линейное давление скважины что это
Нефтяной словарь
11 NeftePedia /board/d/davlenie_geostaticheskoe/5-1-0-603 Давление геостатическое
Гидростатическое давление не определяет полностью пластового давления, хотя в платформенных районах со слабо расчлененным рельефом и малыми скоростями движения подземных вод может быть близким к нему. Отношение пластового давления к гидростатическому давлению некоторые исследователи называют коэффициентом негидростатичности. Существует также понятие условного гидростатического давления, которое равно весу столба пресной воды с плотностью 1 г/см 3 высотой от данной точки пласта до земной поверхности.
11 NeftePedia /board/d/davlenie_gidrostaticheskoe/5-1-0-604 Давление гидростатическое
Измеряется с помощью глубинного манометра или вычислением веса столба флюида в стволе скважины (плюс давление на устье, если уровень флюида устанавливается выше устья). Чем больше забойное давление отличается от пластового давления, тем интенсивнее обмен жидкостью между пластом и скважиной.
В условиях фонтанирующей скважины забойное давление регулируют с помощью специальных калиброванных штуцеров на устье скважины, изменяющих ее дебит. При насосной добыче нефти забойное давление определяется положением уровня пластовой жидкости в стволе скважины.
При одинаковых заполнителях эксплуатационных труб и затрубного пространства разность давлений должна отсутствовать. На фонтанирующей (работающей) скважине по колебаниям затрубного давления судят о колебаниях давления пластового. Однако это возможно лишь в том случае, если в процессе работы соотношение нефти и газа в заполнении межтрубного пространства не изменяется (не происходит накопления газа).
Поэтому при гидродинамических исследованиях пласта с использованием измерений, затрубное давление необходимо, чтобы затрубное пространство было заполнено чистой пластовой жидкостью (нефтью, водой), а весь накапливающийся паз должен удаляться («стравливаться»).
Фиксируется манометром, установленным на устье эксплуатационных или обсадных труб. Зависит от пластового давления, режима работы скважины и веса столба жидкости (газа). При закрытой (герметизированной) скважине численно равно разности пластового давления и давления столба жидкости (газа) высотой от устья скважины до вскрытого горизонта.
Различают давление на устье статическое — на полностью герметизированном устье скважины и давление на устье динамическое (рабочее) — при эксплуатации скважины. Статическое и динамическое давление на устье может быть измерено в эксплуатационной колонне и в межтрубном (затрубном) пространстве.
Динамическое давление на устье эксплуатационных труб называется буферным давлением, а статическое и динамическое давление в межтрубном пространстве — затрубным. Давление на устье в эксплуатационных трубах и затрубном пространстве, как правило, различаются.
Нефти и пластовые воды с давлением насыщения, равным пластовому, называются насыщенными. Разница между давлением насыщения и пластовым давлением в пределах одной залежи может меняться и достигать десятков МПа. Эта разница используется для определения времени формирования залежей нефти (см. возраст залежей).
Однако достоверность этого метода пока не обоснована. Нефти в присутствии газовой шапки, как правило, насыщенные.
Для его обнаружения (измерения) используются полупроницаемые мембраны — перегородки, пропускающие молекулы растворителя и не пропускающие молекулы растворенного вещества. В нефтегазоносных бассейнах полупроницаемостью могут обладать только глины, не потерявшие коллоидности. Их поровые просветы полностью перекрыты физически сорбированной (связанной) водой. Поэтому через глины диффундирует практически только вода, а для растворенных веществ они непроницаемы. В замкнутом в глине объеме минерализованной воды при меньшей минерализации окружающих вод возникнет осмотическое давление.
Однако минерализация вод среди глинистых пород обычно меньше, чем в окружающих породах, диффузионный осмотический поток направлен в другую сторону, в горных породах есть фильтрационно проводящие трещины и объемы с более минерализованными водами не являются замкнутыми. По этим причинам осмотически возникающие давления в природе практически не встречаются. Вместе с тем нельзя исключить возможность возникновения осмотического давления и участия его в первичной миграции УВ, когда в период генерации УВ в глинистых породах резко повышается их концентрация в воде.
Все о транспорте газа
I. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
Для правильного понимания всех технологических процессов и явлений, связанных с эксплуатацией нефтяных месторождений и скважин, необходимо уяснить ряд терминов для давлений, которые определяют или влияют на эти технологические процессы.
Уровень столба жидкости, установившийся в скважине после ее остановки при условии, что на него действует атмосферное давление, называется статическим уровнем.
Если устье скважины герметизировано, то обычно в верхней части скважины скапливается газ, создающий некоторое давление на уровень жидкости. В этом случае уровень жидкости не называется статическим, хотя соответствует статическим условиям скважины, и давление на забое скважины равно сумме гидростатического давления столба жидкости и давления газа.
1.1.3. Динамическое давление на забое скважины
Это давление устанавливается на забое во время отбора жидкости или газа из скважины или во время закачки жидкости или газа в скважину. Динамическое давление на забое очень часто называют забойным давлением в отличие от статического, которое называют пластовым давлением. Однако и статическое, и динамическое давления в то же время являются забойными.
1.1.4. Динамический уровень жидкости
Уровень жидкости, который устанавливается в работающей скважине при условии, что на него действует атмосферное давление (межтрубное пространство открыто), называется динамическим уровнем.
При герметизированном затрубном пространстве динамическое давление будет равно сумме гидростатического давления столба жидкости от уровня до забоя и давления газа, действующего на уровень. Высота столба жидкости измеряется по вертикали. Поэтому в наклонных скважинах при вычислении гидростатических давлений должна делаться соответствующая поправка на кривизну скважины.
Пластовое давление
Обычно прогноз пластового давления основан на предположении о том, что оно изменяется строго пропорционально глубине скважины, причем коэффициент пропорциональности называют часто коэффициентом (индексом) аномальности ka:
lпл– глубина расположения пласта (в наклонно направленных скважинах вместо глубины по стволу берут вертикальную проекцию ствола на данной глубине.), м.
Тогда получается, что для определения пластового давления вполне достаточно знать только величину ka для различных интервалов бурения. Обычно принимают, что для некоторого интервала бурения ka – величина постоянная. Однако то обстоятельство, что для всех интервалов бурения расчет пластового давления ведут с помощью формулы (1.1), представляющей собой уравнение прямой, исходящей их начала координат, означает, во-первых, что линии пластовых давлений являются отрезками прямых, а во-вторых, продолжения этих отрезков образуют лучи, исходящие из устья скважины.
На рис. 1 показаны четыре луча, соответствующие разным значениям индекса пластового давления ka . У луча 0а оно минимально, а у луча 0g – максимально. На глубине Lа изменяется индекс аномальности ka , и линия скачком переходит на другой луч и так далее. В результате образуется ломаная линия 0abcdefghi, включающая горизонтальные участки ab, cd, ef, hg. Известны случаи локального роста пластового давления на некотором интервале бурения (по сравнению с соседними пластами) с последующим возвратом на прежний (или близкий к прежнему) уровень давлений. На рис. 1. этому соответствует участок efghi.
Величина qпл, в строгом смысле, характеризует изменение пластового давления в пределах некоторого интервала бурения или пласта, приходящееся на единицу длины (как правило, это 1 м) и вычисляется по формуле:
где pпл2 и pпл1 – пластовые давления соответственно на глубинах L2и L1 (например, в подошве и кровле пласта).
Если обнаружится, что для любых двух глубин в пределах данного интервала бурения (пласта) величина qпл постоянна (одна и та же), то это будет означать, что пластовое давление изменяется по линейному закону.
Но это совсем не означает, что продолжение прямой пройдет точно через устье скважины, как это имеет место на рис. 1. И здесь возможны варианты (рис. 2):
1. Участок 0′ a отражает изменение рпл в верхней части разреза, насыщенной пресными или маломинерализованными водами со статическим уровнем пластовой воды в скважине, как правило, ниже уровня земли («сухой» отрезок 0-0′). Предположим теперь, что каким-то образом удалось замерить пластовые давления в точках a’ и a. Вычисляя теперь по формуле (1.1) коэффициенты аномальности ka (при известных давлениях и глубинах), мы бы получили разные величины ka для указанных глубин (прямые 0а и 0а’ не совпадают). Но выше мы только что доказали, что наличие линейной связи между давлением и глубиной автоматически означает постоянство градиента давления. В этих условиях применение формулы (1.1) с коэффициентом ka, найденным по глубине La, приведет к завышению рпл для всех глубин, меньших La.
2. Если продолжение прямой линии пластового давления (прямая 0 с на рис. 2) проходит через устье скважины, то имеет место частный случай постоянства ka и qпл на всем интервале бурения. При этом расчеты по формуле (1.1) будут тоже точными.
4. Продуктивная толща газовых месторождений и некоторых, например, Прикаспийских, имеют большую протяженность (несколько сотен метров), и отдельные проницаемые участки (коллектора) имеют между собой гидродинамическую связь в вертикальном направлении. Такие залежи месторождений называют массивными. Пластовое давление в пределах продуктивных пластов распределяется не пропорционально глубине, а в соответствии с плотностью флюида в пластовых условиях. В продуктивной части газового месторождения – в зависимости от плотности сжатого газа, в нефтяных – от плотности нефти в пластовых условиях. На рис. 2 прямая fg иллюстрирует распределение давления в газовой залежи. Считается, что в подошве залежи давление близко к давлению в водоносных пластах на соответствующей глубине, зато в кровле оно существенно больше «нормального» и воспринимается как АВПД. Для таких случаев прогнозный расчет по формуле (1.1) в принципе возможен только для подошвы залежи. Что касается давления в кровле, то оно определяется по формулам (соответственно для газа и нефти):
где pпд и pкр – пластовое давление в подошве и в кровле пласта;
rн— плотность нефти в пластовых условиях;
Для многопластовых месторождений нефти, когда каждый нефтеносный пласт может рассматриваться как самостоятельная залежь малой мощности (единицы метров) с собственным водонефтяным контактом, в пределах нефтеносной части распределение тоже будет по закону, описанному формулой (1.4). Однако, в связи с малой мощностью пластов, описанным эффектом аномальности в кровле пренебрегают, и пластовые давления определяют либо по формуле (1.1), либо через градиент давления qпл, если известно давление для одной из глубин в пределах рассматриваемого интервала бурения.
На линии пластовых давлений выделяются горизонтальные площадки, что свидетельствует о скачкообразном изменении пластового давления при достижении определенных глубин. Если подходить формально, то получается, что в одной точке пласта существуют два давления, что абсурдно. Все дело в том, что в реалии переход от одного давления к другому происходит не сразу, а на некотором, относительно коротком (в несколько метров) интервале. Вследствие малости интервала переход на новое давление показывают в виде ступенек.
Существует еще один способ оценки пластового давления и его изменения, суть которого сводится к определению эквивалентной плотности жидкости, которая, находясь (условно) в скважине от рассматриваемой точки пласта на глубине Li до устья, создает гидростатическое давление, численно равное пластовому на данной глубине:
Понятие «эквивалентная плотность» применяется не только к пластовому давлению, но используется и для описания всех других давлений, представленных в ТПД: гидростатического, давления гидроразрыва и горного. Вычисляются они по формуле (1.5) с заменой числителя на значения соответствующих давлений.
Предположим, что в кровле пласта на глубине 2000 м пластовое давление оказалось равным 21,6 МПа, а в подошве, на глубине 2500 м – 27 МПа.
— коэффициент аномальности ka = 21,6*10 6 / (1000*9,81*2000)=1,1 (на глубине 2000 м),
— коэффициент аномальности ka = 27*10 6 / (1000*9,81*2500)=1,1 (на глубине 2500 м),
— градиент пластового давления в интервале 2000-2500 м:
qпл = (27-21,6)/ (2500-2000) = 0,0108 МПа/м,
Приближенный, но весьма распространенный метод прогнозирования пластового давления, предполагает использование формулы (1.1).
Более строгий метод расчета пластового давления предусматривает точное знание давления на одной из глубин в пределах пласта (интервала бурения), например, прямым измерением глубинными манометрами, и расчет давления для других глубин с использованием величины градиента давления(По определению пластовое давление – фактор природный, и его величина в принципе не может зависеть от человека. Однако бывает пластовое давление «рукотворным». Например, в результате добычи нефти имеет место уменьшение давления в продуктивных пластах. При закачке в пласт жидкости или газа для восстановления пластовой энергии оно, наоборот, увеличивается и может превысить первоначальное давление. ).
Каким должно быть давление в скважине?
Каким должно быть давление в скважине?
Давление в скважине
Красивое понятие «артезианские скважины» не редко упоминается в разных источниках. Сегодня это красивое явление может стать реальностью для всех желающих. Под ним понимаются подземные воды, которые заключены водоупорными слоями в горных породах. Сохраняется определённое гидравлическое давление в скважине. Использование воды в качестве питьевой, считается престижным, надёжным и популярным. На участках проводят автономные системы водоснабжения и пользуются чистейшей водой для своих нужд.
Залегание происходит в областях мощных древних геологических структур. Образуются артезианские бассейны. Когда совершают бурение отверстия до водоносного пласта, давление в скважине позволяет поднять воду на верх и заставить фонтанировать. Малая часть жидкости находит себе выход через горные ручьи, тихие ключи или бурные гейзеры. Остальная жидкость тысячелетиями накапливается в глубинах земли в стеснении водоупорных слоёв пока не образуется свободный выход или человек не пробурит его самостоятельно. Верхние подземные воды проходят на разной глубине. Она может достигать десятки или сотни метров. В воде мало микроорганизмов, а болезнетворные бактерии почти исключены.
Процесс получения
Бурение происходит с помощью мобильных буровых установок на базе автомобилей большой грузоподъёмности. Иногда операция выполняется передвижными мобильными установками. Процесс предусматривает использование шарошечных долотов разного диаметра. Главным преимуществом является высокая водоотдача. Артезианские варианты способны обеспечить водой посёлки или несколько домов. Не редко соседи заказывают совместные проекты (правда, стоит хорошенько подумать, стоит ли решаться на такой шаг). Если работы будут проводить профессионалы, то система прослужит не меньше 50-ти лет. Всё зависит от грунта, из которого выходит вода, качества бурения и обустройства.
Глубина
Не всегда понятны основные преимущества собственной водяной точки. Причин много и все они имеют смысл. В подземных водах нет лишних вкраплений, давление в скважине оптимальное. Водопроводная или бутилированная вода может содержать вредные для организма элементы. Артезианская надёжно защищена скальными и другими твёрдыми породами грунта. Туда не могут попасть кислотные дожди, токсины, бактерии, грязь. Загрязнение исключено. Эта жидкость наделена только минералами. При этом важно, чтобы в момент бурения компания придерживалась санитарных норм. Иначе изначально чистейшее место станет опасным для человеческого здоровья.
Глубокие залежи максимально защищены от промышленных и бактериальных загрязнений. Не смотря на давление в скважине, добыча не обходится без специальных бурильных установок и некоторых мероприятий. В глубину сначала погружают трубы, а следом за ними насос. На земле формируется стандартный трубопровод. Первым препятствием с залеганием встречается песок (15-40 метров). Дальше идёт известковый (30-230 метров). Артезианская вода содержит множество минералов. Все они несут огромную пользу здоровью.
Обустройство может иметь несколько исполнений:
Классическое
Двойная обсадка
Будет необходима при следующих условиях:
Начальная обсадная проводится до краёв известняка. Ещё одну (меньшую) монтируют в самом известняке (до границ водоносного). Иногда система проводится до конечной точки. Чтобы заставить поступать жидкость, выполняют перфорацию. При двойной обсадке насос устанавливают внизу.
С кондуктором
Вариант уместен, когда грунты препятствуют бурению, водоносный слой создаёт хороший напор, а в известняке нет глины с песком. Исполнение отличается от классического присутствием кондуктора (большая труба, чем обсадная). Располагается в верхних слоях.
Переход на меньший диаметр
Нормальные верхние слои с наличием валунов и сыпучих песков допускают такую конструкцию. Водоносный горизонт должен обеспечить подходящий напор, а известняк не иметь песка и глины. Сначала проводится основная труба. Следом за ней поступает аналог меньший до границ. Туда погружают глубинный насос и следуют этапам обустройства, как предусматривает классический вариант. Если присутствуют глина с песком, должны быть три вида обсадных:
Насос опускают в последнюю трубу.
Достоинства
Недостатки
Стоимость
Цену проекта предопределяют несколько факторов:
Не всегда проектная стоимость совпадает с действительностью. Особенно это актуально если работой занимаются плохо подготовленные люди. Учитывая разные условия, общую стоимость могут формировать следующие затраты:
Эти “допы” входят в стоимость услуг Кимберии “под ключ” и дополнительно не оплачиваются заказчиком.
Поддержание пластового давления (ППД) на нефтяных залежах
Схема системы ППД для подготовки, транспортировки, закачки рабочего агента.
1.1. Принципиальная схема системы ППД
Система ППД представляет собой комплекс технологического оборудования необходимый для подготовки, транспортировки, закачки рабочего агента в пласт нефтяного месторождения с целью поддержания пластового давления и достижения максимальных показателей отбора нефти из пласта.
Система ППД должна обеспечивать:
— необходимые объемы закачки воды в пласт и давления ее нагнетания по скважинам, объектам разработки и месторождению в целом в соответствии с проектными документами;
— подготовку закачиваемой воды до кондиций (по составу, физико-химическим свойствам, содержанию мех. примесей, кислорода, микроорганизмов), удовлетворяющих требованиям проектных документов;
— проведение контроля качества вод системы ППД, замеров приемистости скважин, учета закачки воды как по каждой скважине, так и по группам, пластам и объектам разработки и месторождению в целом;
— герметичность и надежность эксплуатации системы промысловых водоводов, применение замкнутого цикла водоподготовки и заводнения пластов с использованием сточных вод;
— возможность изменения режимов закачки воды в скважины, проведения ОПЗ нагнетательных скважин с целью повышения приемистости пластов, охвата пластов воздействием заводнения, регулирование процесса вытеснения нефти к забоям добывающих скважин.
Система ППД включает в себя следующие технологические узлы (см. рис.10.1)
— систему нагнетательных скважин;
— систему трубопроводов и распределительных блоков (ВРБ);
— станции по закачке агента (БКНС), а также оборудование для подготовки агента для закачки в пласт.
Рис.1.1.1. Принципиальная схема системы ППД
1.2. Система трубопроводов ППД
К трубопроводам системы поддержания пластового давления относятся:
— нагнетательные линии (трубопровод от ВРБ до устья скважины);
— водоводы низкого давления (давление до 2 МПа);
— водоводы высокого давления (в водоводах высокого давления нагнетание воды осуществляется насосными агрегатами);
— внутриплощадочные водоводы (водоводы площадочных объектов).
Транспортируемой продукцией трубопроводов является агрессивная смесь вод, содержащая: механические примеси, серу, кальцит и другие вредные вещества.
Технологии сбора и транспорта продукции
Подача воды на блочные кустовые насосные станции (БКНС) осуществляется из нескольких источников:
— по водоводам низкого давления подается пластовая вода (УПСВ и ЦППН (ЦПС));
— по водоводам низкого давления подается вода из водозаборных скважин;
— из открытых водоемов по водоводам низкого давления подается пресная вода.
Рис.1.2.1. Кольцевая (а) и лучевая (б) водораспределительные системы 1 водоочистная станция; 2 магистральный водовод; 3 водовод высокого давления; 4 нагнетательная линия; 5 колодец; 6 нагнетательные скважины; 7 подводящие водоводы; 8 подземные резервуары чистой воды; 9 кустовая насосная станция; 10 перемычка
Из БКНС рабочий агент (вода) через водораспределительные блоки (ВРБ) по водоводам высокого давления и нагнетательным линиям скважин подается для закачки в пласт с целью поддержания пластового давления.
Основные технологические параметры
Конструкция промысловых трубопроводов (диаметр, толщина стенки), способ их прокладки, материал для их изготовления определяются проектной организацией и обеспечивают:
— безопасную и надежную эксплуатацию;
— промысловый сбор и транспорт вод системы ППД в нагнетательные скважины;
— производство монтажных и ремонтных работ;
— возможность надзора за техническим состоянием водоводов;
— защиту от коррозии, молний и статического электричества;
— предотвращение образования гидратных и других пробок.
Рабочее давление в трубопроводах системы ППД
Размеры и масса нефтепроводных труб (по ГОСТ 3101 46) приведены в табл. 1.3.1. Нефтепроводные трубы испытываются на гидравлическое давление не более 40 МПа, рассчитываемое по формуле
где Р гидравлическое давление в МПа; δ минимальная толщина стенки в мм.; ơ допускаемое напряжение, принимаемое равным 35% предела прочности, в кг/мм 2 ; d внутренний диаметр трубы, в мм.
Графитовые смазки для резьбовых соединений труб
Для смазывания резьбовых соединений труб применяют графитовые смазки следующих составов:
1) 5 массовых частей машинного масла, 1 массовая часть графитового порошка (смесь тщательно размешивается до мазеобразного состояния);
2) 50…60 % графитового порошка, 5% технического жира, 1,5 % каустической соды крепостью 32 градусов Ве, 33,5 43,5 % машинного масла (все составляющие части берутся в процентах к общей массе);
3) 24% солидола, 36% графита, 8% известкового молока, 2% канифоли (все составные части берутся в процентах к общей массе).
Размеры и масса нефтепроводных труб
1.4. Насосные станции и установки для закачки воды
Для закачки воды используются насосные станции и установки, базирующиеся, в основном, на центробежных поршневых насосных агрегатах (рис. 1.4.1).
Описание конструкции и принцип действия БКНС
Насосный блок включает в себя в качестве основных элементов центробежные многоступенчатые секционные насосы типа ЦНС-180 или ЦНС-500, основные показатели которых, в зависимости от числа ступеней, приведены в табл.1.4.1. Насосный блок включает электропривод насоса (синхронного типа серии СТД со статическим возбуждением или асинхронного типа серии АРМ), масляную установку для насосного агрегата, осевой вентилятор с электроприводом, пост местного управления с кнопкой аварийного останова, стенд приборов, запорно-регулирующую арматуру насосного агрегата, технологические трубопроводы.
Блок напорной гребенки (БГ), предназначенный для учета и распределения поступающей от насоса ТЖ по напорным трубопроводам, размещают в отдельном цельнометаллическом боксе на расстоянии не менее чем 10 м от остальных блоков. Включает в себя распределительный коллектор, коллектор обратной промывки, пункт управления, расходомер с сужающим устройством, запорный вентиль, вентилятор, площадку для обслуживания, электропечь.
Перспективным направлением является применение гидропроводных модульных насосов с «абсолютной» регулируемостью подачи.
Электропровод и кабели уложены в металлических коробах, стальных трубах, гибких металлорукавах. В БА электропроводы (стянутые в жгуты) и кабели проложены в лотках под настилом, доступ к которым осуществляется через люки.
Работа станции происходит следующим образом. Технологическая вода через всасывающий трубопровод подается на вход центробежного насоса ЦНС-180. От насоса по напорному трубопроводу вода подается в БГ, где распределяется на восемь, пять или четыре водонапорных водовода (в зависимости от типа БГ) и далее подается на нагнетательные скважины.
Для сброса воды из водоводов при ремонте БГ имеется специальный коллектор. Насосные агрегаты с насосами ЦНС 180-1900 и ЦНС 180-1422 снабжены индивидуальными маслосистемами, обеспечивающими принудительную подачу масла для смазки и охлаждения подшипников насоса и электродвигателя.
Система водяного охлаждения предусматривает:
— охлаждение масла при принудительной смазке подшипников насосного агрегата НБ;
— охлаждение подшипников НА с насосом ЦНС- 1050;
— подачу воды для охлаждения и запирания сальников концевых уплотнений насосов ЦНС-180 в случае падения давления во всасывающем патрубке насоса до 0,1 МПа, а также охлаждение электродвигателей с ЗЦВ.
Из резервуара сточная вода периодически перекачивается основными насосами БД ЦНСК-60/254 на вход насосов ЦНС-180.
В БА установлена аппаратура, обеспечивающая пуск, контроль основных параметров и эксплуатацию станции, аппаратуры распределения электроэнергии, щитов управления двигателями, отопления и дренажных насосов. Измерение, запись давления и расхода воды. поступающей в нагнетательные скважины производится расходомерными устройствами, расположенными на каждом водоводе БГ.
В качестве основного варианта рассмотрим насосный блок с принудительной смазкой подшипников насосного агрегата НА (давление на выкупе насосов выше 10 МПа).
— насосный агрегат НА, состоящий из насоса типа ЦНС-180 и электродвигателя;
— маслоустановка и трубопроводы системы смазки с арматурой;
— трубопроводы и арматура технологической воды;
— трубопроводы и арматура системы охлаждения;
— трубопроводы подпора и охлаждения сальников насоса;
— кнопочный пост управления маслоустановкой,
— кнопочный пост управления электроприводной задвижкой;
— короба и трубы электропроводки,
— кнопочный пост управления вентиляцией.
Установленное оборудование смонтировано и закреплено на санях и ограждающих конструкциях блока.
Для защиты проточной части насоса от крупных механических примесей во всасывающем патрубке установлен сетчатый фильтр.
На всасывающем трубопроводе технологической воды установлены клиновая задвижка типа ЗКЛ2 и сетчатый фильтр. На напорном трубопроводе установлены обратный клапан и электроприводная задвижка В-407Э. В верхней точке напорного трубопровода установлен вентиль для стравливания воздуха.
Трубопроводы системы охлаждения предназначены для подвода охлаждающей воды к маслоохладителю и воздухоохладителям двигателей с ЗЦВ. От системы охлаждения вода подается вода для запирания и охлаждения концевых сальниковых уплотнений насоса при падении давления а приемном патрубке насоса ниже 0,1 МПа.
При работе насоса с давлением во входном патрубке от 0,6 до 3,0 МПа происходит разгрузка сальников с отводом воды через щелевые уплотнения насоса в безнапорную емкость. Отвод воды из камеры гидропяты насоса производится во всасывающий трубопровод. Дренаж от концевых уплотнений насоса производится в дренажный бак, установленный в БД.
Местный контроль технологических и эксплуатационных параметров работы насосных агрегатов, настройка датчиков сигнализации осуществляются по манометрам и показаниям амперметра цепи возбуждения двигателя типа СТД.
После пуска кнопкой «пуск со щита управления, установленного в БА, включается масляный насос, и при достижении давления в конце масляной линии 0,05. 0,1 МПа начинается запуск основного насоса. После достижения давления за насосом 0,9 Рном начинает открываться электрозадвижка на линии нагнетания. После открытия задвижки в течение 60с насос выходит на установившийся режим работы.
При работе станции за счет амортизаторов и упругих компенсирующих вставок на трубопроводах снижается передача вибрации от насосного агрегата трубопроводам, несущим конструкциям, основаниям блоков и фундаментам, а также уменьшается передача шума.
— 2 насосных агрегата с насосами ЦНСК-60/264;
— 2 самовсасывающих насоса 1СЦВ-1,5М;
— 4 блока печей ПЭТ-4;
— защитные короба электропроводки;
— трубопроводы и арматура технологической воды.
Насосы 1СЦ8-1,5М предназначены для откачки воды из дренажного бака в резервуар сточных вод. Насосы типа ЦНСК-60/264 служат для откачки воды из резервуара сточных вод во всасывающий трубопровод НБ.
1 насос является резервным. Блок напорной гребенки (БГ) служит для распределения технологической воды на скважины системы ППД. Разработано шесть типов блока напорной гребенки в зависимости от количества водоводов и типа устройства измерения расхода воды.
— устройство измерения расхода;
— элементы вентиляции и отопления,
— кнопочный пост управления вентиляцией.
Блок трубопроводов состоит из напорного коллектора с регулирующими вентилями, высоконапорных водоводов, сбросного коллектора, вентилей и устройства измерения расхода. Изменение расхода технологической воды осуществляется регулирующими вентилями, установленными на напорном коллекторе.
В зависимости от количества водоводов блоки напорных гребенок подразделяются на 8-, 5- и 4-водоводные. 5- и 4-водоводные блоки напорной гребенки могут поставляться отдельно от станции. По типу устройства измерения расхода воды блоки гребень поставляются с: сужающим устройством в комплекте со щитом дифманометров; аппаратурой Электрон-2М; датчиком расхода ДРК 1-100-50-5.
В таблице 1.4.3 приведена техническая характеристика четырех основных групп блочных кустовых насосных станций: БКНС¥100; БКНС¥150, БКНС¥200; БКНС¥500.
Центробежные насосы секционные типа ЦНС
В табл. 1.4.4 приведены технические характеристики центробежных секционных насосов производительностью 38 и 60 м 3 /час. В табл. 1.4.5 приведены технические характеристики центробежных секционных насосов производительностью 105, 180 и 300 м 3 /час.
Состав блоков БКНС
* С замкнутым циклом вентиляции.
** В комплект заводской поставки не входят.