лабораторный блок питания для чего нужен

ПРИМЕНЕНИЕ И УСТРОЙСТВО БЛОКОВ ПИТАНИЯ

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

В общем случае любой блок питания (БП) это прибор, который при подключении к электрической сети формирует необходимые для дальнейшего использования напряжение и ток.

Чаще всего такие устройства преобразуют переменный ток электрической сети общего пользования (

220В, частота 50 Гц.) в постоянный.

В таких блоках питания номинальные значения выходных параметров (напряжение, ток) обеспечиваются только при нормальных значениях входных электрических параметров и тока, потребляемого нагрузкой. Используются они для работы с устройствами, оснащенными собственными стабилизаторами.

В импульсных блоках питания переменное напряжение выпрямляется, а затем преобразуется в высокочастотные импульсы прямоугольной формы и заданной скважности.

Стабилизация в них обеспечивается применением отрицательной обратной связи, которая может быть организована как с помощью гальванической развязки от питающей цепи (трансформатор), так и путем подачи импульсов на фильтр низкой частоты.

В зависимости от колебаний сигнала обратной связи регулируется скважность выходных импульсов и таким образом поддерживается стабильность выходного напряжения.

Оба вида блоков в широком ассортименте представлены на отечественном рынке радиоэлектронной аппаратуры (РЭА). При этом большой популярностью пользуются универсальные БП, которыми оснащаются рабочие места работников предприятий, специализирующихся на производстве или ремонте РЭА. Имеются они и у каждого радиолюбителя.

УНИВЕРСАЛЬНЫЕ БЛОКИ ПИТАНИЯ

Универсальный БП — это надежный источник электропитания, обладающий стабильными выходными параметрами и имеющий двойной запас по мощности. На его передней панели в общем случае должны размещаться:

1. Стрелочные и цифровые измерительные приборы (вольтметр, амперметр). При этом: стрелочный даст возможность оценить динамические изменения контролируемых параметров; цифровой позволит с высокой точностью контролировать выходные характеристики БП.

2. Органы управления, с помощью которых регулируют выходные параметры в режимах «грубо» и «точно», индикатор режима работы, тумблер или клавишный выключатель питающей электросети.

Теоретически возможно, но практически нецелесообразно разработать и изготовить универсальный блок питания, который подойдет, как говорят, «на все случаи жизни». Такое устройство будет иметь огромные размеры и вес, а его стоимость превысит все допустимые пределы.

Поэтому современные универсальные источники вторичного напряжения классифицируются по мощности, по номинальному значению выходного напряжения и по количеству выходов питающего напряжения. Исходя из этих градаций и осуществляют выбор необходимого прибора.

Блок питания с регулировкой.

Одним из самых простых универсальных источников электропитания является регулируемый. Например, для начинающих радиолюбителей таким устройством может быть блок питания с током нагрузки в несколько ампер и позволяющий регулировать выходное напряжение в пределах от 1 до 36 В.

К нему можно подключить не только радиотехническое устройство или электродвигатель, но и автомобильный аккумулятор для зарядки.

В основе электрической схемы такого блока питания лежит мощный силовой трансформатор, а на выходе устанавливается мощный транзистор, установленный на теплоотводящий радиатор. Управляет транзистором специальная микросхема. Имеющиеся низкочастотные пульсации и высокочастотные шумы сглаживаются электролитическими конденсаторами большой емкости.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.

Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.

Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).

Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.

Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение

220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.

В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).

За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.

Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник

Лабораторные источники питания: особенности выбора

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Если театр начинается с вешалки, то каждая автоматизированная испытательная система, проверяющая радиотехнические устройства и радиоаппаратуру — уж точно с лабораторного стабилизированного источника питания.

Сегодня в статье раскладываем по полочкам: классификацию, конструктивные особенности, основные режимы и возможности блоков питания с регулировкой тока и напряжения. Рассмотрим матчасть и ответим на самые частые вопросы, которые возникают при выборе оптимального лабораторного блока питания (ЛБП), который снабжал бы вас чистым и стабильным питанием изо дня в день.

Итак, что такое ЛБП, для каких целей он служит.

Лабораторный источник питания – это электронное устройство, которое формирует и регулирует напряжение и ток, а при изменении напряжения питающей сети и сопротивления нагрузки, поддерживает заданные значения с высокой точностью. Один из видов источников вторичного электропитания (ИВЭП). Прибор оборудован экраном, кнопками, индикаторами, потенциометрами регулирования, защитными функциями от ошибочного включения и неправильного применения.

Абсолютно все лабораторные БП характеризуются по следующим признакам:

Типовые применения лабораторного источника питания

Источники питания применяются как для повседневных задач радиолюбителя, так и для точных производственных испытаний и измерений. Область применения источников питания обширна и связана с электроникой и радиотехникой. Типовые сферы использования:

Полное представление о задачах, для которых необходимо приобрести лабораторный источник питания поможет конкретизировать поиск и выбор оптимальной модели прибора.

Клиенты Суперайс могут выбрать в каталоге подходящую модель стабилизированного источника питания. В каталоге представлено более 140 моделей, каждый из образцов обладает определёнными преимуществами при решении конкретных задач.

При выборе руководствуются:

Рассмотрим подробнее основные технические характеристики источников питания, характеризующие эффективность устройства.

Основные рабочие характеристики

Состояние выходных характеристик при регулировании нагрузки отличается нестабильностью параметров тока и напряжения при необходимости изменить нагрузку тестируемого оборудования. На какие характеристики обращают внимание при выборе:

Грубая и точная регулировка, минимальный уровень шума, повышенные возможности при подключении смогут обеспечить оптимальный выбор прибора.

Стабилизированные ИП по характеру стабилизации: линейные и импульсные

Главный признак, характеризующий блок питания – это принцип его работы. Стабилизированные источники вторичного питания на полупроводниковых элементах по характеру стабилизации напряжения делятся на источники с непрерывным (линейным) и импульсным регулированием.

Основа линейного БП – понижающий низкочастотный трансформатор: изменяет напряжение сети до значения в несколько десятков вольт. Выпрямление напряжения производится за счет диодного моста сглаживанием синусоиды конденсаторами и заданием требуемого значения стабилизатором. Пример популярного линейного блока питания: трансформаторный БП с одним каналом YIHUA YH-305D (30 В, 5 А), эта модель способна выдавать мощность до 150 Вт.

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Главное в импульсном ИП – это конденсаторы со сглаживающим зарядом и импульсами тока, сформированными трансформаторной обмоткой или индуктивностью. В работе задействованы транзисторы. Частота формирования токовых импульсов. Напряжение регулируется глубиной ШИМ (широтно-импульсной модуляции). Пример мощного импульсного одноканального блока питания – MAISHENG MP3030D (30 В, 30 А). лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Более подробно о сравнении импульсных и линейных ИП мы уже написали в статье: Устройство, схемы и сравнение импульсных и линейных лабораторных блоков питания.

На какие особенности регулируемых блоков питания обращать внимание

Диапазон изменения тока и напряжения

Лабораторные настольные источники питания различаются пределами изменения выходных напряжений и тока. Различают два типа приборов, те, которые работают с фиксированными значениями и работающие с автоматическим ограничением мощности на выходе.

Фиксированным диапазоном отличаются ЛБП эконом-класса. Устройства выдают комбинацию напряжения и тока наибольшего значения по максимуму. Например, блок питания с одним каналом на напряжение 30 В и токе 10 А может поддерживать нагрузку (ток) неизменной долгое время при том же напряжении. Мощность составит U x I; 30 х 10 = 300 Вт. Однако, с таким напряжением и током невозможно установить другие большие значения тока и напряжения.

Автоматический выбор выходной мощности с ограничением пределов характерен для функциональных ЛБП с высокой точностью и дискретностью измерения выходного тока, достаточного для отладки любых, в том числе и маломощных устройств с батарейками. Такие блоки могут выдавать комбинации тока и напряжения в пределах мощности, на которую рассчитан прибор. Приборы относятся к универсальной категории устройств.

На габаритные размеры, вес и стоимость источники питания постоянного тока или напряжения влияет максимальная мощность, а не ток и не напряжение. Значит, надо выбирать устройство с автоматическим ограничением мощности на выходе.

Число каналов

Мощные ЛБП от 500 Вт, по большей части, одноканальные. Иногда возникает вопрос, а можно ли объединить в последовательную цепь несколько импульсных БП с одним каналом. Что для этого учитывают:

Поэтому, для схемы где имеется возможность применить несколько напряжений питания сети лучше всего использовать двух- или трехканальные стабилизированные блоки питания.

Пример многофункционального одноканального блока питания Korad KA3005D (30 В, 5 А) линейного типа, используемого для последовательного соединения в цепь. Прибор используется для промышленного производства и научных исследований. Выполняет измерение параметров питания и стабилизацию постоянного режима тока и напряжения во время технологических процессов. Прибор отличается:

Для справки: Параллельное соединение ИП с разными напряжениями чревато тем, что один из двух источников с большими пределами по мощности будет работать вполсилы. При подключении устройств с характеристиками 15 В / 30 А и 30 В / 30 А на выходе получатся значения 15 В / 60 А. Блок питания на 30 В будет выдавать всего 15 В. Не допускается подключать БП с разными токами, при КЗ мощный БП может вывести из строя более слабый.

Изоляция выходных каналов

Электрическая или как ее правильно называют гальваническая изоляция – это гарантия независимости напряжения и тока одного канала от других. Изоляция защищает канал от замыкания на землю и между другим каналом, защищает от электрического пробоя.

Гальваническая изоляция каналов предупреждает пробой напряжения между рядом расположенными каналами, значение которого может превысить 220 В. Она нужна для электронного оборудования, в котором присутствуют аналоговая и цифровая части. Служит для понижения шума чувствительной цифровой шины питания в аналоговую часть.

Трёхканальные лабораторный источник питания постоянного тока обладают следующим преимуществом. Устройство позволит запитать аналоговую часть схемы от двух каналов, используя двухполюсное питание, а питание от третьего канала приходит на цифровую часть. Пример 3-х канального импульсного источника питания постоянного тока – UNI-T UTP3305. Трансформаторный источник с тремя каналами – Atten (Gratten) APS3005S-3D. Гальваническая изоляция надежно защищает целостность каналов.

Требования к мощности и числу выходов

Главный вопрос, который задают при выборе стабилизированного источника питания: какая мощность потребуется, какие приборы вам придется испытывать? Сколько мощности будут потреблять испытуемые устройства?

По величине рабочей мощности источника питания выделяют обычные со стандартным и высоким значением мощности до 500 Вт и высокомощные, которые работают с величинами более 700 Вт. Отличие моделей заключается в функциональности и сфере использования.

Модели ЛБП средней мощности MAISHENG MS3010D и QJE PS3010N обеспечат регулировку оборудования в пределах до 300 Вт. Подробно о конструкции мы рассказали в видеообзоре: ИП с импульсным регулированием китайского производителя MAISHENG. Там мы нагружали популярные модели на полную и смотрели их начинку и схемотехнику!

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нуженРисунок 4. Лабораторный блок питания постоянного тока для отладки радиолюбительских устройств с возможностью регулирования напряжения на выходе до 30 В и тока до 10 А. Режим измерения тока импульсным блоком питания.

Пример управляемого импульсного блока питания малой мощности MCH K305DN (30 В, 5 А). Регулировка выполняется потенциометрами на лицевой панели, напряжение до 31 В и тока до 5 А, который держит в течение 30 минут спокойно. Отличается большим КПД, малым весом и размерами.

Образцы с большой мощностью только одноканальные и только импульсные. Пример, MAISHENG MP1560D (15 В, 60 А), устройство выдает стабильное напряжение без помех 15 В и ток до 60 А, используется в лабораторных исследованиях и для ремонта электроники.

Образцы с мощностью до 3 кВ применяются в качестве приборов для стоек управления. Модели более 3 кВ, например, MAISHENG MP15030D (150 В, 30 А) с выходной мощностью 4,5 кВ применяются в промышленных стойках, так как имеют большой вес 9500 г и размеры 380 х 260 х 160 мм. Данные одноканальные ИБП обладают более высокими выходными характеристиками.

Для справки: Если БП нужны для стабилизации тока для повышения его значения при зарядке аккумуляторов, то алгоритм зарядки следующий. Вначале ток растет, а потом зарядка происходит в режиме минимальный ток – максимальный ток. Повышение нагрузки вызывает вывод одного блока на максимальный ток, а затем другого. Зарядка аккумуляторов профессиональными блоками питания, представленными в Суперайс производится как отдельно, так и в связке, не важно находятся устройства под нагрузкой или нет.

Конструкция лабораторных ИП большой мощности оборудована защитными устройствами, к которым относятся вентиляторы охлаждения, включающиеся при повышении температуры. Набор защит от перегрузки, повышения температуры, смены полярности.

Для увеличения выходной мощности предусмотрена возможность параллельного подключения нескольких приборов.

Для мощных блоков питания существует возможность удаленного программного управления через разнообразные интерфейсы Ethernet, IEEE-488.2 (GPIB) и другие, используемые в комплекте с автоматизированными комплексами.

Мощные ЛБП применяются в автопроме и альтернативной энергетике для регулирования собственного выходного сопротивления до нескольких Ом, что может пригодиться во время имитации работы аккумуляторных и солнечных батарей.

Защитные функции

Неправильное применение блока питания, подача повышенного напряжения или тока может представлять угрозу тестируемому оборудованию. Для того, чтобы этого не случилось, лабораторные источники питания обеспечиваются защитными функциями:

Форма выходного сигнала

Основная задача ЛБП – это формирование стабильного постоянного напряжения даже при изменении тока нагрузки. В быту и промышленности к потребителю поступает напряжение только с чистой синусоидой. Однако при использовании импульсного блока, во время замены переменного напряжения 220 В на постоянное для подключения электроники, синус, то есть форма напряжения меняется. Также в режиме стабилизации тока БП подает потребителю постоянный ток. Блоки питания оборудуются «Режимом изменения выходного напряжения по списку заданных значений». С этим режимом можно испытывать оборудование, подавая на него не идеальные сигналы со скачками, пульсациями и перерывами в напряжении, спадом и нарастаниями.

Ручное или программируемое управление

Работа программируемого источника питания постоянного тока основана на работе компьютерной программы, которая демонстрирует характеристики и настройки. Кроме этого, программа подразумевает включение нескольких ЛБП в измерительный комплекс.

Пример популярных программируемых блоков питания: трансформаторный Korad KA6005P и Rigol DP711 оба устройства с одним каналом. Отличаются надежностью и наибольшей востребованностью среди радиолюбителей трехканальные модели Korad KA3305P и OWON ODP3032.

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нуженРисунок 5. Программируемый стабилизированный источники питания радиоаппаратуры Korad KA3305P

Особое внимание радиолюбителей и профессионалов обращаем на прецизионный блок питания со стабилизацией по всем параметрам Rigol DP832A. Выходная мощность до 195 Вт. Регулируемое напряжение по двум каналам 30 В и от 0 до 5 В по третьему каналу. Регулируемый ток до 3 А. Блок защищен от малейших выбросов тока на выходах с каждого канала, высоким КПД до 80% и коэффициентом падения напряжения и тока при стабилизации, не превышающей 0,01%.

К программируемым БП относятся многоканальные источники питания переменного и постоянного тока, которые входят в категорию интеллектуальных устройств.

Дополнительная возможность: компенсация падения напряжения в проводах соединения

Условие достигается наличием USB-интерфейса для управления источником питания с удаленного места. Также, использование буферной схемы, формирующей «плавающий» провод типа повторителя напряжения, где напряжение на выходе соответствует падению напряжения на минусовом (обратном) проводе.

Использование лабораторного блока питания для ремонта мобильных телефонов и ноутбуков

Для мастерских по ремонту мобильных телефонов, нужен БП с напряжением выхода до 15 В и значением тока от 1 А и выше.

Оценка неисправности мобильного телефона в 80% случаев основана на вычислении неисправности по току нагрузки. Телефон через набор съёмных концов подключается от ЛБП. От источника питания можно подключить любой телефон, даже с разряженной батареей. При включении телефона триггером PWR каждый этап загрузки демонстрируется амперметром, который показывает последовательность включения относительно потребления тока. Благодаря этому по току можно определить неисправный компонент телефона.

Стоимость блока питания

Покупая источник питания, потребитель должен в полной мере представлять реальную стоимость владения устройством. Учитываются потенциальные потери, которые происходят из-за простоя аппаратуры, затраты на защиту ЛБП, возможный ремонт, степень надежности БП.

Выбирайте производителя, которому доверяете. Оцените профессионализм и надёжность поставщика. На сайте Суперайс представлены модели, качество которых подтверждено сертификационными и гарантирующими документами.

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Поставку надежных лабораторных блоков питания доверьте Суперайс

Выберите оптимальный вариант и оформите заказ, и наш менеджер свяжется с вами. В Суперайс всем клиентам, оформившим заказ на сумму свыше 3000 рублей, заказы доставляем бесплатно.

Наши технические специалисты работают с 03:00 до 16:00 по московскому времени и готовы ответить на любой вопрос и помочь вам в подключении и настройке оборудования.

Источник

Falconist. Мемуары

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Запись опубликовал Falconist · 16 февраля, 2018

Читая форум, неоднократно поражался повальному стремлению «юных дарований» создать из лабораторного БП своеобразный «мультитул», т.е. нагрузить его кучей самых разных функций, большая часть из которых если и будет когда-либо востребована, то разве что в единичных случаях, причем, вангую, что эти случаи вообще никогда не возникнут. Тут и возможность зарядки аккумуляторов, и проверка маломощных светодиодов и стабилитронов и много чего другого. Хорошо известно, что удобство пользования мультитулом ещё никогда и ни при каких обстоятельствах не превышало удобства пользования набором специализированных инструментов. В этой связи припоминается машина изобретателя Шурупчика (из Змеёвки), описанная в книге Н.Носова «Приключения Незнайки и его друзей»:

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

«…Машина имеет четыре скорости. а также задний и боковой ход. В задней части машины имеется приспособление для стирки белья… В спокойном состоянии, то есть на остановках, машина рубит дрова, месит глину и делает кирпичи, а также чистит картошку

А давайте-ка проанализируем, каким же должен быть Лабораторный Блок Питания (ЛБП)! Заранее соглашусь, что многие из высказанных мною положений будут субъективными, но более, чем 40-летний радиолюбительский опыт в радиоэлектронике позволил выкристаллизовать именно их.

Сначала определимся с дефинициями (определениями). Что же это такое — «ЛАБОРАТОРНЫЙ» БП. Не путать со СПЕЦИАЛИЗИРОВАННЫМ БП (например, для ремонтов мобильных телефонов)!

В отличие от блока питания, интегрированного (встроенного) в общий конструктив питаемого им устройства (как правило, без возможности физического разъединения), ЛБП представляет собой АВТОНОМНЫЙ источник вторичного электропитания, предназначенный для питания стабильным напряжением различных макетируемых устройств. Ключевое слово здесь — именно «макетируемых», поскольку готовые законченные устройства, в подавляющем большинстве случаев, будут снабжены свои собственным, интегрированным в них, БП. Конечно же, вполне нормально питать от ЛБП схемы, требующиеся в редких случаях, к примеру, тестеры стабилитронов и светодиодов,

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

и т.п., но это именно исключения, подтверждающие общее правило. Не следует возлагать на ЛБП несвойственные ему функции (к примеру, тестера стабилитронов или микроомметра). Для специфических задач, требующих специфических режимов (к примеру, для тестирования мощных электромоторов постоянного тока), к тому же, не нуждающихся в жесткой стабилизации питающего напряжения, лучше использовать специализированные источники вторичного электропитания.

Итак, какими же свойствами должен обладать практичный Лабораторный БП, не содержащий ничего (или минимум) лишнего функционала и в то же время обладающий характеристиками, позволяющими использовать его для обеспечения 99% задач.

1) Количество выходных напряжений: Для начального уровня вполне приемлемым вариантом может оказаться БП с единственным выходным напряжением. Если понравится и будет нужно — можно построить второй такой же. Однако, всё-таки желательно иметь минимум два выходных напряжения, причем, гальванически изолированных одно от другого. Такой ЛБП будет иметь минимум две пары выходных клемм, по две на каждое из напряжений, которые внешними перемычками можно будет коммутировать как угодно, получая либо две полярности (т.е., положительное и отрицательное напряжения относительно объединенных клемм, образующих нулевой прводник), либо два разных напряжения одной полярности. В практике радиолюбительства нередки схемы, требующие двух различных напряжений питания ОДНОЙ полярности, например, +3,3…5 В для питания логики или микроконтроллера и +12…24 В для питания «силовой» части. Стремление построить двухполярный ЛБП со всего лишь тремя выходными клеммами (положительное напряжение, отрицательное и их общая шина), да еще и объединенной регулировкой сразу обоими полярностями, да к тому же еще и гальванически соединенных вместе, не расширяет, а наоборот, сужает его эксплуатационные качества. Парадоксально, но факт!

Отсюда следует, что минимально оптимальным вариантом ЛБП является «двойное моно», т.е., два идентичных стабилизатора напряжения в общем корпусе с раздельной регулировкой выходного напряжения и одной парой измерителей выходных напряжения и тока, вручную переключаемых между каналами. Питаться стабилизаторы в таком варианте могут либо от отдельных сетевых трансформаторов, либо от одного с минимум двумя обмотками. А вообще-то, идеальным вариантом было бы «тройное моно», т.е., ЛБП с ТРЕМЯ выходными гальванически развязанными напряжениями, что позволило бы питать смешанные схемы с цифровой частью, требующей однополярного питания и аналоговой, требующей двухполярного питания. Понятно, что такое по силам уже продвинутому радиолюбителю, но держать этот вариант «в уме» все-таки сто́ило бы. Можно несколько упростить третий канал, сделав ему не плавную регулировку, а ступенчатую, к примеру, 3,3-5-9-12-15-24-27 В. Всё равно этот канал опциональный и будет использоваться изредка.

2) Минимальное выходное напряжение: Меня просто шокирует повальное стремление обеспечить регулировку выходного напряжения от нуля. На неоднократно задаваемый мною на форумах вопрос: «Что Вы собрались питать НУЛЕМ вольт?», я НИ РАЗУ не получил аргументированного внятного ответа! Построить такую схему, конечно же, вполне возможно, но она при этом усложняется совершенно непропорционально задаче. В 99,99% случаев достаточно порядка 1…1,2 В. Это напряжение соответствует вдрызг разряженным, соответственно, никелевому аккумулятору и батарейке. Если же вдруг (один-два раза за все время занятия электроникой) придется макетировать устройства с более низким напряжением питания (к примеру, фотоэлементы и т.п.), ничто не мешает подключить к выходу ЛБП дополнительный (временный!) регулируемый стабилизатор такого низкого напряжения на одном транзисторе и переменном резисторе. Тем более, что ток питания таких схем совсем небольшой.

3) Максимальное выходное напряжение: определяется максимально допустимым входным напряжением компонентов, использованных в схеме БП. Для ОУ это, как правило, 32…36 В; для интегральных регулируемых стабилизаторов — чуть больше, до 40 В. Поэтому «гигантомания» в плане желания получить на выходе, к примеру, 50 В стабилизированного напряжения, требует применения компонентов, способных работать при входном напряжении до 60…70 В. Такие, конечно, существуют, но их ассортимент не столь обширен, а стоимость достаточно велика, чтобы заставить задуматься: «А надо ли это мне?» Можно, конечно, собрать БП с таким выходным напряжением и на компонентах широкого применения, но его схема существенно усложнится.

Итак, за реально достижимый простыми средствами верхний предел выходного стабилизированного напряжения примем 25…30 В. Если учесть, что в питающей сети допускаются отклонения напряжения в пределах ± 10% от номинальных 230 В, то 36 В выпрямленного и отфильтрованного постоянного напряжения при сетевых 253 В (плюс 10%) можно получить от трансформатора со вторичной(-ыми) обмоткой(-ами) на стандартные 24 В. При 207 В сетевого напряжения (минус 10%) на выходе будет 29 В постоянного напряжения (без учета пульсаций и просадки при максимальных токах нагрузки!).

5) Максимальный выходной ток: с этим параметром также наблюдается совершенно необоснованная повальная гигантомания. Почему-то многие стремятся соорудить БП с выходным током не менее 5 А, хотя можно заведомо предсказать, что для целей макетирования (а ЛБП, как было выше отмечено, предназначен именно для этого) не только бесполезны, но и вредны. При случайно сбившейся настройке ограничения по току макетируемая схема имеет большой шанс пыхнуть ярким пламенем с испусканием «волшебного дыма». Хорошо, если при этом не случится пожара!

Допустим, что БП на такой выходной ток все-таки построен. При 30 В выходного напряжения и токе 5 А от трансформатора будет требоваться мощность не менее 150 Вт. Другой вариант: при 5 В выходного напряжения и токе 5 А, на регулирующем транзисторе при входном напряжении 35 В, рассеются те же 150 Вт. Во-первых, далеко не всякий транзистор такое потянет (а те, что потянут — до́роги), а во-вторых, чтобы рассеять такую мощность, нужен будет либо радиатор размерами с кирпич, либо охлаждение его кулером. И то и другое ведет к необоснованному усложнению и удорожанию устройства.

Отсюда следует, что выходной ток можно ограничить значением 2…2,5 А, чего более, чем достаточно для подавляющего большинства задач. При этом и на регулирующем транзисторе рассеется не более 60…90 Вт, что не является какой-то экзотикой (те же «народные» КТ818/КТ819 в металле спокойно «держат» до 100 Вт), и силовой трансформатор нужен вменяемой мощности.

6) Ограничение выходного тока (оно же защита от короткого замыкания выхода) — является обязательным свойством ЛБП. Должно решать двоякую задачу:
а) защитить от выхода из строя сам БП; и
б) защитить от окончательного выгорания макетируемую схему.

Если с первой задачей понятно — максимальный выходной ток определяется максимально допустимыми параметрами трансформатора питания и регулирующего транзистора и составляет упомянутые выше 2…2,5 А, то вторая требует более тщательного анализа. Если питается схема, уже смонтированная на печатной плате, то максимальный ток не должен вызывать разрушения дорожек на ней от перегрева, а также транзисторов средней и (желательно) малой мощности. По собственному опыту (не претендуя на его эксклюзивность) могу сказать, что данная задача решается при ограничении максимального тока уровнем 200. 250 мА. Далее. Существует метод выявления коротких замыканий на плате путем питания ее током, еще не разрушающим печатные дорожки, но вызывающим их локальный нагрев. Для этого применяется ограничение тока уровнем порядка 500. 600 мА. Такой же максимальный ток является оптимальным при ремонте УМЗЧ, не приводя к выгоранию драйверных и выходных транзисторов уцелевшего плеча.

7) Измерители напряжения и тока: вопрос, казалось бы, второстепенный, однако красиво перемигивающиеся циферки цифрового вольтметра на практике, как ни парадоксально, снижают удобство пользования БП. Если уж и применять цифровой вольтметр, то не более, чем 3½-знаковый. Мельтешение цифр в младших разрядах 4-х и более разрядных вольтметров отвлекает от осознавания величины измеряемого напряжения, отнюдь не прибавляя точности. При импульсном характере потребления тока нагрузкой мельтешение цифр будет и в 3½-знаковом вольтметре. Если уж настолько критично выставить стабилизируемое напряжение до единиц-десятков миллиВольт, можно сделать это подключением к клеммам внешнего мультиметра, ибо возникнуть такая задача может примерно с такой же частотой, как рубка дров и чистка картошки в машине Шурупчика.

С цифровым амперметром ситуация несколько серьезнее. Во-первых, измерение тока производится на его собственном токоизмерительном шунте, который включается последовательно с токоизмерительным шунтом цепи ограничения тока самого БП, тем самым повышая выходное сопротивление БП и снижая точность поддержания выходного напряжения. Во-вторых, из-за дискретности измерений в большинстве амперметров порядка 1. 2 Гц, мгновенные скачки выходного тока (к примеру, при подключении к плате с короткозамкнутыми дорожками) отслеживаются с запозданием, обусловленным как этой дискретностью измерений, так и необходимостью какого-то времени на осознавание измеренной величины тока. Можно, конечно, цифровой амперметр и доработать на использование основного токоизмерительного шунта БП, либо же использовать шунт измерителя тока, но при этом потребуется его перекалибровка.

В этом плане стрелочные измерительные головки намного информативнее и удобнее для встраивания и калибровки. Супер-точность измерений не столь важна, на первом месте стоит удобство примерного считывания показаний.

8) Выходное быстродействие на быстропеременную нагрузку: является своеобразным «камнем преткновения» для разработчиков ЛБП. Если питать им устройство с неизменяемым во времени потреблением тока (к примеру, лампочку, электромоторчик, да хоть заряжать аккумулятор), то быстродействие такой схемы может быть сколь угодно малым. Но если подключить импульсную или же аудио-схему, то ситуация кардинально меняется. Для таких потребителей выходное сопротивление ЛБП должно максимально близко приближаться к нулевому, чтобы обеспечить постоянство выходного напряжения независимо от силы тока (естественно, до момента его ограничения!). Нередко разработчик пытается обеспечить такую характеристику установкой на выходе электролитического конденсатора достаточно большой емкости. Такое схемотехническое решение, нередко встречающееся даже в промышленно выпускаемых ЛБП, на самом деле является профессиональным провалом разработчика, т.к. при подключении макетируемой схемы к выходным клеммам такого БП, через нее обязательно произойдет бросок тока, имеющий шанс сжечь схему, а реакция на быстропеременную нагрузку становится совершенно «дубовой».

На выходе схемы ЛБП может стоять разве что пленочный конденсатор на 1 мкФ (да и то непосредственно на выходных клеммах), зашунтированный керамикой на 0,1 мкФ исключительно для подавления шумов и импульсных помех, циркулирующих по соединительным проводам от ЛБП к макетируемой схеме и обратно. Всё остальное быстродействие должно быть обеспечено за счет быстродействия и стабильности схемы самого ЛБП.

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нуженлабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Хотя, всё равно, потеря напряжения (а следовательно, и излишнее тепловыделение) на полевых транзисторах будет больше. Либо же необходимо усложнять схемотехнику БП за счет вольтодобавки ко входному напряжению для управления затворами полевых транзисторов. Тем более, что допустимые токи (десятки Ампер) относятся не к линейному, а к ключевому режиму их работы. В линейном режиме ограничивающим параметром будет максимально допустимая рассеиваемая мощность, которая что у полевых, что у биполярных транзисторов определяется, в основном, типом корпуса, в который упакован кристалл.

Учитывая изложенное в предыдущем пункте анализа относительно выходного быстродействия, преимущество полевых транзисторов для ЛБП по сравнению с биполярными становится достаточно сомнительным.

10) Стабильность выходного напряжения в переходных режимах: в ЛБП при его включении и/или выключении ни в коем случае не должно быть выбросов выходного напряжения сверх установленного значения. Иначе макетируемой схеме с большой долей вероятности придет белый северный пушной зверек. Требование однозначное и ревизии не подлежит, какой бы «вкусной» схема ЛБП ни была по другим параметрам.

В первом приближении это пока что все мои аргументы «за» и «против» тех или иных схемотехнических решений и желаемых параметров ЛБП.

В качестве подтверждения сказанному приведу личный пример своего «ветерана», верой и правдой служащего уже 40 (СОРОК!) лет:

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Верхняя крышка снята, чтобы показать «потрошки». Ни типа, ни марки, кроме надписи на лицевой панели «Блок питания универсальный «Электроника»» нет. Очевидно, «ширпотребовская» продукция какого-то военного завода. Схема, к сожалению, за эти годы тоже утеряна. «Родные» параметры с «родными» регулирующими транзисторами КТ807: 2. 15 В / 300 мА. После модернизации (замены на TIP41) поднял ограничение выходного тока до 0,5 А.

Итого получается «тройное моно», как я и описывал выше, да еще и с каналом переменного напряжения.

лабораторный блок питания для чего нужен. Смотреть фото лабораторный блок питания для чего нужен. Смотреть картинку лабораторный блок питания для чего нужен. Картинка про лабораторный блок питания для чего нужен. Фото лабораторный блок питания для чего нужен

Поскольку падал, плата выпрямителя и фильтров «сворочена» на сторону. Изготовлен для питания эстрадных усилителей при их ремонтах.

Так вот, он НЕ ИСПОЛЬЗОВАЛСЯ НИ РАЗУ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *