кто заявил что звезды похожи на солнце
«Второе Солнце» обнаружено недалеко от Земли
Специалисты Центра космических полетов имени Годдарда NASA впервые смоделировали и описали ближайшую звезду, которая, как считается, очень похожа на наше Солнце, когда оно было совсем молодым. Компьютерное моделирование поможет лучше понять, каким могло быть Солнце в «молодости», и как оно помогло сформировать атмосферу нашей планеты и развитие жизни на Земле.
Исследование опубликовано в журнале The Astrophysical Journal, а коротко о нем сообщается на сайте NASA. Речь идет о недавно открытой звезде Kappa 1 Ceti, которую ученые называют «вторым Солнцем». Они считают, что эта звезда очень похожа на наше собственное светило, но только на ранней стадии его существования.
Этот аналог Солнца расположен недалеко от Земли, всего в 30 световых годах от нас. Как объясняют авторы работы, в космическом масштабе это как человек, живущий на соседней улице. На данный момент это ближайшая от нас известная звезда.
По оценкам астрономов, ее возраст составляет от 600 до 750 миллионов лет. Наше Солнце находилось примерно в таком же возрасте, когда на Земле зародилась жизнь. По словам соавтора исследования Мэн Цзинь, гелиофизика из Института SETI и Лаборатории солнечной астрофизики Локхид-Мартина в Калифорнии, эта звезда имеет такую же массу и температуру поверхности, как и Солнце. Все эти факторы делают Kappa 1 Ceti «двойником» нашего светила и дают ученым уникальную возможность изучить условия, при которых на Земле зародилась жизнь.
Звезды оказались настолько похожи, что команда во главе с Владимиром Айрапетяном, старшим астрофизиком отдела гелиофизики Центра космических полетов имени Годдарда в Гринбелте, для изучения Kappa 1 Ceti использовала попросту адаптированную модель Солнца. Это помогло предсказать некоторые из наиболее важных, но трудных для измерения характеристик соседней звезды. Сама модель основана на данных, полученных в последние годы различными космическими миссиями.
В частности, моделирование показало, как юные звезды выбрасывают свои мощные всплески энергии. Одним из способов высвобождения накопленной энергии для них является звездный ветер. В основном он состоит из сверхгорячого газа, известного как плазма. Этот газ формируется, когда частицы в нем разделяются на положительно заряженные ионы и отрицательно заряженные электроны.
Наиболее энергичная плазма, как пишут исследователи, с помощью магнитного поля звезды может оторваться от самой внешней и самой горячей части звездной атмосферы, короны. После этого она «выдувается» в виде звездного ветра и направляется в сторону ближайших планет. Этот процесс происходит постоянно.
Отличие заключается лишь в том, что у молодых звезд эти выбросы энергии являются более мощными, чем у старых. Поэтому, как предполагают авторы работы, на ранней стадии существования Земли с ее поверхности во многих точках были бы хорошо видны ветры, выдуваемые с Солнца. В наши дни такие явления частично можно наблюдать только в виде полярных сияний. Подобные процессы могут происходить в звездных системах по всей нашей галактике и Вселенной, считают ученые.
У Солнца могла быть звезда-близнец в прошлом. Где она сейчас и как появилась?
У нашего Солнца был компаньон, и во внешней Солнечной системе могло быть много неоткрытых карликовых планет. Об этом говорится в новом исследовании ученых. Опубликованная в Astrophysical Journal Letters статья доктора Ави Лоеба, профессора наук Гарварда и студента Амира Сираджа идет вразрез с доминирующей теорией «одинокой звезды» в происхождении нашей Солнечной системы. Рассказываем, как к такому выводу пришли ученые? На какие вопросы о нашей Солнечной системе это открытие дает вопросы? Что еще скрывает наша Солнечная система? Как вообще образуются системы с двумя звездами и где «второе Солнце» сейчас?
Читайте «Хайтек» в
О чем говорит новая теория?
Астрономы из Гарвардского университета предположили, что Солнце могло быть частью двойной системы — где две звезды вращаются вокруг друг друга — в годы формирования самой Солнечной системы.
Новая теория ученых утверждает, что если бы существовала двойная звездная система, она была бы лучше оснащена для притяжения удаленных объектов своей гравитацией. Проще говоря, такое количество объектов и на таком большом расстоянии от Солнца намекает на то, что у нашей звезды был компаньон-помощник.
Радикально звучащая теория о том, что Солнечная система, возможно, когда-то была двойной звездной системой, состоящей из двух звезд, вращающихся вокруг общей точки в космосе, тем не менее, не должна вызывать удивления, подчеркивают ученые. «Большинство звезд, похожих на Солнце, рождаются с двойными спутниками», — заявил автор исследования.
Как образуются звезды?
Звезды рождаются в облаках пыли и разбросаны по большинству галактик. Широко известный пример пылевого облака — туманность Ориона. Турбулентность глубоко внутри этих облаков порождает узлы с массой, достаточной для того, чтобы газ и пыль могли начать схлопываться под действием собственного гравитационного притяжения. Когда облако схлопывается, материал в центре начинает нагреваться. Именно это горячее ядро в центре коллапсирующего облака — протозвезда — однажды станет звездой. Трехмерные компьютерные модели звездообразования предсказывают, что вращающиеся облака коллапсирующего газа и пыли могут распасться на две или три капли; это объяснило бы, почему большинство звезд в Млечном пути спарены или расположены в группах из нескольких звезд.
Что такое двойные звездные системы?
Вы знаете, что планеты вращаются вокруг звезд точно так же, как наша планета Земля вращается вокруг Солнца. Но знаете ли вы, что звезды также могут вращаться вокруг других звезд? По оценкам ученых, более 80% световых точек на ночном небе на самом деле являются множественными звездными системами. Эти системы могут иметь две, три, четыре или даже больше звезд.
Есть данные, что в звездной системе Джабба в созвездии Скорпиона насчитывается аж семь звезд! Это означает, что наша Солнечная система, которая сейчас всего лишь с одной-единственной звездой, на самом деле довольно редка.
На этой диаграмме показано, как две звезды в двойной системе имеют эллиптическую орбиту (в некоторых случаях она может быть почти круговой). У них есть общий фокус, который является центром масс или барицентром системы и вращается вокруг этой точки. Радиус-вектор, соединяющий две звезды, всегда пересекает барицентр.
Двоичные системы могут иметь очень эллиптические орбиты, как показано выше. В этих случаях эксцентриситет e ближе к 1. Если e близко к 0, орбиты будут более круговыми
Большинство из этих множественных звездных систем являются бинарными звездами; префикс bi- имеет латинское происхождение и означает два. Бинарные звезды — это две звезды, которые имеют общую гравитационную связь и одновременно вращаются вокруг своего общего центра масс. Центр масс объекта (или объектов) является его точкой балансировки. Представьте, что вы можете прикрепить две звезды к концам длинного шеста. Центр масс — это точка, в которой вы можете удерживать этот шест на пальце, чтобы он не наклонялся в ту или иную сторону.
В двойной звездной системе две звезды вращаются вокруг своего общего центра масс.
Двойные звезды классифицируются как «широкие» или «близкие». В широких двойных системах, как следует из названия, орбиты двух звезд держат их далеко друг от друга. Звезды движутся по жизненному пути раздельно и мало влияют друг на друга. Однако близкие двойные системы находятся достаточно близко друг к другу, поэтому гравитационное притяжение одной звезды может деформировать и иногда поглотить другую звезду. Поскольку звезды классифицируются на основе их массы, этот перенос вещества от одной звезды к другой может полностью изменить их жизненный путь.
Облако Оорта — дом комет
Облако Оорта — самый дальний регион нашей Солнечной системы. Считается, что даже ближайшие объекты в Облаке Оорта во много раз дальше от Солнца, чем внешние границы пояса Койпера.
В отличие от орбит планет и пояса Койпера, которые лежат в основном в одном плоском диске вокруг Солнца, Облако Оорта считается гигантской сферической оболочкой, окружающей остальную часть Солнечной системы. Он похож на большой толстостенный пузырь из ледяных кусков космического мусора размером с горы, а иногда и больше. Облако Оорта может содержать миллиарды или даже триллионы объектов.
Поскольку орбиты долгопериодических комет очень длинные, ученые подозревают, что облако Оорта является источником большинства этих комет. Например, комета C/2013 A1 Siding Spring, которая очень близко прошла мимо Марса в 2014 году, не вернется во внутренние области Солнечной системы в течение примерно 740 000 лет.
Расстояние от Солнца до Облака Оорта настолько огромно, что полезно описывать его не в более распространенных единицах измерения миль или километров, а в астрономических единицах. Одна астрономическая единица (или а.е.) —это расстояние между Землей и Солнцем. Эллиптическая орбита Плутона переносит его на расстояние 30 а.е. от Солнца и 50 а.е. Однако считается, что внутренний край Облака Оорта находится на расстоянии от 2 000 до 5 000 а.е. от Солнца. Внешний край может находиться на расстоянии 10 000 или даже 100 000 а.е. от Солнца — это на четверть или половину расстояния между Солнцем и ближайшей соседней звездой.
Хотя считается, что долгопериодические кометы, наблюдаемые среди планет, происходят из Облака Оорта, в самом далеком его участке не наблюдалось ни одного объекта, поэтому пока это теоретическая концепция. Но это остается наиболее широко распространенным объяснением происхождения долгопериодических комет.
Где сейчас это «второе Солнце»?
Итак, если бы у Солнца был двойной спутник, где он? Сейчас его явно нет; такая звезда, как Солнце, на расстоянии 200 млрд км, будет такой же яркой, как Луна в первой четверти.
Если он когда-либо существовал, его давно нет. Большинство звезд рождаются в звездных скоплениях, группах из сотен или даже тысяч звезд, поэтому нет ничего удивительного в том, что Солнце родилось в одном из скоплений 4,6 млрд лет назад. В таком переполненном пространстве очень вероятны встречи между звездами. Если даже красный карлик с массой в одну десятую от массы Солнца пройдет примерно 300 млрд км, он может нарушить работу системы, выбросив бывшего спутника Солнца. Вполне вероятно, что Солнце сохранило бы спутника только около 100 млн лет, прежде чем потерять его, — короткий период по сравнению с нынешним возрастом звезды.
Примеры солнечных систем с двумя звездами
Эта диаграмма сравнивает нашу солнечную систему с Кеплер-47, двойной звездной системой, состоящей из двух планет, одна из которых вращается в так называемой обитаемой зоне. Это золотая середина планетной системы, где жидкая вода может существовать на поверхности планеты.
В отличие от нашей Солнечной системы, Кеплер-47 является домом для двух звезд. Одна звезда похожа на Солнце по размеру, но только на 84% ярче. Вторая звезда — миниатюрная, ее размер составляет всего треть от размера Солнца, а ее яркость составляет менее одного процента. Поскольку звезды меньше нашего Солнца, обитаемая зона системы находится ближе.
Обитаемая зона системы имеет форму кольца с центром на большой звезде. Поскольку главная звезда обращается вокруг центра масс двух звезд каждые 7,5 дней, кольцо обитаемой зоны перемещается.
Рендеринг этого художника показывает, что планета удобно вращается в пределах обитаемой зоны подобно тому, как Земля вращается вокруг Солнца. Один год на орбите спутника Kepler-47c составляет 303 дня. «Кеплер-47c» не является миром, благоприятным для жизни, но считается газовым гигантом, немного больше Нептуна, где может существовать атмосфера из толстых ярких облаков водяного пара.
Открытие демонстрирует разнообразие планетных систем в нашей галактике и предоставляет больше возможностей для поиска жизни, какой мы ее знаем.
Кроме того, исследователи, работающие с данными со спутника NASA Transiting Exoplanet Survey Satellite (TESS), обнаружили первую околоземную планету миссии, мир, вращающийся вокруг двух звезд. Планета, получившая название TOI 1338 b, примерно в 6,9 раз больше Земли или находится между размерами Нептуна и Сатурна.
Он находится в системе на расстоянии 1 300 световых лет в созвездии Живописца. Звезды в системе образуют затменную двойную систему, которая возникает, когда звездные спутники кружат друг над другом в нашей плоскости обзора. Один примерно на 10% массивнее нашего Солнца, а другой холоднее, тусклее и составляет всего одну треть от массы Солнца.
Транзиты TOI 1338 b нерегулярны, от 93 до 95 дней, и различаются по глубине и продолжительности из-за орбитального движения его звезд. TESS видит только транзиты, пересекающие большую звезду — транзиты меньшей звезды слишком слабые, чтобы их можно было обнаружить. Его орбита стабильна как минимум следующие 10 млн лет. Однако угол орбиты к нам меняется настолько, что транзит планеты прекратится после ноября 2023 года и возобновится через восемь лет.
Где доказательства «второго Солнца»?
В Облаке Оорта, этой сферической оболочке из ледяных объектов во внешней Солнечной системе. Считается, что он состоит из обломков, оставшихся от образования Солнечной системы, но кажется, что объектов слишком много. Только когда «второе Солнце» вставляется в модель этой новой статьи, облако Оорта становится таким плотным, как мы наблюдаем его сегодня.
Двоичные системы намного более эффективны при захвате объектов, чем одиночные звезды. Если бы Облако Оорта сформировалось так, как наблюдали, это означало бы, что у Солнца действительно был спутник с такой же массой, который был потерян до того, как оно покинуло свое скопление, заявляют ученые.
Это важно, потому что такие объекты в Облаке Оорта, как кометы, могли принести воду на нашу планету. Объекты во внешнем Облаке Оорта, возможно, играли важную роль в истории Земли, например, доставляли воду на планету и привели к вымиранию динозавров.
Ученые также указывают, что двойной спутник Солнца также решает некоторые другие проблемы в нашей Солнечной системе. Например, ледяные тела, вращающиеся вокруг Нептуна, входят в разные группы. Один называется рассеянным диском и состоит из объектов, которые имеют сильно эллиптические и наклонные орбиты, вероятно, выброшенные в эту область пространства в результате столкновения с газовыми гигантами, в первую очередь с Нептуном. Другой пример — внешнее Облако Оорта, огромный сферический объем пространства примерно в триллионе километров от Солнца. Внешних объектов Облака Оорта примерно в 10 раз больше, чем в рассеянном диске, но согласно большинству гипотез о формировании Солнечной системы это число должно быть несколько ниже. В статье астрономы обнаруживают, что двоичная идея естественным образом дает правильное соотношение
Однако что действительно захватывающе в теории «второго Солнца», так это ее последствия для «Девятой планеты».
Есть ли во внешней Солнечной системе до сих пор необнаруженная «Девятая планета»?
Что такое «Девятая планета»? Предполагается, что «Девятая планета» является суперземлей — планетой примерно в 5–15 раз больше Земли, что впервые было высказано в 2016 году.
«Планета Девять» считается маловероятной, поскольку Солнечной системе будет трудно собрать достаточно материала на таком расстоянии от Солнца, чтобы сформировать планету размером с Землю. Это привело астрономов к выдвижению еще более безумно звучащих теорий о том, чем, собственно, может быть наблюдаемый «эффект Девятой планеты».
Одна из других теорий Леба и Сираджа состоит в том, что в нашей солнечной системе существует изначальная черная дыра. Другая — это новая теория «второго Солнца».
Что интересно, последний предсказывает, что во внешней Солнечной системе может скрываться не одна дополнительная планета.
Помимо увеличения шансов на захват большой планеты, «второе Солнце» теоретически должно было помочь перенести больше объектов во внешние области Солнечной системы. Новая модель ученых предсказывает, что должно быть больше объектов с орбитальной ориентацией, аналогичной «Девятой планете».
Как можно проверить теорию «второго Солнца»?
Исследователи предполагают, что обсерватория Vera C Rubin (VRO) в разреженном горном воздухе на пике Серро Пачон в чилийской долине Эльки, чей десятилетний обзор неба должен быть «первым светом» в 2021 году, сможет либо исключить, либо подтвердить «Девятую планету» как черную дыру в течение года.
«Если VRO подтвердит существование «Девятой планеты» и захваченное происхождение, а также обнаружит популяцию захваченных аналогичным образом карликовых планет, то бинарная модель будет иметь преимущество над историей одиноких звезд, которая давно предполагалась», — подтверждают ученые.
В рамках десятилетнего обзора неба, проводимого VRO «Legacy Survey of Space and Time» (LSST), каждые три ночи будет сниматься все ночное небо Южного полушария, причем каждое изображение покрывает площадь, в 40 раз превышающую размер полной Луны.
Широкоугольная обсерватория будет предупреждать астрономов о событиях в реальном времени и создавать огромный архив данных. Ожидается, что это значительно расширит познания астрономов о космосе. Если за пределами Солнечной системы скрывается группа карликовых планет — и даже сама «Девятая планета», VRO может их найти.
Это сделало бы теорию «второго Солнца» более верной, утверждают исследователи.
Ученые: треть солнцеподобных звезд поглощают свои планеты
Международная группа астрономов выяснила, что многие звезды поглощают свои планеты. Об этом говорится в исследовании, опубликованном в журнале Nature Astronomy.
Около половины звездных систем в нашей галактике являются двойными, то есть, звезды в них вращаются вокруг общего центра массы. Поскольку они образовались из одного и того же материала, логично предположить, что их химический состав будет одинаковым. Однако астрономические наблюдения показывают, что это совсем не так.
Лоренцо Спина из Астрономической обсерватории Падуи и его коллеги решили детально разобраться, в чем причина наблюдаемой аномалии. Они рассмотрели 107 двойных систем, чьи звезды схожи с Солнцем. Их отобрали не только по этому признаку: помимо этого, температура и масса звезд должны были быть примерно равны. То есть, ученых интересовали звезды-близнецы.
Каменистые планеты, вроде Земли или Венеры, богаты железом, кремнием, титаном и другими тяжелыми элементами. Большинство же звезд в основном состоит из водорода и гелия, а тяжелые элементы находятся в меньшинстве. В ходе этого исследования астрономы обнаружили, что у 33 пар из составленной ими выборки один из компаньонов обладал более высоким уровнем железа, чем собрат.
«Если звезда богата железом, без повышения уровня углерода и кислорода, это свидетельствует в пользу того, что она поглотила планету, – утверждает Лоренцо Спина. – Когда материал планеты входит в звезду и загрязняет ее конвективную зону, состав звездной атмосферы меняется и становится более похож на состав каменистых тел».
Окончательно исследователей в этом убедило обилие лития в составе некоторых из компаньонов. Дело в том, что солнцеподобные звезды действительно рождаются с каким-то запасом этого металла, но сжигают его в течение около 100 миллионов лет.
Таким образом, следы лития в спектре немолодой звезды однозначно говорят о поглощении ею планеты.
Шанс обнаружить такую аномалию тем больше, чем выше температура звезды. Ученые объясняют это тем, что горячие звезды обладают более тонким внешним слоем, и материал планеты концентрируется в маленьком объеме, оставляя более заметный след. По расчетам ученых, свои планеты поглощают от 20 до 35 процентов солнцеподобных звезд. «Это однозначно наблюдаемая тенденция, – говорит Эрик Мамаджек, специалист NASA, который не участвовал в исследовании. – Ученые и раньше рассматривали возможность поглощения планет, но эта работа основана на большой выборке и обосновывает существование данного феномена явными статистическими свидетельствами. Возможно, в итоге эта статья станет классикой своей темы».
Скорее всего, поглощение планет происходит из-за гравитационного взаимодействия с другими телами системы: известно, например, что Марс образовался в два раза дальше от Солнца, чем его современная орбита. Аналогичные процессы могут сдвинуть планету еще сильнее, либо сразу внутрь светила, либо на крайне низкую орбиту, на которой каменные породы будут постепенно испаряться от высокой температуры и оседать на звезду.
Ученые рассчитывают, что открытие поможет в поиске жизни в других системах: если звезда поглотила свои планеты, то будет разумно не тратить время на ее детальное изучение.
При этом авторы работы отмечают, что Солнце вряд ли когда-либо поглощало каменистое тело, тяжелых элементов в нем наоборот меньше, чем у многих собратьев по классу.
Главный способ астрономов заглянуть «внутрь» звезды – изучить спектральные линии ее излучения. В начале XIX века немецкий физик Йозеф Фраунгофер обнаружил, что при разложении солнечного света призмой образуются темные линии. В дальнейшем ученые выяснили, что расположение этих линий зависит от химического состава источника света: каждый химический элемент имеет свой неповторимый спектр, что и дает возможность изучить состав звезды в сотнях световых лет от нас.
Чтобы найти внеземную жизнь, давайте не будем ориентироваться на звезды, похожие на наше Солнце
Чтобы максимально увеличить наши шансы найти внеземную жизнь в нашей Галактике, астрономы рекомендуют не фокусироваться на звездах, похожих на наше Солнце. Но отдавать предпочтение скорее оранжевым карликам.
Мы не можем сосчитать все звезды в Млечном Пути, но по статистике их должно быть более 100 миллиардов и как минимум столько же планет. Диапазон поэтому довольно широк. Чтобы в один прекрасный день мы смогли обнаружить сложную внеземную форму жизни, нам следует сосредоточиться на звездах, которые, скорее всего, будут способствовать ее появлению. Но тогда, что это за звезды?
У Солнца слишком короткая продолжительность жизни
Интуитивно можно сказать, что звезды типа Солнца являются наиболее подходящими. Тем не менее эти звезды составляют всего 10% звездной численности Млечного Пути. Срок их жизни также довольно короткий (около 10 миллиардов лет).
Сложные организмы появились на Земле всего 500 миллионов лет назад. Человек, самая сложная из них форма жизни, появился лишь 200 000 лет назад. Мы не знаем, каким будет будущее нашего вида, но, с другой стороны, мы знаем, что наша планета станет необитаемой через чуть более миллиарда лет. Солнце начнет расширятся, уничтожая все земные формы жизни.
Если мы, таким образом, основываемся только на Земле, это означает, что очень сложная форма жизни вокруг звезды типа Солнца не может выжить более миллиарда лет. С космологической точки зрения это довольно короткий промежуток времени. Если мы хотим дать себе шанс оценить такую передовую форму жизни, как наша, поэтому мы должны нацелиться на звезды, способные “гореть» дольше.
Долгие годы все взоры обращались к красным карликам. Эти звезды, меньше и прохладнее Солнца, являются самыми распространенными звездами в Галактике (около 85% населения). Тогда мы могли бы представить себе, простым статистическим маневром, что 85 % всех планет также эволюционируют вокруг этих звезд. Кроме того, мы знаем, что красные карлики могут выжить в течение нескольких десятков миллиардов лет.
Но являются ли они идеальными кандидатами? Не совсем. У красных карликов много преимуществ, но они очень нестабильны.
На этих звездах звездные извержения действительно происходят регулярно и очень мощно. Защитные озоновые слои, которые могут образовываться вокруг планет в зоне обитания (очень близко к звезде), не могут выжить, так как их постоянно сдувают. Наконец, планеты подвергаются экстремальным уровням рентгеновского и ультрафиолетового (УФ) излучения. Что затрудняет развитие жизни в этих условиях.
Художественное представление красного карлика. Кредиты: НАСА / Уолт Феймер
Оранжевые карлики, хороший компромисс.
К каким звездам мы, в конце концов, обращаемся? В течение нескольких лет астрономы сосредоточились на оранжевых карликах. Зачем? Потому что их в Млечном Пути втрое больше, чем звезд типа Солнца, с одной стороны. Но прежде всего потому, что эти звезды предлагают нам реальный компромисс. Они действительно могут регулярно гореть в течение десятков миллиардов лет, оставаясь относительно спокойными.
Поэтому для биологической эволюции вокруг этих звезд может потребоваться время, чтобы развиваться, не опасаясь быть уничтоженным в любой момент.
Некоторые из них уже доставили нам многообещающие зацепки. Это, в частности, относится к Кеплеру-442, расположенному примерно в 1120 световых годах от Земли. Вокруг этой звезды находится скалистая планета Kepler-442b, которая имеет объем, сравнимый с земным. Мы знаем, что этот мир развивается в обитаемой зоне, а это значит, что на его поверхности может быть вода в жидком виде.
Ближе к нам также находится Тау Кита, всего в 12 световых годах. Эта звезда будет сопровождаться пятью планетами, две из которых будут расположены в обитаемых зонах.