Цианистый водород что это
Синильная кислота
Синильная кислота | ||||||||||||||||||||||||||||||||||||||
Общие | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Традиционные названия | циановодород, синильная кислота | |||||||||||||||||||||||||||||||||||||
Химическая формула | HCN | |||||||||||||||||||||||||||||||||||||
Физические свойства | ||||||||||||||||||||||||||||||||||||||
Состояние (ст. усл.) | бесцветный газ или бесцветная легколетучая жидкость | |||||||||||||||||||||||||||||||||||||
Молярная масса | 27,0253 г/моль | |||||||||||||||||||||||||||||||||||||
Плотность | 0,687 г/см³ | |||||||||||||||||||||||||||||||||||||
Динамическая вязкость (ст. усл.) | 0,201 Па·с (при 20 °C) | |||||||||||||||||||||||||||||||||||||
Термические свойства | ||||||||||||||||||||||||||||||||||||||
Температура плавления | −13,4 °C | |||||||||||||||||||||||||||||||||||||
Температура кипения | 26,7 °C | |||||||||||||||||||||||||||||||||||||
Температура вспышки | −17,8 °C | |||||||||||||||||||||||||||||||||||||
Молярная теплоёмкость (ст. усл.) | (средняя для газа и жидкости) 1,97 Дж/(моль·К) | |||||||||||||||||||||||||||||||||||||
Химические свойства | ||||||||||||||||||||||||||||||||||||||
pKa | 9,21 | |||||||||||||||||||||||||||||||||||||
Растворимость в воде | в любых пропорциях г/100 мл | |||||||||||||||||||||||||||||||||||||
Оптические свойства | ||||||||||||||||||||||||||||||||||||||
Показатель преломления | 1,2675 | |||||||||||||||||||||||||||||||||||||
Структура | ||||||||||||||||||||||||||||||||||||||
Дипольный момент | 2,98 Д | |||||||||||||||||||||||||||||||||||||
Классификация | ||||||||||||||||||||||||||||||||||||||
Рег. номер CAS | 74-90-8 | |||||||||||||||||||||||||||||||||||||
SMILES | C#N | |||||||||||||||||||||||||||||||||||||
Номер ООН | 1051 (безводная) | |||||||||||||||||||||||||||||||||||||
Регистрационный номер EC | 200-821-6 | |||||||||||||||||||||||||||||||||||||
RTECS | MW6825000 | |||||||||||||||||||||||||||||||||||||
Безопасность | ||||||||||||||||||||||||||||||||||||||
ЛД50 | мыши (перорально) 3.7 мг/кг | |||||||||||||||||||||||||||||||||||||
Токсичность |
Синильная кислота | |
Общие | |
---|---|
Систематическое наименование | циановодород, синильная кислота |
Химическая формула | HCN |
Отн. молек. масса | 27,02 а. е. м. |
Молярная масса | 27,02 г/моль |
Физические свойства | |
Плотность вещества | 0.687 г/см³ |
Состояние (ст. усл.) | жидкость |
Термические свойства | |
Температура плавления | −13,3 °C |
Температура кипения | 26,7 °C |
Энтальпия (ст. усл.) | 95 кДж/моль |
Химические свойства | |
Растворимость в воде | в любых пропорциях г/100 мл |
Классификация | |
номер CAS | [74-90-8] |
Большая стабильность первой структуры обусловлена меньшими значениями эффективных зарядов атомов
Безводная синильная кислота является сильно ионизирующим растворителем, растворенные в нем электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25° С равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счет образования водородных связей.
Синильная кислота содержится в некоторых растениях, коксовом газе, табачном дыме, выделяется при термическом разложении нейлона, полиуретанов.
Содержание
Свойства
Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО2 и N2. В смеси кислорода со фтором горит с выделением большого количества тепла:
Синильная кислота широко применяется в органическом синтезе. Она реагирует с карбонильными соединениями, образуя цианогидриды:
С галогеналканами образует нитрилы (реакция Кольбе):
С алкенами и алкинами реагирует, присоединяясь к кратным связям:
Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, напр. HCN-CuCl.
Получение
В настоящий момент есть три наиболее распространенных метода получения синильной кислоты в промышленных масштабах:
Применение
Является сырьём для получения акрилонитрила, метилметакрилата, адипонитрила и других соединений.
В медицине в малых дозах (!) используется как сильное седативное средство.
Соли синильной кислоты называются цианидами. Цианиды подвержены сильному гидролизу. При хранении водных растворов цианидов при доступе диоксида углерода они разлагаются:
Цианиды тяжёлых металлов термически неустойчивы, в воде, кроме цианида ртути Hg(CN)2, нерастворимы. При окислении цианиды образуют цианаты:
Многие металлы при действии избытка цианида калия или цианида натрия дают комплексные соединения, что используется, например, для извлечения золота и серебра из руд:
Биологические свойства
При вдыхании небольших концентраций синильной кислоты наблюдается царапанье в горле, горький вкус во рту, головная боль, тошнота, рвота, боли за грудиной. При нарастании интоксикации уменьшается частота пульса, усиливается одышка, развиваются судороги, наступает потеря сознания. При этом цианоз отсутствует (содержание кислорода в крови достаточное, нарушена его утилизация в тканях).
Боевое отравляющее вещество
Впервые в роли боевого отравляющего вещества синильная кислота была использована французской армией 1 июля 1916 года. Однако по ряду причин, как то:
последующее использование синильной кислоты в этой роли прекратилось.
Отравляющее вещество
Антидот
Для лечения отравлений синильной кислотой известно несколько антидотов, которые могут быть разделены на две группы. Лечебное действие одной группы антидотов основано на их взаимодействии с синильной кислотой с образованием нетоксичных продуктов. К таким препаратам относятся, например, коллоидная сера и различные политионаты, переводящие синильную кислоту в малотоксичную роданистоводородную кислоту, а также альдегиды и кетоны (глюкоза, диоксиацетон и др.), которые химически связывают синильную кислоту с образованием циангидринов. К другой группе антидотов относятся препараты, вызывающие образование в крови метгемоглобина: синильная кислота связывается метгемоглобином и не доходит до цитохромоксидазы. В качестве метгемоглобинообразователей применяют метиленовую синь, а также соли и эфиры азотистой кислоты.
Сравнительная оценка антидотных средств: метиленовая синь предохраняет от двух смертельных доз, тиосульфат натрия и тетратиосульфат натрия — от трех доз, азотистокислый натрий и этилнитрит — от четырех доз, метиленовая синь совместно с тетратиосульфатом — от шести доз, амилнитрит совместно с тиосульфатом — от десяти доз, азотистокислый натрий совместно с тиосульфатом — от двадцати смертельных доз синильной кислоты.
Литература
Полезное
Смотреть что такое «Циановодород» в других словарях:
циановодород — cianido rūgštis statusas T sritis chemija formulė HCN atitikmenys: angl. hydrocyanic acid; hydrogen cyanide; Prussian acid rus. синильная кислота; цианистоводородная кислота; циановодород ryšiai: sinonimas – vandenilio cianidas … Chemijos terminų aiškinamasis žodynas
Синильная кислота — Синильная кислота … Википедия
Зоман — Зоман … Википедия
Цианистый водород — Синильная кислота Общие Систематическое наименование циановодород, синильная кислота Химическая фор … Википедия
ЦИАНИДЫ — (циановодород, HCN), соли или эфиры синильной кислоты. Наиболее важное значение имеют цианид натрия (NaCN) и цианид калия (KCN), которые оба являются смертельными ядами и обладают характерным запахом миндаля. Находят применение во многих отраслях … Научно-технический энциклопедический словарь
ДЕРАТИЗАЦИЯ — крысоистребление. Сейчас термин Д. означает истребление и ряда др. вредных грызунов, приносящих ущерб народному х ву. Д. включает предупредительные и истребительные меры борьбы. Предупредительные меры: поддержание чистоты в дворах, складах,… … Сельскохозяйственный словарь-справочник
Монооксид углерода — Общие Систематическое наименование Монооксид углерода Химическая формула … Википедия
Бериллий — 4 Литий ← Бериллий → Бор … Википедия
Бензпирен — Бензпирен … Википедия
Боевое отравляющее вещество — Отравляющие вещества (ОВ) токсичные химические соединения, предназначенные для поражения живой силы противника. ОВ могут воздействовать на организм через органы дыхания, кожные покровы и пищеварительный тракт. Боевые свойства (боевая… … Википедия
Что такое цианистый калий и чем он опасен?
История цианидов уверенно прослеживается практически от первых дошедших до нас письменных источников. Древние египтяне, например, использовали косточки персика для получения смертельно опасной эссенции, которая в экспонирующихся в Лувре папирусах называется просто «персиком».
Летально-персиковый синтез
Персик, как и еще две с половиной сотни растений, среди которых миндаль, вишня, черешня, слива, относится к роду сливы. В косточках плодов этих растений содержится вещество амигдалин — гликозид, прекрасно иллюстрирующий понятие «летальный синтез». Этот термин не совсем корректен, более правильно было бы назвать явление «летальным метаболизмом»: в его ходе безобидное (а иногда даже полезное) соединение под действием ферментов и других веществ расщепляется до сильнодействующего яда. В желудке амигдалин подвергается гидролизу, и от его молекулы отщепляется одна молекула глюкозы — образуется пруназин (некоторое его количество содержится в косточках ягод и фруктов изначально). Далее в работу включаются ферментные системы (пруназин-β-глюкозидаза), которые «откусывают» последнюю оставшуюся глюкозу, после чего от исходной молекулы остается соединение манделонитрил.
В медицинской литературе нет ни одного подтвержденного случая смерти после поедания персиковых или абрикосовых косточек, хотя и описаны случаи отравления, требовавшие госпитализации. И этому есть достаточно простое объяснение: для образования яда нужны только сырые косточки, а их много не съешь. Почему сырые? Чтобы амигдалин превратился в синильную кислоту, необходимы ферменты, а под действием высокой температуры (солнечные лучи, кипячение, жарка) они денатурируются. Так что компоты, варенье и «каленые» косточки совершенно безопасны. Чисто теоретически возможно отравление настойкой на свежей вишне или абрикосах, поскольку денатурирующих факторов в этом случае нет. Но там в действие вступает другой механизм обезвреживания образующейся синильной кислоты, описанный в конце статьи.
Военное прошлое
Эффективность цианидов для точечного устранения противника во все времена манила военных. Но масштабные эксперименты стали возможными только в начале XX века, когда были разработаны методы производства цианидов в промышленных количествах.
1 июля 1916 года французы в боях у реки Соммы впервые применили цианистый водород против немецких войск. Однако атака провалилась: пары HCN легче воздуха и быстро улетучивались при высокой температуре, так что «хлорный» фокус со стелющимся по земле зловещим облаком повторить не удалось. Попытки утяжелить циановодород треххлористым мышьяком, хлорным оловом и хлороформом не увенчались успехом, так что о применении цианидов пришлось забыть. Точнее, отложить — до Второй мировой.
Немецкая химическая школа и химическая промышленность в начале XX века не знали себе равных. На благо страны работали выдающиеся ученые, в том числе нобелевский лауреат 1918 года Фриц Габер. Под его руководством группа исследователей свежесозданного «Немецкого общества борьбы с вредителями» (Degesch) модифицировала синильную кислоту, которая с конца XIX века использовалась в качестве фумиганта. Чтобы снизить летучесть соединения, немецкие химики использовали адсорбент. Перед применением гранулы следовало погрузить в воду, чтобы высвободить накопленный в них инсектицид. Продукт получил название «Циклон». В 1922 году Degesch перешла в единоличное владение компании Degussa. В 1926 году на группу разработчиков был зарегистрирован патент на вторую, весьма успешную версию инсектицида — «Циклон Б», отличавшийся более мощным сорбентом, наличием стабилизатора, а также ирританта, вызывавшего раздражение глаз — чтобы избежать случайного отравления.
Модус операнди
При меньших дозах можно даже отследить несколько периодов отравления. Сначала горький привкус и жжение во рту, слюнотечение, тошнота, головная боль, учащение дыхания, нарушение координации движений, нарастающая слабость. Позже присоединяется мучительная одышка, кислорода тканям не хватает, так что мозг дает команду на учащение и углубление дыхания (это очень характерный симптом). Постепенно дыхание угнетается, появляется еще один характерный симптом — короткий вдох и очень длинный выдох. Пульс становится более редким, давление падает, зрачки расширяются, кожа и слизистые розовеют, а не синеют или бледнеют, как в других случаях гипоксии. Если доза несмертельная, этим все и ограничивается, через несколько часов симптомы исчезают. В противном случае наступает черед потери сознания и судорог, а затем возникает аритмия, возможна остановка сердца. Иногда развивается паралич и длительная (до нескольких суток) кома.
Отравленного — отрави
Нитриты окисляют гемоглобин очень быстро, так что один из самых эффективных антидотов (противоядий) — амилнитрит, изоамиловый эфир азотистой кислоты — достаточно просто вдохнуть с ватки, как нашатырный спирт. Позже выяснилось, что метгемоглобин не только связывает циркулирующие в крови цианид-ионы, но и разблокирует «закрытые» ими дыхательные ферменты. В группу метгемоглобинообразователей, правда, уже более медленных, входит и краситель метиленовый синий (известный как «синька»).
Есть и обратная сторона медали: при внутривенном введении нитриты и сами становятся ядами. Так что насыщать кровь метгемоглобином можно лишь при строгом контроле его содержания, не более 25−30% от общей массы гемоглобина. Есть и еще один нюанс: реакция связывания обратима, то есть через некоторое время образовавшийся комплекс распадется и цианид-ионы устремятся внутрь клеток к своим традиционным мишеням. Так что нужна еще одна линия обороны, в качестве которой применяют, например, соединения кобальта (кобальтовая соль этилендиаминтетрауксусной кислоты, гидроксикобаламин — один из витаминов В12), а также антикоагулянт гепарин, бета-оксиэтилметиленамин, гидрохинон, тиосульфат натрия.
Казус Распутина
Но самый интересный антидот намного проще и доступнее. Химики еще в конце XIX века заметили, что цианиды превращаются в нетоксичные соединения при взаимодействии с сахаром (особенно эффективно это происходит в растворе). Механизм этого явления в 1915 году объяснили немецкие ученые Рупп и Гольце: цианиды, реагируя с веществами, содержащими альдегидную группу, образуют циангидрины. Такие группы есть в глюкозе, и амигдалин, упомянутый в начале статьи, по сути представляет собой нейтрализованный глюкозой цианид.
Если бы об этом было известно князю Юсупову или кому-то из примкнувших к нему заговорщиков — Пуришкевичу или великому князю Дмитрию Павловичу, они не стали бы начинять пирожные (где сахароза уже гидролизовалась до глюкозы) и вино (где глюкоза тоже имеется), предназначенные для угощения Григория Распутина, цианистым калием. Впрочем, есть мнение, что его и не травили вовсе, а рассказ о яде появился для запутывания следствия. Яда в желудке «царского друга» не обнаружили, но это ровным счетом ничего не значит — циангидрины там никто не искал.
Автор статьи — врач-токсиколог, научный редактор журнала «Российские аптеки»
- локация это что такое простым простыми словами
- чем вылечить конъюнктивит у новорожденного