лечение на клеточном уровне что это значит
Лечение на клеточном уровне что это значит
Комсомольская правда
Клеточные технологии позволяют лечить рак даже на поздних стадиях
Меланома, злокачественное образование кожи, давно и достаточно хорошо изученное врачами-онкологами заболевание. Опухоль обычно лечат хирургическим путем. Как правило, операции проходят успешно, пациенты возвращаются к нормальной жизни. Более того, это направление хирургии не стоит на месте: сейчас в ряде случаев после удаления опухоли даже не остается шрама на теле.
Но рак – заболевание коварное. Бывает, опухоль до удаления успевает дать метастазы, раковые клетки проникают вглубь организма, начинают делиться, захватывая все новые пространства. И это порой приводит к очень печальным последствиям: через какое-то время лет человек вновь серьезно заболевает.
К беде привела обычная родинка
Родинку удалить не удалось, Татьяна чувствовала несильную боль в плече. За компанию с подругой она отправилась к онкологу. Его вердикт был неутешительным: необходимо делать операцию.
Несмотря на хирургическое вмешательство, летом 2011года женщине был поставлен тяжелый диагноз: меланома кожи спины, метастазы в мягкие ткани шеи. Сделали еще две операции, удалив надключичные лимфоузлы. Но болезнь продолжала прогрессировать, достигнув третьей, уже опасной для жизни стадии.
Злокачественные клетки хитры и коварны
…Механизм образования раковых опухолей давно и хорошо известен. Все клетки, за исключением нервных, постоянно делятся. Каждый день появляется определенное количество потенциально раковых, но они быстро вычисляются и уничтожаются иммунной системой. Но защитный механизм нашего организма может дать сбой и упустить момент возникновения раковой клетки. Причины бывают самые разные: связанное с возрастом ослабление иммунитета, радиационное облучение, работа с канцерогенными веществами, вирусы. Так возникает клон быстро размножающихся опасных клеток, не подвластных контролю со стороны организма.
Есть еще одно обстоятельство: злокачественные клетки, особенно это относится к меланоме, в ходе размножения меняют свой так называемый антигенный профиль, который иногда называют их паспортом, и потому перестают распознаваться защитной системой. Более того, создавая своеобразный «организм в организме», они еще и подавляют иммунитет.
И потому ученые пришли к выводу: для того, чтобы эффективно бороться с онкологическими заболеваниями, нужно научиться восстанавливать иммунную систему пациента. Любопытно, что об этом догадывались врачи еще в позапрошлом веке. В медицинской литературе описывается такой случай. Человек, у которого была обнаружена раковая опухоль, заболел оспой. И опухоль стала исчезать. Вероятно, иммунная система, мобилизовавшись на борьбу с оспой, вновь начала уничтожать злокачественные клетки.
Вакцину делают вручную
Заведующая научным отделом онкоиммунологии НИИ имени Петрова доктор медицинских наук Ирина Балдуева прошла путь от медсестры до известного ученого. Она занимается клеточными технологиями уже более двадцати лет.
Следующий этап – научить клетки бороться с опухолями. В лаборатории института уже накоплен банк данных так называемых опухолевых антигенов, по сути, злокачественных клеток.
Отметим, что вакцину фактически делают вручную. Это сложная, требующая высокой квалификации работа.
Методика проверена временем
Клеточные технологии применяются не только при лечении меланомы. У пожелавшего остаться неизвестным инженера Г в 2009 году диагностировали хондросаркому правой голени. Говоря простым языком, нашли опухоль в кости. Несмотря на ампутацию ноги – другого выхода не было, метастазы проникли в легкие и ребра.
Пациент пережил еще две сложнейшие операции, но заболевание прогрессировало, достигнув четвертой стадии. Остановить его рост и тем самым спасти больному жизнь помогла начатая в 2011 году вакцинотерапия. Она продолжается и поныне.
Кстати, на первых этапах вакцинация проводится раз в две-три недели. Затем интервал увеличивается до трех месяцев, затем до полугода. При хороших результатах врачи ограничиваются ежегодными профилактическими осмотрами.
В НИИ онкологии иммунотерапию применяют уже на протяжении восьми лет. Чаще всего в сочетании с другими методами лечения. Например, в перерывах между курсами химиотерапии. Однако лишь совсем недавно специалисты пришли к выводу, что клеточные технологии способны существенно помочь онкологическим больным в третьей и четвертой стадии.
И что важно: почти все пациенты проходили курс вакцинации бесплатно, поскольку методика входила в финансируемую государством программу высокотехнологичной медицинской помощи. Реальная же стоимость только первого курса колеблется от 140 до 220 тысяч рублей.
Начиная с 2010 года, в НИИ онкологии провели 1585 циклов вакцинотерапии на основе дендритных клеток, лечение получили 203 пациента.
Клеточная терапия – одно из активно развивающихся и многообещающих направлений в лечении многих болезней человеческого организма, который базируется на применении искусственно изъятых клеток или продуктов, полученных путем их культивирования.
В настоящее время, в связи со сложностями, связанными с организацией лечения в Турции, Израиле, России, Швейцарии, Южной Корее и Индии, мы приостановили обработку заявок по этим направлениям.
Если вас интересует организация лечения в Германии, оставьте, пожалуйста, заявку, и наши специалисты свяжутся с вами в ближайшее время.
Клеточная терапия – одно из активно развивающихся и многообещающих направлений в лечении многих болезней человеческого организма, который базируется на применении искусственно изъятых клеток или продуктов, полученных путем их культивирования.
На данный момент этот тип терапии пока не обрел слишком широкой распространенности. Причиной тому служит высокая стоимость клеточной терапии (клиника должна располагать дорогостоящим высокотехнологичным оборудованием). Но уже сегодня в мире существует немало клиник, которые практикуют эти методы лечения. Большинство из них – в развитых странах мира.
Содержание
Что такое клеточная терапия?
В организме человека существует определенное количество обычных клеток и тех, которые могут в процессе онтогенеза преобразоваться в соответствии с конкретной ситуацией. С возрастом количество этого резерва уменьшается, чем и объясняется прогрессирование многих заболеваний.
Наиболее наглядным примером качественной работы организма на клеточном уровне является перелом кости в 10 и в 60 лет. Если в первом случае время сращивания составляет 1-1,5 месяца, то во втором он может занять и несколько лет.
Стволовые клетки – это предшественники всех без исключения клеток нашего организма. Они способны при делении образовывать специализированные клетки, из которых состоит мышечная, эпителиальная, нервная или соединительная ткань. Во что конкретно они превратятся, зависит от условий культивирования стволовых клеток.
Что лечат при помощи клеточной терапии?
При помощи клеточной терапии можно лечить различные заболевания и состояния, связанные с поражением внутренних органов, соединительной ткани, нервной системы, желез внутренней секреции.
Вот список патологий, при которых целесообразно применять данный метод лечения:
Клеточную терапию применяют не только для лечения тех или иных болезней. Ее используют для достижения конкретных медицинских целей, которые могут быть поставлены при различных диагнозах.
Клеточная терапия используется для:
При всех перечисленных состояниях клеточная терапия имеет довольно обширную доказательную базу, подтверждающую ее эффективность. Постоянно разрабатываются новые направления, в которых может быть использован этот инновационный метод лечения.
Как проводят клеточную терапию?
Суть метода терапии состоит во введении стволовых клеток или выделяемых ими веществ в организм человека. Для этого чаще всего используются аутологичные (собственные) клетки.
Вначале врач должен убедиться в том, что в организме человека отсутствуют любые воспалительные процессы в стадии обострения или инфекционные заболевания. Они являются противопоказаниями к проведению клеточной терапии. Если ничто не мешает лечению, пациенту назначают курс инъекций разных видов стволовых клеток в определенной комбинации, которую определяет врач в зависимости от диагноза и цели лечения.
Терапевтический эффект развивается в три фазы:
Насколько безопасным будет лечение?
Клеточная терапия – это полностью безопасный метод лечения. Противопоказаниями к ее назначению являются только воспалительные процессы в активной фазе и острые инфекционные заболевания.
Возможные побочные эффекты:
Необратимых или отсроченных побочных эффектов у клеточной терапии нет. Это связано с тем, что для лечения используются собственные клетки пациента.
Что такое клеточная терапия и в чем её преимущества
Поделитесь этим материалом:
Стволовые клетки (СК) выделяются из костного мозга и жировой ткани человека. После появления методики исчезла необходимость в поиске донорских биоматериалов для проведения иммуносупрессивной терапии. Иммуносупрессивная терапия применяется для лечения аутоиммунных болезней, при которых иммунная система организма поражает собственные органы и ткани. К таким болезням относятся: ревматоидный артрит, псориаз, витилиго, сахарный диабет 1-го типа, болезнь Аддисона.
Как работает метод
Стволовые клетки получают из образца тканей пациентов. Затем образец ткани помещается в специальную среду, где клетки начинают делиться. Некоторые выживают, а некоторые — нет. Те, которые выживают, продолжают размножаться. Из них делают препарат для лечения. Это сложный и многоэтапный процесс: требуется точно соблюдать технологии. От корректного взращивания клеток зависит эффект терапии.
Клеточный препарат вводят в организм пациента внутривенно. В течение месяца после процедуры происходит улучшение обмена веществ, восстановление иммунитета, заживление ран, нормализация функций печени и ускоряется созревание клеток крови. СК не вызывают отторжения в организме.
Болезни, которые поддаются клеточной терапии
Преимущество клеточной терапии в том, что она помогает лечить болезни без использования лекарств. Расскажем, в каких случаях применяется лечение клетками:
Клеточная терапия способствует омоложению организма. С возрастом организм обновляется медленнее. Терапия клетками помогает регенерации (обновлению) клеток и питает их полезными веществами. Кроме того, стволовые клетки применяются для создания протезов клапанов сердца, сосудов, трахеи. Также клеточная терапия решает проблемы опорно-двигательного аппарата, восстанавливая дефекты костей. Дополнительно клеточная терапия применяется в стоматологии. В работе с новыми биологическими технологиями требуется качественная научная техника и опытные биологи.
Нам интересно рассказывать о достижениях клеточной терапии, поэтому мы выступили с докладами на 30 всемирных конференциях. Наши разработки применяют украинские клиники и 12 иностранных медицинских учреждений. Мы одни из 12 компаний страны, которые получили лицензии на подобную деятельность.
«SmartCell» основана в 2012 году в Одессе. Наши клиенты — 2600 человек с положительным результатом лечения.
Регенеративная медицина и клеточные технологии
Морские звезды могут отрастить новые тела, акулы — зубы, ящерицы — конечности. Однако человек на такое еще не способен. С целью восстановления поврежденных органов и тканей, лечения тяжелых заболеваний и сохранения молодости появились технологии регенеративной медицины, которые развиваются рекордными темпами и уже дают впечатляющие результаты.
Что такое регенеративная медицина
Это особый метод терапии, позволяющий восстановить поврежденные или пораженные болезнями ткани при помощи стволовых клеток человека и животных. Методика появилась около 25 лет назад и активно развивается.
Регенеративная медицина объединяет достижения практической медицины, генной инженерии и биологии.
Ученые считают, что она сможет полностью изменить жизнь людей в будущем.
Когда применяются методы регенеративной медицины
Направление применимо при заболеваниях и травмах, когда шансы не только на выздоровление, но и на выживание низки, когда иные методы лечения уже исчерпали себя. Это онкологические, наследственные и орфанные заболевания. Они часто затрагивают детей и людей среднего возраста.
Направление может применяться и в эстетических или косметологических целях (с целью устранения дефектов после травм и опухолей).
Последние достижения
Регенеративная медицина постоянно развивается: разрабатываются все новые методы лечения и коррекции общего состояния, восстановления поврежденных и утраченных органов. Разработки бывают неудачными, но далеко не всегда.
Гепатология
Лечение больных с тяжелыми формами печеночной недостаточности (циррозом, жировым гепатозом) — одно из ключевых направлений медицины. На экспериментальных моделях оказались эффективны технологии длительной восстановительной регенерации пораженных гепатоцитов при использовании мультипотентных мезенхимальных стромальных клеток (ММСК) костного мозга.
Также с высокой эффективностью опробованы выделенные из печени белковые факторы и инженерные тканевые конструкции билиарного тракта.
Диабет
Исследования обнаружили, что среди клеток жировой ткани имеются те, которые могут делиться и вырабатывать инсулин после пересадки в печень. Опыты проводились на грызунах. В результате печень брала на себя функцию поджелудочной железы и не просто облегчала течение сахарного диабета I и II типов, но и полностью избавляла человека от данного заболевания.
Сердечно-сосудистые болезни
Опробована методика пересадки стволовых клеток из работоспособного сердца свиньи для устранения деструктивных изменений миокарда после инфаркта.
Ввиду того что сердце свиньи аналогично по строению таковому у человека, появился шанс опробовать технологию на людях. Направление позволит устранить симптомы аритмии или сердечной недостаточности при длительном течении ишемической болезни сердца или несвоевременно оказанной помощи при инфаркте миокарда.
Облысение
Наследственное облысение до сих пор не поддается терапии. Активно проводятся исследования, основанные на клонировании волосяных фолликулов с их последующим внедрением в облысевшие области головы. Затем в зоне воздействия проводится стимуляция роста волос.
Нервные болезни
Эксперименты на грызунах показали, что даже парализованные конечности ввиду поражения нервных тканей позвоночника снова могут стать подвижными. В опытах ученые вводили мышам и крысам эмбриональные клетки в нервные ткани. В скором времени начнутся испытания методики на людях.
Глазные болезни
Внедрение стволовых клеток в роговицу позволяет устранить многочисленную группу врожденных и приобретенных дефектов. Технология разработана и с успехом применяется для лечения посттравматических и постинфекционных рубцов роговицы, ожогов.
Уретропластика
Дефекты многослойного эпителия мочевыделительных путей, полученные в ходе поражения опухолью или инородными телами, конкрементами, под влиянием пороков формирования и развития, поддаются терапии.
Трансинженерные системы показали высокую эффективность при использовании в целях регенерации пораженного уротелия. Медицина позволяет полностью восстановить проходимость протоков и функциональную активность эпителия.
Косметология
Для устранения морщин и других признаков старения кожи активно применяются не только плазма, обогащенная тромбоцитами, но и стволовые клетки. После внедрения в кожу они запускают процессы клеточной регенерации, синтез коллагеновых и эластиновых волокон. Кожа становится гладкой и эластичной, мелкие морщины разглаживаются.
Стоматология
Тканевая инженерия внедрена и в челюстно-лицевую хирургию. Препараты на основе аллогенных кератиноцитов и фибробластов организма человека и бычьего коллагена уже одобрены Управлением по санитарному надзору за качеством медикаментов и пищевых продуктов (FDA).
Подобные препараты позволяют восстановить целостность тканей десны и челюстей без использования травматичных лоскутных пересадок.
Клеточные и тканевые технологии
Сейчас уже доступны такие методы генной терапии, как выращивание и клонирование отдельных тканей, частей и даже целых органов. Создание новых участков может происходить как внутри, так и вне тела человека. При этом риск отторжения минимален.
Биопринтинг (3D-печать) органов и тканей
Печать органических 3D-моделей основана на послойном построении трехмерных структур биологических тканей. На первом этапе принтер печатает материал с учетом разнообразия тканей в клеточном строении. Затем модель помещается в инкубатор, где в течение короткого периода выращивается.
3D-биопринтинг уже опробован. Изготовлены ткани кожных покровов, сердца и кровеносных сосудов, костей.
Выращивание органов
В основе направления лежит использование трехмерных структур клеток для выращивания «зачатков» органов — органоидов. Из них впоследствии выращивают «крупный» аналог.
Органоиды используются и для:
Сложность технологии позволяет выращивать только простые по строению органы. К ним относятся влагалище, мочевой пузырь, сосуды.
Технологии ксенотрансплантации
Ксенотрансплантация — это пересадка тканей или органов от одного биологического вида другому. Несмотря на сходство между человеком и приматами, приоритетные разработки затрагивают исключительно свиней. Свиньи — это неограниченный и доступный ресурс органов для человека.
Восстановление органов человека
Данное направление активно развивается уже на протяжении десятилетий. Ключевыми достижениями являются:
Уже прослежены отдаленные результаты оперативных вмешательств (давностью до 8 лет).
Технологии донорства органов
После пересадки от одного человека другому органы приживаются не всегда. Например, почки остаются только в 75% случаев.
С помощью редактирования генома наука создала CAR-T-клетки, которые подавляют иммунный ответ организма и позволяют приживаться практически любому органу. Так стала возможна аллотрансплантация — пересадка органов иммунологически несхожему организму.
Технологии протезирования
Регенеративная медицина может не только создавать полноценные искусственные протезы некоторых хрящей и суставов, сосудов, полостных органов, но и выращивать их внутри организма.
Активно применяются следующие аутологичные регенеративные концентраты:
Введение данных веществ через небольшой прокол (реже — надрез) к очагу поражения позволяет полностью восстановить разрушенные структуры. Уже возможно восстановление слуха (кохлеарный имплантат) и зрения (бионический глаз).
Переливание молодой крови и парабиоз
На рубеже XX в. ученые смогли соединить кровеносные системы 2 животных разного возраста (молодого и пожилого). Такую модель назвали гетерохроническим парабиозом. Через некоторое время возрастная особь стала более активной, продолжительность ее жизни увеличилась.
Переливание плазмы человека мышам приводит не только к увеличению продолжительности их жизни, но и к снижению частоты нейродегенеративных заболеваний и патологий опорно-двигательного аппарата. Направление считается молодым в науке, в скором времени возможны новые открытия.
Компания Ambrosia
Компания-стартап Ambrosia недавно применила явление парабиоза на практике. В ходе исследования лицам до 25 лет переливали плазму крови людей старше 35 лет. У некоторых испытуемых было зафиксировано снижение темпов или исчезновение некоторых признаков старения. Специалисты практиковали и введение их собственной пуповинной крови.
В начале 2019 года FDA выпустила пресс-релиз, где высказала обеспокоенность в отношении использования данного метода. Ambrosia прекратила свою деятельность.
Стартап Elevian
Проект Elevian занимался продлением молодости. Специалисты подошли к долголетию с научно обоснованной точки зрения. Ученые выделили молекулу GDF-11 у молодых мышей. После введения данного компонента в кровь возрастных грызунов отмечалось восстановление поврежденных тканей сердечной мышцы, центральной нервной системы, легких и почек. Ученые ставят перед собой задачу восстановить естественную способность организма человека к регенерации, которая была эволюционно утрачена.
Вопрос о безопасности новых технологий
Регенеративная терапия — это метод лечения высокого риска. Направление слишком молодое, чтобы говорить не только о его эффективности, но и о безопасности для здоровья и жизни. История развития фармакологии показала, что ошибки при разработке лекарств могут проявиться даже через десятилетия. Бурно развивающейся отрасли нужно минимум 25-30 лет, чтобы оценить эффективность и безопасность.
Ограничения и запреты
Выделяют 2 типа стволовых клеток:
Взрослые клетки эффективны в целях терапии рака и заболеваний крови, но имеются в организме в ограниченном количестве. Их сложно изъять, а сама процедура имеет ряд сложностей. Самый ценный источник стволовых клеток — эмбрионы (абортированные или на ранней стадии развития). Однако юридические и моральные аспекты запрещают подобную практику в большинстве стран.
Перспективы лечения стволовыми клетками
Регенеративная медицина помогла вылечить детей от лейкоза, эффективно побороть гемофилию, восполнить посттравматические дефекты или нарушения развития органов. Уже сегодня проводятся операции по пластике половых органов, восстановлению сенсорных функций, устранению нарушений функций сердца.
Ученые ставят перед собой практически непреодолимую цель — сделать человека здоровым и бессмертным, избавить его от физических и моральных страданий.
Прогнозы на ближайшее будущее
Сперва ученые пытались внедрять стволовые клетки напрямую в ткани для восстановления миокарда или регенерации центральной нервной системы. Затем начались оправданные вмешательства внутрь клетки и генома.
В ближайшие 5-10 лет регенеративная медицина будет развиваться опережающими темпами. Главное — обеспечить для этого единство научных подходов, инвестиций и государственных интересов, а также должное регулирование всех действий.
Клетки, которые лечат людей
Клетки, которые лечат людей
Уже сегодня есть клеточные средства терапии, которые доказали свою эффективность и рутинно применяются на практике. Рисунок в оригинальном разрешении.
Автор
Редакторы
Новостей о клеточной терапии становится всё больше. Мы много слышим о стволовых клетках, которые якобы помогают от множества болезней. Немного меньше — об успехах клеточной терапии в лечении редких наследственных и онкологических заболеваний. В рамках спецпроекта по генной и клеточной терапии разберемся, в каком состоянии сейчас находится эта область, какие тут применяются технологии, какие есть проблемы и успехи.
Генная и клеточная терапии
Спецпроект о генной и клеточной терапиях, тернистом пути их развития, первых успехах и надеждах, а также о сложностях регулирования, производства и изучения этих новейших методов лечения.
Партнер спецпроекта — Департамент разработки генотерапевтических препаратов одной из крупнейших российских биотехнологических компаний — BIOCAD. BIOCAD заслужил серьезные позиции на мировом фармацевтическом рынке благодаря выпуску лекарственных препаратов на основе антител.
Мы уже не раз писали [1], что клеточную и генную терапию можно рассматривать как третью волну лекарственных средств — после низкомолекулярных соединений и белковых биотехнологических препаратов. У каждого из этих «поколений» лекарств есть свои плюсы и минусы, поэтому сейчас они успешно сосуществуют и дополняют друг друга. Так, низкомолекулярные препараты относительно просты с точки зрения контроля производства, часто принимаются перорально, лучше распределяются в ткани за счет небольшого размера молекулы, но они зачастую не так избирательны, слишком быстро выводятся из организма и нередко обладают токсическим воздействием на печень, почки и другие органы.
Лекарства следующей волны — антитела и другие белки — гораздо более селективны, позволяют модулировать белок-белковые взаимодействия (что часто недоступно малым молекулам), дольше не выводятся из организма. С другой стороны, чаще всего это инъекционные препараты (и лечение ими сложнее); они хуже распределяются в ткани, чем низкомолекулярные вещества (и, например, почти совсем не попадают за гематоэнцефалический барьер ); и они гораздо сложнее с точки зрения производства и контроля качества [2].
Объяснения терминов, выделенных полужирным шрифтом, можно найти в «Словарике» в конце статьи.
Наконец, третья волна лекарств, к которым относятся клеточные и генные терапии, позволяют регулировать процессы в организме на новом уровне, действуя не на отдельные мишени [4], а изменяя генетическую последовательность, влияя на способы ее считывания или задействуя возможности целых клеток, такие как способность активироваться в ответ на внешние стимулы, мигрировать в нужные места, делиться и дифференцироваться. Конечно, это следующий шаг в сложности и дороговизне производства, но технологии не стоят на месте, и новая волна терапий постепенно прокладывает себе дорогу к пациентам. За деталями «эволюции» лекарств отсылаем читателя к материалу «Три поколения лекарств» [1].
В рамках спецпроекта «12 биологических методов в картинках» на «Биомолекуле» выходила статья о клеточных технологиях [5]. Из нее можно узнать об основных понятиях и методах в области работы с клетками, о клеточных культурах, о стволовых клетках и об их применении в биомедицине. Клеточные терапии, о которых пойдет речь в этой статье, — наверное, наиболее сложный из существующих сейчас видов лечения. Каждая клетка — уникальный живой объект, состоящий из миллионов и миллиардов молекул, постоянно изменяющийся во времени. В отличие от всех остальных лекарств, клеточные препараты обладают обратной связью: из них можно даже делать своего рода логические элементы: клетки, которые будут активироваться или, к примеру, выделять белки только в ответ на определенный стимул при отсутствии другого стимула. Расскажем подробнее о том, в какой части пути сейчас находятся клеточные терапии и какие у них перспективы.
Виды клеточных терапий
Как уже говорилось раньше [1], в каком-то смысле и переливание крови можно считать клеточной терапией, но современная история начинается с трансплантации стволовых клеток костного мозга. В 1950-х годах обнаружили, что эта процедура способна помочь при большинстве онкогематологических заболеваний и при ряде наследственных болезней. С помощью химиотерапии научились уничтожать клетки костного мозга пациента, а затем восстанавливать их популяцию за счет пересаженных клеток.
Лучших результатов чаще удается достичь при помощи аллогенной трансплантации, когда пересадка происходит от донора. Другой метод — аутологичная трансплантация, когда клетки забирают у самого пациента. Однако генетические заболевания так не вылечить, потому что все клетки пациента содержат один и тот же генетический дефект, а при онкогематологических чаще происходит рецидив, потому что в аутологичном материале могут остаться опухолевые клетки. C другой стороны, аллогенная трансплантация предъявляет очень строгие требования к донорскому материалу, чтобы не возникло отторжения в форме смертельно опасной реакции «трансплантат против хозяина» (РТПХ), при которой пересаженные иммунные клетки атакуют организм реципиента.
Иммунологическая совместимость
Для этого донор и реципиент должны быть совместимы по так называемым человеческим лейкоцитарным антигенам (Human Leukocyte Antigens, HLA). Эти белки выставляются на поверхности многих клеток организма и играют важнейшую роль в функционировании иммунной системы. Из-за своей роли при трансплантации органов они также получили название главного комплекса гистосовместимости (Major Histocompatibility Complex, MHC). Набор этих белков очень велик, и вероятность того, что они совпадут у двух неродственных людей, крайне мала. Именно поэтому идеальные доноры — близнецы, дальше по степени убывания идут родные братья и сестры, другие родственники, неродственные доноры с совпадающими HLA.
Возможность отбирать клетки, культивировать их перед введением пациенту, воздействовать на них низкомолекулярными и белковыми факторами, а потом и модифицировать их генетически открыла путь к созданию гибких и эффективных средств терапии, которые сейчас постепенно завоевывают всё больше ниш.
Когда речь идет о клеточной терапии, мы в основном говорим о технологиях, использующих клетки с той или иной степенью стволовости (то есть способные делиться и дальше). Терминально дифференцированные клетки, используемые для лечения, — это упомянутое выше переливание крови, кожные графты для лечения ожогов и ран. Этих технологий мы дальше в статье касаться не будем.
Мезенхимальные стволовые клетки (МСК) впервые были применены у человека более 20 лет назад [6]. Исследователи продемонстрировали возможность отбора, размножения ex vivo и введения обратно пациентам с онкогематологическими заболеваниями мезенхимальных стволовых клеток костного мозга [7]. Помимо костного мозга, их выделяют, например, из жировой ткани, пуповины, зубной пульпы. Иммуномодулирующие, противовоспалительные, ангиогенные (способствующие росту сосудов) и антиапоптотические свойства МСК вселяют надежду, что их удастся использовать в терапевтических целях, и они изучаются в сотнях клинических исследований. Однако ряд КИ уже провалился, не достигнув первичной конечной точки, что несколько охладило энтузиазм ученых. На настоящий момент в США не зарегистрирован ни один препарат на основе МСК, в ЕС это Alofisel (компании TiGenix/Takeda) для лечения анальных фистул при болезни Крона, в Канаде — Prochymal (компания Osiris) для лечения реакции «трансплантат против хозяина».
Плюрипотентные стволовые клетки (которые получают из эмбрионов) пытались долгое время приспособить для регенерации различных органов — например, сетчатки, спинного мозга, миокарда, поджелудочной железы при диабете 1 типа. Эти клетки выделяют из пуповинной крови, они обладают неограниченным потенциалом деления и теоретически могут дифференцироваться в клетки любого типа. Однако для них характерен ряд проблем: есть риск образования опухолей, существует этическая проблема получения материала из эмбрионов, а также риск генетической нестабильности. Более перспективен подход на основе индуцированных плюрипотентных стволовых клеток (ИПСК), про которые мы поговорим ниже.
Упомянутая ранее трансплантация стволовых клеток костного мозга проводится с гемопоэтическими (кроветворными) стволовыми клетками (ГСК, или HSC — hematopoietic stem cells). Это клетки, дающие начало всем клеткам крови: эритроцитам, тромбоцитам, лимфоцитам и другим [8]. Опыт, наработанный при трансплантации стволовых клеток, позволил создать методы их модификации ex vivo, то есть вне организма пациента. Модификация проводится, как правило, с помощью вирусов, меняющих геном клетки, или с помощью средств геномного редактирования: CRISPR/Cas9, TALENs, ZFNs и более новых (об их применении к технологии CAR-T «Биомолекула» уже писала [9]). В случае редких генетических заболеваний модификации подвергаются ГСК пациента, и в них исправляется генетический дефект. Затем клетки вводятся обратно пациенту и дают начало клонам клеток крови, способным к нормальному функционированию. О примерах подобной терапии подробнее говорилось в первой статье спецпроекта: «Генная терапия: познакомьтесь с лекарствами будущего» [10]. CAR-T и их аналоги, о которых в основном дальше пойдет речь, — это незрелые Т-лимфоциты, способные к множеству циклов деления, миграции в соответствующие места («ниши») и дальнейшей дифференциации, поэтому они тоже относятся к стволовым клеткам.
Стволовые клетки другого происхождения также применяются в некоторых нишевых показаниях — в основном для восстановления поврежденных органов. Так, аутологичные предшественники хондроцитов (Spherox компании co.don) используются для лечения дефектов хряща, а стволовые клетки роговицы (Holoclair компании Holostem) — для лечения ожогов глаз.
CAR-T — это Т-лимфоциты с химерным антигенным рецептором. На «Биомолекуле» выходил подробный обзор про их структуру, получение и применение: «Способны ли CAR-T-клетки уничтожить опухоль?» [11], поэтому здесь мы кратко повторим только основные вещи.
Рисунок 1. CAR-T и TCR: общее и различное. На картинке изображен фрагмент мембраны Т-лимфоцита, который сблизился с опухолевой клеткой. Слева: Т-клеточный рецептор (TCR) — комплекс из нескольких трансмембранных белков. Внеклеточная часть TCR узнает комплекс из антигенного пептида и белка МНС на поверхности клетки, с которой сблизился Т-лимфоцит. После связывания сигнал через вспомогательные белки передается на CD3ζ (CD3-дзета). Он несет несколько активирующих аминокислотных мотивов (immunoreceptor tyrosine-based activation motif, ITAM), передающих сигнал дальше в клетку. Справа: Химерный антигенный рецептор (CAR), внеклеточная часть которого образована фрагментом антитела, состоящим из вариабельных доменов VL и VH и распознающим поверхностный антиген на опухолевой клетке. Внутри у CAR — сигнальный домен обычного TCR (CD3ζ).
Обычные Т-лимфоциты несут на поверхности Т-клеточный рецептор (TCR): сложный комплекс мембранных белков, обеспечивающих узнавание Т-клеткой антигена, к которому она специфична, на поверхности другой клетки. Каждая Т-клетка узнает с высокой специфичностью только один антиген, причем Т-клеточный рецептор «стыкуется» с молекулой MHC на поверхности другой клетки, распознавая при этом «закрепленный» в МНС пептид, против которого и специфична Т-клетка. Ученые говорят, что происходит распознавание пептида «в контексте» МНС. Если пептид распознан, то Т-клетка активируется и, в зависимости от типа клетки, либо убивает другую клетку (цитотоксический Т-лимфоцит, или Т-киллер, или CTL, или CD8-клетка), либо выделяет вещества (цитокины), способствующие антительному иммунному ответу и активации других клеток иммунной системы (Т-хелпер, или Th, или CD4-клетка). В CAR-T генноинженерными методами (теми самыми вирусами или средствами геномного редактирования, о которых говорилось в первой статье спецпроекта [10]) вставлен ген химерного рецептора. Он называется химерным, потому что он искусственно составлен из фрагментов двух разных белков: снаружи у него антительный фрагмент, узнающий белок на поверхности раковой клетки (VL-VH на рис. 1), а внутри — активирующие клетку белковые домены (CD3ζ-ITAM там же).
Сейчас зарегистрированы три CAR-T-продукта второго поколения: Kymriah, Yescarta и в июле 2020 года — Tecartus (о первых двух мы уже рассказывали [10]). Все они узнают белок CD19 на поверхности клеток крови и предназначены для лечения В-клеточных лимфом и лейкемий, при которых бласты (злокачественные трансформированные клетки крови) зачастую несут этот маркер. Эти продукты произвели революцию в лечении тяжелых форм онкогематологических заболеваний, давая надежду таким пациентам, у которых раньше ее не было. Теперь же у 30–40% пациентов, даже исчерпавших все опции терапии и перенесших трансплантацию костного мозга, наблюдаются долговременные ответы (онкологи всё еще осторожно предпочитают не использовать слово «излечение», а в англоязычном мире даже суеверно говорят «с-word», чтобы только не употребить cure).
Первые эксперименты проводились с CAR’ами первого поколения, содержащими только активирующий домен обычного TCR (он называется CD3ζ, или CD3-дзета). Этого оказалось недостаточно для противоопухолевой активности, поэтому к внутриклеточной части химеры стали добавлять стимулирующие домены от других рецепторов (CD28, 4-1BB) (рис. 2) [12].
Рисунок 2. Поколения CAR-T. У CAR-T первого поколения имелся только один внутриклеточный активирующий домен — CD3ζ. CAR-T второго поколения дополнительно содержат один костимулирующий домен, третьего — два. Все зарегистрированные на рынке продукты относятся ко второму поколению, преимущества третьего в клинике пока не продемонстрированы. CAR-T четвертого поколения обеспечивают дополнительную экспрессию генов активирующих цитокинов (IL-12, IL-18, IL-15) Т-клетками, а CAR-T пятого поколения — одновременную инактивацию гена TRAC, отвечающего за синтез одной из цепей TCR.
CAR-T четвертого и пятого поколений имеют дополнительные модификации, призванные повысить эффективность и безопасность конструкций. После введения в организм (о том, как их получают, см. ниже) они способны размножаться, уничтожать клетки с целевым белком на поверхности и длительное время находиться в организме (в том числе, в костном мозге), формируя иммунологическую память, что должно предотвращать рецидивы. От костимуляторных доменов зависит способность к сопротивлению иммуносупрессорному микроокружению опухоли и к развитию Т-клеток памяти, уровень сигналинга в отсутствие антигена, персистентность [13].
О роли клеточных ниш и структуре микроокружения опухолей можно прочесть в статье «Опухолевые разговоры, или Роль микроокружения в развитии рака» [14].
Однако у CAR-T есть ряд проблем, которые заставляют модифицировать существующие подходы и выдумывать новые. Во-первых, у всех трех зарегистрированных препаратов высокий уровень серьезных нежелательных явлений, которые могут быть даже фатальными: в первую очередь это цитокиновый шторм и нейротоксичность. Связывание CAR с антигеном вызывает активацию и размножение CAR-T-клеток. Они могут быть избыточными и приводить к излишней активации врожденного иммунитета, выбросу воспалительных цитокинов (прежде всего IL-6) — отсюда название «цитокиновый шторм», — что в тяжелых случаях приводит к полиорганной недостаточности и смерти. В некоторых случаях нарушается гематоэнцефалический барьер, что приводит к нейротоксичности. В ранних исследованиях CAR-T нередки были случаи смерти от этих осложнений. Сейчас их научились лечить, однако всё равно это опасно.
Во-вторых, у части пациентов развивается CD19-отрицательный рецидив (появляются злокачественные клетки, не несущие на поверхности маркер CD19, с которым связывается CAR-рецептор на поверхности CAR-T).
Ну и, в-третьих, несмотря на многочисленные попытки создать CAR-T с другой специфичностью, в особенности для лечения сóлидных опухолей, они пока не возымели успеха. Возможно, в ближайшее время будет зарегистрирован новый CAR-T-продукт, специфичный против BCMA — маркера на поверхности клеток множественной миеломы. Однако это тоже онкогематологическое заболевание. О причинах неудач в солидных опухолях и способах с ними справиться мы поговорим ниже.
Рисунок 3. Схема получения CAR-T. Т-лимфоциты извлекают у пациента (в случае аутологичных CAR-T) или у здорового донора (в случае аллогенных), модифицируют их гéном, кодирующим CAR (см. рис. 1; это делается с помощью вирусных или невирусных систем доставки гена в клетку — векторов). Полученные клетки размножают и активируют, а затем вводят пациенту, где они начинают бороться с опухолью.
Пути решения проблем
Безопасность
Для повышения безопасности CAR-T разрабатывают новые подходы, которые обеспечивали бы такую же активность Т-клеток в отношении опухолей, как у зарегистрированных продуктов, но не приводили бы к цитокиновому шторму и нейротоксичности.
У обычных CAR-T химерный рецептор активен постоянно, что может приводить к избыточной активации клеток там и тогда, когда это не нужно. Возникла гипотеза, что модуляция активности CAR-T в пространстве и времени могла бы снизить токсичность без ущерба для эффективности. Один из примеров такого подхода — присоединение к CAR-рецептору метки для деградации, которая инактивируется малой молекулой. Состояние по умолчанию для такой конструкции — выключенное, а при добавлении малой молекулы на поверхности Т-лимфоцита появляется активный CAR.
Повысить специфичность, а, следовательно, и безопасность CAR-T можно с помощью логического элемента AND-NOT. Речь идет о том, чтобы помимо CAR экспонировать на поверхности Т-лимфоцита ингибирующий рецептор, лиганд которого присутствует преимущественно на здоровых клетках: тогда здоровые клетки не пострадают от контакта с CAR-T. Так, была создана Т-клетка, у которой транзиентная (то есть непостоянная, проходящая) презентация CAR на поверхности начинается только после связывания еще одного рецептора (EGFRvIII в данном случае) с опухолевым антигеном и транслокации транскрипционного фактора в ядро [15]. Так удается добиться исключительно локальной экспрессии гена CAR и избежать уничтожения нормальных клеток, несущих мишень CAR. Кроме того, уничтожаются не только те клетки, которые вызывают активацию Т-лимфоцитов, но и EGFRvIII-негативные клетки — главное, чтобы на поверхности была мишень CAR. Это должно снизить вероятность резистентности опухоли.
Другой способ обеспечения безопасности — введение генов, которые позволят уничтожить CAR-T в случае их избыточной активации. Так, введение гена индуцируемой каспазы-9 позволило уничтожить более 90% химерных клеток в течение 30 минут при введении низкомолекулярного индуктора. Есть подходы на основе выставления на клетках рецепторов CD20 или EGFR, против которых есть антитела (ритуксимаб, цетуксимаб), уничтожающие клетки с такими поверхностными маркерами.
Порой увеличения безопасности удается добиться просто изменением свойств внеклеточной части химерного рецептора. Так, компания Autolus взяла за основу Kymriah, но заменила антиген-связывающий домен [16]. Домен Autolus связывается с CD19 c такой же скоростью, как у Kymriah, но гораздо быстрее отсоединяется. За счет этого удалось добиться почти полного отсутствия серьезного цитокинового шторма и нейротоксичности.
Кроме цитокинового шторма и нейротоксичности важный аспект безопасности — необходимость проводить деплецию собственных клеток костного мозга пациента для лучшего «приживления» CAR-T. Эта процедура называется прекондиционированием, и для нее используют цитотоксические препараты, такие как бусульфан, циклофосфамид, флударабин. Они токсичны и часто плохо переносятся пациентами, и некоторым из-за этого приходится вообще отказывать в процедуре. Поэтому любые модификации клеток и методов, которые позволяют избежать прекондиционирования или хотя бы снизить дозу, весьма востребованы [17].
Эффективность
Несмотря на довольно высокую эффективность анти-CD19 CAR-T, улучшения возможны и в области терапии онкогематологических заболеваний. Не у всех пациентов наблюдаются долговременные ответы: часть не отвечает на терапию сразу, у других со временем развивается рецидив — чаще всего из-за потери злокачественными клетками антигена CD19. Чтобы справиться с этой проблемой, разрабатывают CAR-T двойной специфичности: например, CD19/CD20 или CD19/CD22, которые должны снизить вероятность появления резистентности.
Еще одна причина резистентности к терапии CAR-T — иммунный ответ на внеклеточную часть CAR, которая является чужеродным белком для организма пациента. Особенно вероятен иммунный ответ, если внеклеточный домен мышиного происхождения. Сейчас для решения этой проблемы чаще всего используют технологии гуманизации, описанные в статье «Биотехнология антител» [2].
Проблема сóлидных опухолей
Как упоминалось выше, в терапии солидных опухолей CAR-T пока не удалось добиться успеха, в отличие от онкогематологических заболеваний. Рассмотрим причины этого и возможные пути решения.
Для проникновения Т-лимфоцитов в солидные опухоли и проявления там противоопухолевой активности существуют как механические, так и иммунологические препятствия. Сóлидные (ударение на первый слог) опухоли так называются потому, что чаще всего это плотные образования — опухолевая строма, состоящая как из злокачественных клеток, так и из поддерживающих клеток, в том числе, иммунного характера. Помимо того, что Т-лимфоцитам трудно проникнуть в опухоль и подобраться к злокачественным клеткам, на их пути возникают иммуносупрессорные барьеры, обеспечивающие активную защиту злокачественного образования. Опухоль коварно ставит ряд клеток иммунной системы себе на службу — так, регуляторные Т-клетки (Treg) и миелоидные супрессоры (myeloid derived supressor cells, MDSC) выделяют противовоспалительные и иммуносупрессорные медиаторы, такие как IL-10, TGFβ и другие, подавляющие активность CAR-T. На поверхности опухолевых клеток экспонируются рецепторы, снижающие активность Т-клеток, например, PD-L1 — один из рецепторов иммунных контрольных точек (immune checkpoint). Кстати, за антитела против рецепторов иммунных контрольных точек PD-1 и CTLA-4 [18], которые совершили революцию в иммуноонкологии, в 2018 году дали Нобелевскую премию [19].
Опухолевое микроокружение формирует у клеток характерную иммуносупрессорную метаболическую картину. Всё это приводит к так называемому истощению Т-клеток (T-cell exhaustion). Истощенные Т-клетки не способны эффективно уничтожать опухоль, и срок их жизни короче, чем у нормальных активных Т-лимфоцитов.
Довольно остроумный способ заставить микроокружение опухоли работать на CAR-T — введение в них дополнительных химерных рецепторов, которые в ответ на воздействие иммуносупрессорных цитокинов IL-10, IL-13, IL-4 не подавляли бы активность Т-клетки, а, наоборот, стимулировали ее. Для этого создают химерный рецептор (не CAR, а другой), у которого внеклеточная часть связывает цитокин, а внутриклеточная заменяется на активаторные домены рецептора IL-2/IL-15 [20].
Вообще, Т-лимфоциты инфильтрируют не все опухоли — так, при карциноме поджелудочной железы опухоль часто полностью исключает их из стромы, и они скапливаются снаружи. Такие опухоли называют «холодными» в противовес «горячим», где лимфоцитов много. Сейчас разрабатываются иммуноонкологические подходы, позволяющие переводить опухоли из холодных в горячие.
Итак, необходимы специальные ухищрения, чтобы заставить Т-клетки работать в опухоли. С CAR-T это пока получается сделать только у животных, но не у человека, что поднимает вопрос о валидности и предиктивной силе существующих животных моделей.
Например, в разработке находятся такие подходы, как удаление с поверхности ингибирующих рецепторов (к примеру PD-1). Другой подход — перепрограммирование клеточного метаболизма. От того, как клетка использует питательные вещества, зависят ее активность и фенотип, который она приобретет. Так, окислительный распад жирных кислот соответствует фенотипу клеток центральной памяти (Tcm), а аэробный гликолиз — фенотипу клеток-эффекторов памяти (Tem). CAR-T после введения в организм распределяются по степени дифференциации, которая влияет на их эффективность и продолжительность существования. Дело в том, что, дифференцируясь и теряя стволовость, Т-лимфоциты становятся всё более активными с точки зрения уничтожения злокачественных клеток, но и всё менее долгоживущими, теряя способность к пролиферации и образованию клеток памяти. Важно найти правильный баланс между наиболее активными фенотипами Т-клеток — Te и Tem (эффекторы и эффекторы памяти), и более стволовыми Tn (наивные), Tscm (stem-cell memory — стволовые клетки памяти), Tcm (центральной памяти) (рис. 4) [21].
Рисунок 4. По мере дифференцировки у Т-клеток усиливается эффекторная функция, но ослабевает функция памяти. Наивные Т-клетки — это те, которые еще не встречались со своим антигеном. После встречи с антигеном Т-лимфоцит активируется, делится и образует различные субпопуляции клеток разного назначения. Стволовые Т-клетки памяти (Tscm) и центральные Т-клетки памяти (Tcm) не самые эффективные с точки зрения борьбы с опухолями и патогенами, но они способны к самообновлению и поддержанию популяции активных клеток с высоким стволовым потенциалом. Самые активные — эффекторные Т-клетки памяти (Tem) и особенно эффекторные клетки. Последние терминально дифференцированы и не способны к самообновлению и пополнению пула клеток памяти. Тканевые резидентные Т-клетки памяти (Trm) формируются из Tcm и Tem и представляют собой долгоживущую популяцию Т-клеток, которые активируются при повторной встрече с патогеном в барьерных тканях.
Ученые тратят довольно много усилий для оптимизации фенотипического состава клеток, в частности, важную роль играет IL-15, отвечающий за поддержание стволового потенциала клеток. Не менее важно и правильное сочетание CD4 (T-хелперы) и CD8 (цитотоксические Т-лимфоциты), а также более мелкие фенотипические детали (не вдаваясь в подробности, можно упомянуть, что Т-хелперы 1 типа (Th1) более эффективны в поддержании противоопухолевого иммунитета, чем Th2).
На рисунке 5 представлены другие стратегии увеличения времени присутствия в организме (персистентности) CAR-T [17].
Проблемы производства
Как уже было сказано, основная проблема аутологичных клеток (см. схему их получения на рис. 3) — это индивидуализированность терапии, когда лекарственный продукт получают в единственном экземпляре для одного человека. Понятно, что никаких производственных мощностей не хватит, чтобы лечить аутологичным методом более распространенные болезни. Аутологичная терапия — наиболее персонализированный метод лечения, поэтому лекарства третьего поколения пока подходят ничтожной доле всех больных. Время получения такого продукта — не менее трех недель, и некоторые пациенты с быстро прогрессирующими опухолями просто не могут столько ждать. А у некоторых пациентов продукт не удается создать, потому что в их крови может не хватать Т-лимфоцитов. В итоге, от 5 до 30% пациентов не получают эту терапию, хотя могли бы [22].
Поэтому большие надежды возлагаются на аллогенные методы терапии (рис. 6), которые позволяют на основе донорского материала получить продукт сразу для сотен пациентов. Его называют off the shelf, то есть «с полки».
Рисунок 6. Сравнение аутологичного и аллогенного методов получения CAR-T. При аутологичном методе получения клетки отбирают у пациента, генетически модифицируют их так, чтобы они синтезировали CAR, а потом вводят обратно пациенту. При аллогенном методе ген, кодирующий CAR, вводят в Т-лимфоциты здорового донора. При этом нужно «отключить» TCR, чтобы снизить вероятность РТПХ.
Тут есть две главные проблемы:
Первую проблему, скорее всего, удастся решить с помощью инактивации гена, кодирующего обычный TCR. Именно взаимодействие TCR донорских клеток с МНС чужеродных клеток хозяина отвечает за развитие РТПХ. Вторую проблему все разработчики решают по-разному, и пока прошло недостаточно времени, чтобы можно было уверенно говорить о превосходстве того или иного подхода, хотя первые успехи уже имеются (см. врезку).
Аллогенные успехи
Аллогенная конструкция, разработанная компанией Cellectis, содержит сразу несколько модификаций: вставку гена, кодирующего CAR; удаление TCR; удаление CD52 (это нужно для того, чтобы применение анти-CD52 антитела при лимфодеплеции не затрагивало CAR-T); вставку доменов распознавания ритуксимаба для уничтожения CAR-T, если что-то пойдет не так. Эти клетки в клиническом исследовании фазы I не показали нейротоксичности и РТПХ, наблюдался низкий уровень цитокинового шторма. У 37% пациентов наблюдался полный ответ на терапию (исчезновение злокачественных клеток). Персистенция клеток коррелировала с уровнем ответов (ответом в онкологии называется значительное снижение опухолевой нагрузки вследствие терапии): у тех пациентов, кто ответил полностью, клетки циркулировали в среднем 56 дней.
Важное преимущество аллогенного подхода — клетки можно дозировать много раз, в отличие от аутологичных CAR-T, где для получения новой дозы для каждого пациента придется снова проводить процедуру сбора клеток и генно-инженерные манипуляции.
CAR-T за пределами онкологии
Поскольку Т-клетки, помимо уничтожения опухолей, играют ключевую роль в контроле инфекций и развитии аутоиммунных заболеваний [23], естественно, предпринимаются усилия, чтобы поставить их на службу и для лечения этих болезней. Так, было довольно много попыток создать CAR-T для борьбы с ВИЧ, однако ни одна из них пока успехом не увенчалась — главным образом, из-за слишком короткого времени присутствия клеток в организме [24].
На доклинической стадии находятся CAR-T-клетки против ряда других вирусных заболеваний: гепатита В и С, цитомегаловируса, а также против грибковых инфекций [24]. У людей с хроническими вирусными инфекциями Т-клетки, которые должны бороться с вирусом, убивая зараженные им клетки, малочисленны и истощены. Поэтому вполне логично выглядит идея создания CAR-T, «настроенных» против вирусных антигенов: они всегда активны и по идее должны обеспечивать эффективное уничтожение зараженных вирусами клеток и формирование иммунологической памяти [24].
Применение CAR-T для аутоиммунных заболеваний только входит в клинические исследования, и данных пока нет. Однако эксперименты на животных обнадеживают: подобно уничтожению лейкемических клеток В-клеточной природы, CAR-T способны уничтожать аутоиммунные В-клетки, продуцирующие антитела против собственных антигенов организма [25] (об этой работе «Биомолекула» уже писала [26]). Другая идея — модифицировать регуляторные Т-клетки таким образом, чтобы поставить их себе на службу. Введение Treg при аутоиммунных заболеваниях не раз уже проваливалось в клинике, в частности, в исследованиях по рассеянному склерозу и РТПХ. Но есть надежда, что какие-то генно-инженерные модификации смогут повысить проникновение Treg в целевые органы, увеличить их персистентность и ингибирующую активность.
Не CAR-T, но тоже клеточные убийцы опухолей
Недостатки обычных CAR-T привели к мысли использовать для клеточной терапии опухолей другие платформы (не Т-лимфоциты): например, опухоль-инфильтрирующие лимфоциты (tumor infiltrating lymphocytes, TILs — см. врезку), натуральные киллеры (NK) или γδT-клетки.
TILs: успех в солидных опухолях
Первых успехов в терапии солидных опухолей удалось добиться с помощью клеточных технологий, не относящихся к CAR-T. Так, хорошие результаты в терапии рака яичника, меланомы и рака легкого показали так называемые аутологичные TILs (tumor infiltrating lymphocytes, опухоль-инфильтрирующие лимфоциты). Это клетки пациента, выделенные из опухоли, размноженные ex vivo и активированные, например, IL-2 (цитокин, который повышает противоопухолевые свойства Т-клеток). Такими экспериментами еще в 1980-х годах начала заниматься лаборатория Стивена Розенберга (мы подробнее писали об этом в первой статье спецпроекта: «Генная терапия: познакомьтесь с лекарствами будущего» [10]). Однако, несмотря на отдельные успехи в меланоме, эта технология не стала массовой и общепринятой: производство клеток было слишком сложным и нестабильным, продукт получался разного качества и из-за этого не оптимальным.
Только за последние годы компании Iovance удалось создать стандартизованную автоматизированную систему производства таких клеток, добиться успеха в качественном клиническом исследовании и вплотную приблизиться к одобрению FDA. Потенциальное преимущество TILs над CAR-T — их поликлональность. В то время как CAR-T направлены на один (ну, может быть, несколько) антигенов, TILs содержат широкий набор Т-лимфоцитов, специфичных против опухолевых антигенов конкретного пациента.
Далеко не всем известные γδT-клетки занимают небольшую долю во всем множестве Т-лимфоцитов. Хотя эти клетки по своим поверхностным маркерам и происхождению определенно относятся к Т-клеткам, они обладают чертами клеток врожденного иммунитета (например, подобно NK-клеткам, они имеют рецептор NKG2D). γδT-клетки проявляют селективную цитотоксичность по отношению к опухоли, синтезируют провоспалительные цитокины IFN-γ и TNF-α. Механизм их селективности к опухоли до конца не ясен. Предположительно, они реагируют на антигены, которые клетки экспонируют в результате стресса, и которые встречаются на многих злокачественных клетках [20]. Однако несмотря на свои многообещающие свойства, эти клетки пока не продвинулись дальше исследований первой фазы. В частности, их довольно трудно получать.
NK-клетки, как и Т-клетки, подвержены ингибирующему воздействию опухолевого микроокружения. В попытках создать NK, устойчивые к нему, вводятся различные модификации: CAR-NK, несущие химерный рецептор для распознавания конкретного антигена; или NK, синтезирующие IL-15 для повышенной активации и персистентности клеток. Именно в этой области нашла применение технология индуцированных плюрипотентных стволовых клеток (ИПСК), которую мы упоминали выше. Компании Fate Therapeutics удалось создать линию ИПСК, из которой она теперь с успехом получает как NK, так и T-клетки. Пожалуй, это самая продвинутая разработка на основе ИПСК с наибольшим опытом применения у людей: четыре программы уже находятся в клинических исследованиях на десятках людей, получены первые обнадеживающие данные по безопасности и эффективности.
Нельзя здесь не упомянуть о дендритных клетках (ДК), так как первой одобренной клеточной терапией рака стал сипулейцел-Т: дендритные клетки пациента, инкубированные ex vivo c химерным белком, состоящим из антигена РАР, характерного для рака простаты, и GM-CSF — цитокина, способствующего созреванию ДК. Идея была в том, что ДК будут презентировать фрагменты РАР Т-лимфоцитам, и те атаковать опухоль. После ряда неудач компании всё-таки удалось провести формально успешное исследование фазы III, которое показало увеличение медианной выживаемости на четыре месяца. Сипулейцел-Т был зарегистрирован FDA в 2010 году, однако из-за небольшого спроса, сложности и дороговизны производства компания, которая разработала продукт, обанкротилась. Другие разработки на основе ДК также пока не увенчались успехом.
Что нас ждет?
В настоящий момент клеточные технологии, как и генные [10], с одной стороны, переживают бум, но с другой — всё еще находятся в колыбели. В предыдущей статье спецпроекта мы видели, сколько у них сложностей в производстве [27], однако это решаемые задачи технического характера.
По мере прогресса перед клетками будут открываться всё новые и новые возможности терапии, ведь кому, как не им «знать», как лучше реагировать на меняющуюся среду внутри организма и помогать его излечению. Нам же нужно их правильно модифицировать.
Нынешнее состояние клеточной терапии можно сравнить с ранними годами авиации, когда самолеты были простыми, неуклюжими и падали через раз, но уже тогда на них можно было перелететь через Атлантику. Теперь же мы летаем на «Боингах», сложность которых трудно себе вообразить, и этот прогресс занял не так уж много времени. Надеемся, аналогичное развитие ждет и клеточные технологии.
Мнение эксперта
Интервью Павла Гершовича «Биомолекуле»
Рисунок 7. Павел Гершович
Павел Гершович — директор Департамента разработки генотерапевтических препаратов компании BIOCAD, кандидат биологических наук, и.о. директора Научно-образовательного центра технологии рекомбинантных белков СПХФУ.
В компании BIOCAD Павел курирует работу по созданию генной терапии для лечения гемофилии, спинальной мышечной атрофии и других тяжелых наследственных заболеваний.
«БМ»: Расскажите, пожалуйста, какие улучшения базовой технологии CAR-T второго поколения вы считаете наиболее перспективными?
ПГ: На мой взгляд, наиболее перспективные улучшения лежат не в плоскости инженерии самих химерных антигенных рецепторов. На текущий момент создано множество различных вариаций в их конструкции, комбинации и экспрессии дополнительных элементов. Однако это не позволило сместить парадигму CAR-T в направлении создания терапии следующего поколения. Я уверен, что наиболее значительным улучшением базовой технологии сегодня является использование в качестве носителей химерных антигенных рецепторов клеток натуральных киллеров, полученных из пуповинной крови. Доктор Резвани и ее команда из MD Anderson cancer center разработали технологию получения CAR-NK-клеток. Значительно бóльшая продуктивность процесса получения и аллогенные свойства CAR-NK-терапии, доказанные в клинических исследованиях, позволяют надеяться, что именно это открытие позволит сделать этот вид терапии более доступным для пациентов.
«БМ»: Есть ли у вас (планируются ли) разработки аллогенных клеточных продуктов? Какие наиболее перспективные области вы видите для таких продуктов?
ПГ: В настоящее время в компании «Биокад» нет проектов по разработке аутологичной или аллогенной CAR-T-терапии.
«БМ»: Как вы смотрите на перспективы применения CAR-T и других клеточных продуктов при солидных опухолях и за рамками онкологических заболеваний? Какие технологии в этом плане наиболее перспективны, по-вашему?
ПГ: Вынужден констатировать, что если в самом ближайшем будущем эффективная и безопасная CAR-T-терапия солидных опухолей не появится на рынке, это снизит шансы на то, что CAR-T смогут конкурировать с другими классами лекарственных препаратов в какой бы то ни было области. Если исследователям и компаниям, ведущим разработки в этой области, все же удастся совершить такой прорыв, то, возможно, следующей мишенью могут стать аутоиммунные заболевания, при которых уничтожение отдельных клонов иммунных клеток может привести к долгосрочной и стабильной ремиссии.
Материал предоставлен партнёром — Департаментом разработки генотерапевтических препаратов компании BIOCAD