пара, тем быстрее он конденсируется. В конечном итоге эти два процесса достигают баланса, когда водяной пар конденсируется так же быстро, как испаряется жидкая вода. Это называется равновесием, и воздух в этой точке называется «насыщенным» водяным паром. Повышение температуры ускоряет испарение и, тем самым, сдвигает баланс в сторону водяного пара, поэтому, чем выше температура, тем больше влаги должно содержаться в воздухе до насыщения. Другими словами, при более высоких температурах воздух может содержать больше водяного пара.

Относительная влажность

Значимость

Точка росы

Так же, как повышение температуры уменьшает относительную влажность, уменьшение температуры увеличивает относительную влажность. Если вы продолжите снижать температуру без существенного изменения влажности воздуха, в конечном итоге вы достигнете 100-процентной относительной влажности, а затем пары воды начнут конденсироваться с образованием росы. Температура, когда это происходит, называется точкой росы, и это явление вызывает образование росы на траве холодными утрами.

Источник

Ощущение холода и влажность. Подробный разбор

Этот вопрос давно меня терзал. Влияет ли влажность на ощущение холода при низких температурах (

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Вот так выглядит схема теплопотерь человека.

Немного пояснений: красным отмечены положительные связи, т.е. чем больше температура кожи, тем больше потери излучением, тем больше потери с открытых участков тела. Синим отмечены отрицательные связи, чем меньше температура среды, тем больше потери излучением ну и т.д. Черным отмечены связи пока неизвестного знака.

Если указана просто влажность — имеется в виду влажность окружающего воздуха, если указана «влажность воздуха» — имеется в виду влажность воздуха в данном процессе(она может меняться в течение процесса). Аналогично с температурой: «температура среды» — это температура окружающего воздуха, если написано «температура воздуха» — это температура воздуха в этом процессе

Откуда эта схема родилась:

1) Открытые части тела. Тепло может теряться за счет излучения, кондукции, испарения

1.1) Излучение: кожа излучает и излучение непосредственно рассеивается в окружающую среду. Зависит только от температуры среды и кожи.

1.2) Кондукция: тепло передается от кожи к воздуху. Тут вообще очень сложный процесс: тепло передается непосредственно от кожи к тоненькому слою воздуха на границе с кожей. Толщина этого слоя сильно зависит от скорости ветра. А скорость передачи тепла будет зависеть от теплопроводности воздуха и разницы температур лица и воздуха. Теплопроводность воздуха зависит от его температуры и состава. По итогу зависит от: температуры среды и кожи, влажности, скорости ветра.

1.3) Испарение: при обычных условиях пот если и выделяется, то в более перегретых частях (спина,грудь, шея, подмышки), но не на лице или руках. Поэтому охлаждение за счет потовыделения будет рассмотрена отдельно и для всего организма сразу.

Итого: тепло передается путем излучения и кондукции

2) Закрытые участки тела. Тепло передается от кожи, через все слои одежды, к поверхности одежды. Оттуда тепло передается в окружающую среду кондукцией и излучением. Также мы теряем тепло из-за конвекции. Испарение рассматривается отдельно.

2.1) Передача тепла в слоях одежды от кожи к поверхности одежды. Здесь я не пишу метод теплопередачи, т.к. там есть все, а именно: тепло внутри каждого слоя одежды передается кондукцией, каждый слой одежды поглощает и излучает для каждого соседнего слоя, воздух внутри одежды нагревается и перемещается между слоями из-за разности плотностей, но в основном за счет движения человека, этот воздух постоянно обменивается теплом со слоями одежды, а это я еще про пот не начал. Короче, оставим это все производителям теплой одежды, а сами скажем, что одежда это твердый слой, с определенным коэффициентом теплопроводности (это не только моя выдумка, так считают для параметров микроклимата, при определении степени тяжести работ. Это достаточно точная и простая модель). А значит влиять будет температура поверхности одежды и кожи, теплопроводность одежды.

2.2) Передача тепла от поверхности одежды в окружающую среду. Ситуация здесь будет аналогична передаче тепла с открытых частей тела. Основную роль играют кондукция и излучение, а значит зависит от температуры среды, влажности, скорости ветра, температуры поверхности одежды.

2.3) Конвекция. можно разделить на 2 составляющие: перемещение воздуха непосредственно через одежду, перемещение воздуха через зазоры/щели в одежде. Практически вся верхняя зимняя/демисезонная одежда делается непродуваемой, поэтому потери непосредственно через одежду из-за конвекции очень маленькие. Потери из-за зазоров или щелей между компонентами одежды просчитать очень сложно, т.к. они сильно варьируются от того, насколько одежда подогнана, насколько активно человек двигается и т.д. Тем не менее, потери зависят от того, насколько быстро меняется воздух(скорость ветра), какой он температуры (температура среды), какая у него теплоемкость (причем теплоемкость в процессе нагревания и увлажнения под одеждой меняется и не так сильно варьируется, поэтому ее изменением можно пренебречь, разумеется, будут расчеты).

Итого: тепло передается кондукцией от кожи к поверхности одежды, затем излучением и кондукцией от поверхности одежды в окружающую среду. Из-за зазоров и щелей в одежде при движении и ветре теплый воздух заменяется холодным.

3) Дыхание. При дыхании мы вдыхаем воздух какой-то температуры и влажности, а выдыхаем воздух с температурой 25-35°С (в зависимости от режима дыхания и температуры окружающего воздуха) и влажностью 70-100% (по разным источникам). Энергия тратиться на обогрев воздуха и на испарение влаги из легких. Соответственно будут влиять температура среды, влажность и теплоемкость воздуха (здесь ситуация аналогичная с конвекцией, теплоемкость меняется от момента вдоха к моменту выдоха)

4) Потовыделение. с самим потом все просто, он выделяется, на его испарение тратится уйма энергии, мы охлаждаемся. Что сложно — как именно он испаряется, что с этим водяным паром дальше происходит и как это все влияет на остывание организма. Т.к. влаги испарится больше чем ее выделилось не может, а сколько ее выделилось зависит от перегрева организма, то рассматривать охлаждение (а меня интересует больше переохлаждение) именно за счет испарения нет смысла. Проблемы и переохлаждение наступают тогда, когда влага не отводится от кожи и уже излишне увеличивает теплопотери. Рассмотрим 2 ситуации:

4.1) Пот выделяется на открытой части тела. Нестандартная ситуация для низких температур, но ладно. Пот сразу начинает испаряться, т.к. поверхность кожи создает приграничный нагретый слой воздуха. При нагревании, относительная влажность воздуха падает, причем очень резко (изменение на 10°С осушает холодный воздух в 2.5-3 раза). Поэтому не важно, какая была влажность окружающего воздуха, при соприкосновении с кожей он нагреется и станет сухим, и если хоть какая-то жидкость и была на вашей коже, она начнет быстро испарятся. Ну и разумеется, не может происходит конденсация пара на вашей коже, т.к. конденсация подразумевает прямо противоположные условия: теплый воздух и холодную поверхность. Это может показаться странным, но наличие воды уменьшает теплопередачу остальными способами (да, вам холодно, очень холодно, но это из-за испарения), путем интенсивного охлаждения поверхности кожи уменьшается теплопередача как кондукцией, так и излучением. Поэтому, в данном случае, излишних теплопотерь быть не может.

4.2) Пот выделяется под одеждой. После выделения пота начинают происходить следующие вещи: пот впитывается одеждой, а то что не впиталось начинает медленно испарятся. Если испаряется недостаточно быстро, то одежда промокает, а вот тут, уже могут возникнуть дополнительные теплопотери, т.к. мокрая одежда значительно увеличивает теплопроводность, за счет замены воздуха в одежде водой (разница в коэффициенте теплопроводности примерно в 25 раз). Скорость испарения напрямую зависит от того, как быстро пар покидает нашу одежду и это в основном зависит от свойств одежды, а не от погоды, но обо всем по порядку.

4.2.1)Рассмотрим этот механизм. Пар может покидать нас 2-умя способами: непосредственно через одежду и через щели/зазоры в одежде. 2-ое относит нас к конвекции в закрытых участках тела, все тоже самое, и в отводе пара он будет играть значительную роль, только если вы расстегнете куртку. Основное количество пара отводится через одежду. Температура и влажность под одеждой практически не зависят от окружающей среды и формируются человеком. Поэтому температура под курткой близка к температуре кожи, а влажность хз какая, но высокая. В итоге, под одеждой создается сильное избыточное давление водяного пара, так например давление водяного пара при 0° и 30°С и 100% влажности отличается в 6.9 раз. Ну а газ, как и любой порядочный гражданин, бежит из области высокого давления в область низкого. Таким образом, происходит отвод влаги из под одежды, без значительных потерь тепла из-за потерь теплого воздуха(сам воздух не стремится выбраться из под одежды, для него и снаружи и внутри атмосферное давление). Разумеется, никакого отсыревания одежды на холоде из-за внешней влаги и быть не может, у нас и своей предостаточно, и все промокание одежды сводится к поглощению пота или адсорбции водяного пара (того же пота).

4.2.3*) При специфической одежде (очень тонкой куртке, например мембранке) возможно образование конденсата на внутренней части куртки, который не будет выводится, а начнет опять смачивать одежду, причем при конденсации будет выделятся тепло, которое будет обогревать именно куртку, а т.к. куртка легкая это будет приводить к увеличению температуры поверхности куртки и дальнейшему увеличению теплопотерь. Данный эффект возможен только при тонкой куртке, в который внутренний слой охлаждается до температуры близкой к уличной (в пуховиках внутренний слой имеет температуру, недалекую от температуры кожи). И чем ниже температура среды, тем более вероятнее образование конденсата. От влажности окружающего воздуха это не зависит, т.к. водяной пар наоборот стремится покинуть нас, аналогично ситуации, разобранной в 4.2.1.

Везде отрицательную связь имеет температура среды, оно и ожидаемо. теплопроводность и теплоемкость имеет везде положительную. Влажность имеет положительную связь в потоотделении (рассмотрено выше) и отрицательную в испарении (чем влажнее воздух вдыхается, тем меньше испаряется из легких). Скорость ветра имеет положительную при кондукции и конвекции, но отрицательную в потовыделении, (небольшая шутка, если вас сильно продувает, вы хотя бы будете сухими) которой можно пренебречь.

Подробно про влажность

Теперь, когда понятно как что и куда влияет на теплопотери, рассмотрим как именно влажность влияет на теплопотери. Всего есть 4 пункта: теплопроводность, теплоемкость, дыхание, потовыделение.

0) Содержание водяного пара. Для всех дальнейших расчетов необходимо знать, а сколько этого водяного пара содержится в воздухе при разных температурах. Давление насыщенного водяного пара хорошо аппроксимируется следующей формулой

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Используя уравнение Менделеева-Клапейрона выводим зависимость плотности газа от его давления. Подставляем в полученное уравнение зависимость давления от температуры и получаем итоговую формулу. Вот так плотность насыщенного водяного пара зависит от температуры:

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

1) Теплоемкость. Теплоемкость смеси газов рассчитывается как средневзвешенное теплоемкостей всех его частей.

Для начала, узнаем теплоемкость водяного пара и воздуха для нашего диапазона температур. Небольшое отступление: если считать теплоемкость по формулам, то получится, что она не зависит от температуры. Это правда только для идеального газа, теплоемкость реального газа зависит от температуры и измеряется экспериментально, поэтому тут формул не будет.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Для водяного пара при отрицательных температурах я не нашел таблицу (это и понятно, ее хрен измеришь), но можно заметить, что теплоемкость слабо зависит от температуры, и для дальнейших расчетов теплоемкость воздуха принимается за 1005 Дж/(К*кг), а теплоемкость водяного пара = 1861 Дж/(К*кг) — данную теплоемкость водяной пар имеет при 0°С.

Считаем теплоемкость влажного и сухого воздуха и сравниваем.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Но стоит отдать должное, теплоемкость влажного воздуха действительно больше чем сухого… хе хе хе. Но разница теплоемкости из-за температуры куда значительнее, чем из-за влажности. Если еще прикинуть, что теплоемкость влияет на потери через дыхание и через конвекцию, что составляет около трети теплопотерь (основное теряется через одежду) и разница во влажности редко достигает 20-30%, то итоговое будет не более 0,324*0,3*0,25 =0,024%

Кстати его теплоемкость больше не потому, что вода имеет большую теплоемкость. Водяной пар это газ и он чихал на свойства жидкости, все куда проще. Теплоемкость обратно пропорциональна молярной массе. Молярная масса воздуха 29г/моль, а водяного пара 18г/моль. Как можно заметить, отношение этих величин примерно равно отношению теплоемкостей воздуха и водяного пара.

Итог: При большей влажности холоднее, разница составляет менее 0,03%

2) Теплопроводность. Теплопроводность рассчитывается аналогично теплоемкости. Для расчета опять возьмем табличные значения, т.к. они во-первых точнее, во-вторых, я так и не разобрался, как рассчитать теплопроводность по формуле.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Теплопроводность водяного пара при отрицательных температурах я не нашел (та же ситуация, что и с теплоемкостью), поэтому посчитаем, что она изменяется по аналогично воздуху (они оба газы и близки к нормальным условиям, так что это не грубое допущение). Считаем теплопроводность для влажного воздуха.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Разница со знаком минус по простой причине — сухой воздух ЛУЧШЕ проводит тепло. Да да, может быть у воды и выше теплопроводимость в 25 раз по сравнению с воздухом, но тут у нас не вода. Тут водяной пар, и его не волнуют свойства жидкостей. Опять учтем реальные условия: теплопроводность влияет на 2/3 теплопотерь, различие во влажности 25%

Итог: При большей влажности теплее, разница менее 0,02%

3) Дыхание. При дыхании тепло расходуется на обогревание воздуха и на испарение жидкости.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Данные расчета представлены в таблице, ну а чтобы было нагляднее еще и график.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Насколько эти 10% значимы? ну, легочные потери составляют 10-30% от всех потерь (это по личным расчетам и по расчетам по этому сайту https://ntm.ru/center/108/7672 ). По итогу, разница теплопотерь будет составлять 1-3% и это только при 0°, и между абсолютно влажным и абсолютно сухим воздухом. Если взять более реальное различие во влажности (пусть даже 20%), то разница уже будет 0,2-0,6%, возьмем 0,4% как среднюю. Но хоть что-то!

Итог: при большей влажности теплее, разница менее 0,4% Уиииии десятые процента!

4) Потовыделение. Самое сложное для учета. Можно достаточно точно рассчитать разницу скорости отвода пара для разных условий (сделано в главе 4.2.2), однако эта величина очень косвенно влияет на теплопотери. Рассчитать как влага влияет на теплопроводность одежды, практически нереальная задача (в начале описана теплопередача в слоях одежды).

Как перевести эти 3% в теплопотери? Надо взять время, в котором вы находитесь в мокром состоянии, умножить на число, показывающее во сколько раз отличаются средние теплопотери вспотевшего человека от сухого, и разделить на время нахождения на улице. Сделать так для сухого и влажного воздуха и сравнить. Это настолько разная величина для разных людей, настолько зависящая от рода деятельности и правильности выбранной одежды, что нормально оценить это не получится. Поэтому оценим ненормально.

Пусть человек промокает сразу и мгновенно и высыхает все время прогулки, если воздух мокрый. А вот если воздух сухой, то он 3% времени прогулки ходит сухой. А промокает он настолько сильно, что его теплопотери связанные с одеждой (2/3) всех теплопотерь) увеличиваются в 2 раза. Тогда при большей влажности теплопотери увеличиваются на 2%.

Итог: Данный фактор может внести самый значимый вклад в увеличение теплопотерь при влажном воздухе.

Вот и закончилось рассмотрение влияния влажности. Что получилось? в таблице показаны максимальные воздействия факторов. Для всех факторов максимум наблюдается при 0° и резко уменьшается при уменьшении температуры.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

А что говорят люди, про ощущение влажности? Давайте обратимся к людям на форумах. Здесь приведены примеры из обсуждений вопроса о влажности и холоде.

Источник

Увлажнение воздуха: основные понятия

Air humidification: basic concepts

N. Kondrashin, engineer

Keywords: absolute humidity, relative humidity, psychrometric diagram, adiabatic air humidification, isothermal humidification

In the practice of designing and setting up ventilation and air conditioning systems and cold centers for buildings for various purposes, knowledge of the theoretical and practical foundations of issues related to air humidity is required. We bring to the attention of our readers an article on the basics of this section of air conditioning. The topic is supposed to be developed in the next issue of the magazine.

В практике проектирования и наладки систем вентиляции и кондиционирования воздуха и хладоцентров зданий различного назначения необходимы знания теоретических и практических основ вопросов, касающихся влажности воздуха. Предлагаем вниманию читателей статью об основах данного раздела кондиционирования воздуха. Развить тему предполагается в следующем номере журнала.

Увлажнение воздуха: основные понятия

В практике проектирования и наладки систем вентиляции и кондиционирования воздуха зданий различного назначения необходимо знание вопросов, относящихся к учету влажности воздуха. В 2004 году творческий коллектив НП «АВОК» в составе М. Г. Тарабанова, В. Д. Коркина и В. Ф. Сергеева разработал справочное пособие «Влажный воздух», которое стало первой в отечественной практике попыткой систематизировать определения и расчетные зависимости основных параметров влажного воздуха и привести их в соответствие с международными стандартами. В 2012 году издательство «АВОК-ПРЕСС» выпустило книгу М. Г. Тарабанова «Кондиционирование воздуха», в которой много внимания уделено i-d-диаграмме влажного воздуха. Данной теме посвящен и ряд публикаций в журнале «АВОК». Однако, вопросы, относящиеся к учету влажности воздуха, по-прежнему требуют пристального внимания специалистов. Предлагаем вниманию читателей статью об основах раздела «Влажный воздух». Развить тему предполагается в следующем номере журнала.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Абсолютная и относительная влажность

Влажность воздуха характеризуют два основных параметра – абсолютная и относительная влажность. При разных температурах воздух может поглощать разное количество влаги: чем выше температура, тем больше влаги может содержаться в воздухе. Абсолютная влажность описывает точное количество влаги, содержащейся в воздухе в граммах воды на килограмм воздуха. Относительная влажность показывает, какое количество влаги относительно максимально возможного для этой температуры содержится в воздухе. Поэтому летом при температуре +25 °C и относительной влажности 30 % в воздухе присутствует значительно больше влаги, чем зимой при температуре –5 °C и относительной влажности 80 %. Нагревание воздуха приводит к уменьшению его относительной влажности, при этом значение абсолютной влажности остается тем же самым.

Для каждого значения давления существует определенная точка, при которой воздух становится неспособным поглотить большее количество влаги. Эта температура называется температурой насыщения, или точкой росы. Если понизить температуру воздуха ниже точки росы, из воздуха начинает выпадать конденсат. Предположим, что у нас есть закрытый сосуд, температура воздуха в котором составляет +20 °C. Абсолютная влажность этого воздуха составляет 10 г/кг, а относительная влажность – 70 %. На основе этих данных можно определить по психрометрической диаграмме, что при снижении температуры воздуха на 6 °C или повышении абсолютной влажности на 5 г/кг воздух достигнет точки росы, а стенки сосуда с внутренней стороны запотеют – на них появится конденсат.

Психрометрическая диаграмма (диаграмма Молье)

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Линии, соответствующие постоянному значению удельной энтальпии h, проходят слева направо и сверху вниз. Линии, обозначающие постоянное влагосодержание x, располагаются вертикально. Горизонтальная ось, на которую нанесены значения влагосодержания х, не проходит через начало координат – так диаграмма становится более наглядной. В качестве второй оси абсцисс можно использовать кривую парциального давления водяного пара, которое зависит только от влагосодержания x и давления воздуха p. На проходящие под наклоном вниз линии нанесены значения удельной энтальпии h. На диаграмме также показаны кривые относительной влажности. Чтобы определять изменения параметров было проще, на диаграмму могут быть нанесены дополнительные линии (Δhx), например для отслеживания изменений при паровом увлажнении воздуха. Изотермы проходят в области ненасыщенного воздуха с небольшим наклоном. После точки насыщения (относительная влажность = 1) линии направлены вниз, поскольку при достижении максимального паросодержания дополнительная вода может присутствовать в воздухе только в жидкой фазе в виде небольших капель (тумана). В зоне тумана изотерма отличается от проходящей через точку насыщения изоэнтальпы (линии постоянной энтальпии) только на небольшое значение энтальпии, вносимое влагой в виде тумана. В области ненасыщенного воздуха проходят кривые постоянной относительной влажности, равномерно разделенные соответствующими изотермами в диапазоне от 0 до 1. На диаграмме видно, что относительная влажность всегда снижается при нагревании воздуха, если влагосодержание x при этом остается постоянным.

Нагрев при постоянной абсолютной влажности

Нагрев воздуха осуществляется при сохранении количества содержащегося в нем водяного пара. При этом энтальпия воздуха увеличивается, а относительная влажность воздуха снижается (именно это имеют в виду, когда говорят «отопление сушит воздух»). В российских условиях нагрев воздуха – обязательная функция большинства вентиляционных агрегатов, поэтому в течение всего отопительного сезона вентиляционные установки подают в помещения свежий воздух с комфортной температурой, но низкой относительной влажностью.

Адиабатическое увлажнение воздуха (распыление или испарение воды)

Если распыление или испарение воды осуществляется без подвода тепла, то затрачиваемая на испарение энергия забирается из окружающего воздуха, и воздух охлаждается. Так как процесс охлаждения проходит в адиабатических условиях, т. е. без потерь тепла и подвода его извне, он называется адиабатическим охлаждением. На психрометрической диаграмме точное направление, в котором происходит процесс охлаждения во время увлажнения, может быть определено на основе характеристики (Δh/(Δx. Расчет характеристики (Δh/(Δx: (Δh = изменение энтальпии, кДж/кг; (Δx = изменение влагосодержания, г/кг.

чем выше температура тем влажность воздуха ниже. Смотреть фото чем выше температура тем влажность воздуха ниже. Смотреть картинку чем выше температура тем влажность воздуха ниже. Картинка про чем выше температура тем влажность воздуха ниже. Фото чем выше температура тем влажность воздуха ниже

Принцип адиабатического увлажнения используют системы увлажнения различных типов: ультразвуковые, оросительные (сотовые), форсуночные низкого и высокого давления. Системы различных типов имеют свои особенности и ограничения для применения.

Изотермическое увлажнение (увлажнение с помощью пара)

Если увлажнение воздуха осуществляется паром, то температура, как правило, остается неизменной, поскольку водяной пар не обменивается энергией с воздухом – подведения теплоты для испарения воды уже не требуется. Расчет характеристики (Δh/(Δx выполняется так же, как и в предыдущем случае.

Изотермическое увлажнение воздуха на практике осуществляется в паровых увлажнителях (парогенераторах) с электродным или резистивным нагревом воды. Выбор технологии нагрева в основном зависит от параметров используемой воды.

Увлажнение воздуха: зачем оно нужно?

Большинство людей чувствует себя наиболее комфортно при температуре от +20 до +22 °C и относительной влажности от 40 до 60 %. Если значение относительной влажности опускается ниже 30 %, как это случается в отопительный сезон, начинаются проблемы: сухой воздух стремится поглотить как можно больше влаги, которую он забирает из окружающей среды, в том числе и из находящихся в ней людей. В результате может появиться кожный зуд, жжение в глазах, головная боль и общая усталость – так проявляется обезвоживание.

Сухой воздух вызывает пересыхание слизистых оболочек дыхательных путей и глаз, нарушая их нормальную работу. В результате пыли и болезнетворным микроорганизмам становится проще проникнуть через естественный защитный барьер, что приводит к нарушению нормального функционирования органов дыхания и повышению риска вирусных заболеваний. По данным научных исследований, чтобы снизить риск заражения и вероятность проявления болезненных симптомов до минимально возможного уровня, следует поддерживать влажность воздуха на уровне 40–60 %. Кроме того, падение уровня относительной влажности ниже 35 % приводит к пересыханию одежды, ковров, мебели и других находящихся в помещении предметов, а это способствует усиленному образованию пыли. В сухом воздухе все виды пластиков накапливают электрический заряд, который притягивает еще больше частиц пыли.

Влажность гигроскопичных материалов стремится к равновесию с влажностью окружающего воздуха: после прекращения увлажнения предметы интерьера в помещениях начнут отдавать влагу обратно воздуху. Если в помещении находятся произведения искусства, музыкальные инструменты, мебель или паркет из ценных пород дерева, такое колебание влажности может привести к их растрескиванию и порче, поэтому необходимо не только создать правильную влажность, но и автоматически поддерживать ее, чтобы ни колебания температуры, ни изменения влажности наружного воздуха не могли повлиять на изменение влажности в помещении.

Поделиться статьей в социальных сетях:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *