крутящий момент редуктора что это такое
Крутящий момент редуктора – что это означает?
Существует общепризнанная единица измерения крутящего момента – Ньютоно – метры. То есть, если к выходному валу редуктора присоединить какую-либо штангу длиной один метр, то привод должен сохранять работоспособность при нагрузке на конце этой штанги равной 1 Ньютону. Нетрудно догадаться, что, чем ближе к оси выходного вала прикладывается нагрузка, тем больший крутящий момент может выдержать редуктор. Для простоты расчётов можно перевести силу Ньютона в усилие, создаваемое килограммом. Усилие 1 килограмма равен 9,81 Ньютона.
Давайте рассмотрим на примере цилиндрического двухступенчатого редуктора РМ-650. Возьмём самое распространённое передаточное число – 31,5, обороты на входном валу – 1500 в минуту, режим работы – 100% нагрузка. Конструктивно в этом редукторе заложен максимально допустимый крутящий момент при указанных условиях равный 5116 Н.м. Что это означает? Это говорит о том, что при радиусе, допустим, барабана в 1 метр, одетого на выходной вал, редуктор РМ-650 будет выдерживать нагрузку в 5116 Ньютонов или поднимать груз в 520 кг. Соответственно, если радиус барабана будет 0,5 метра, то нагрузка допускается 10232 Н.м. или 1040 кг. Нетрудно догадаться, что создаваемый в механизме крутящий момент определяется произведением силы на длину рычага.
Для чего нужен допустимый крутящий момент редуктора?
В любом механизме или оборудовании редуктор служит промежуточным звеном между двигателем и исполнительным узлом. Для чего и зачем он нужен? Электродвигатель, имея какие-либо обороты и мощность, лишь косвенно отражает способность привода выдержать нагрузку, создаваемую механизмом. На практике редко двигатель передаёт напрямую вращение к конечному узлу или устройству, поскольку при работе куда важнее создаваемая тяга, которая создаётся за счёт передаточного числа редуктора. Определяется всё это определяется на стадии выбора габарита редуктора.
Чем определяется допустимый крутящий момент редукторов?
Начнём с того, что в червячных и цилиндрических редукторах допустимый крутящий момент определяется совершенно разными факторами. Рассмотрим по порядку:
Дополнительно отметим, что у червячных редукторов больше потери на трение, что снижает их КПД по сравнению с цилиндрическими редукторами. В каталоге возможно сравнить характеристики различных редукторов.
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент [M2max] – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где
Mr2 – необходимый крутящий момент;
Sf – сервис-фактор (эксплуатационный коэффициент);
Mn2 – номинальный крутящий момент.
Любой механический редуктор снижает обороты, передаваемые на его первичный вал, в определённое количество раз. Данная величина называется передаточным число. Однако, помимо передаточного числа, каждый редуктор имеет такую характеристику, как крутящий момент на выходном валу.
Крутящий момент редуктора – что это означает?
Существует общепризнанная единица измерения крутящего момента – Ньютоно – метры. То есть, если к выходному валу редуктора присоединить какую-либо штангу длиной один метр, то привод должен сохранять работоспособность при нагрузке на конце этой штанги равной 1 Ньютону. Нетрудно догадаться, что, чем ближе к оси выходного вала прикладывается нагрузка, тем больший крутящий момент может выдержать редуктор. Для простоты расчётов можно перевести силу Ньютона в усилие, создаваемое килограммом. Усилие 1 килограмма равен 9,81 Ньютона.
Давайте рассмотрим на примере цилиндрического двухступенчатого редуктора РМ-650. Возьмём самое распространённое передаточное число – 31,5, обороты на входном валу – 1500 в минуту, режим работы – 100% нагрузка. Конструктивно в этом редукторе заложен максимально допустимый крутящий момент при указанных условиях равный 5116 Н.м. Что это означает? Это говорит о том, что при радиусе, допустим, барабана в 1 метр, одетого на выходной вал, редуктор РМ-650 будет выдерживать нагрузку в 5116 Ньютонов или поднимать груз в 520 кг. Соответственно, если радиус барабана будет 0,5 метра, то нагрузка допускается 10232 Н.м. или 1040 кг. Нетрудно догадаться, что создаваемый в механизме крутящий момент определяется произведением силы на длину рычага.
Для чего нужен допустимый крутящий момент редуктора?
В любом механизме или оборудовании редуктор служит промежуточным звеном между двигателем и исполнительным узлом. Для чего и зачем он нужен? Электродвигатель, имея какие-либо обороты и мощность, лишь косвенно отражает способность привода выдержать нагрузку, создаваемую механизмом. На практике редко двигатель передаёт напрямую вращение к конечному узлу или устройству, поскольку при работе куда важнее создаваемая тяга, которая создаётся за счёт передаточного числа редуктора. Определяется всё это определяется на стадии выбора габарита редуктора.
Чем определяется допустимый крутящий момент редукторов?
Начнём с того, что в червячных и цилиндрических редукторах допустимый крутящий момент определяется совершенно разными факторами. Рассмотрим по порядку:
Дополнительно отметим, что у червячных редукторов больше потери на трение, что снижает их КПД по сравнению с цилиндрическими редукторами. В каталоге возможно сравнить характеристики различных редукторов.
КРУТЯЩИЙ МОМЕНТ РЕДУКТОРА
Как рассчитать передаточное число и крутящий момент?
Редуктор — это устройство, которое преобразует входную скорость и крутящий момент. Под преобразованием мы подразумеваем усиление момента или сокращение частоты вращения. Уровень трансформации определяется передаточным числом. Передаточное число получается за счет зацепления двух и более прямозубых или косозубых шестерен.
Редуктор обычно используется как устройство для усиления крутящего момента. Например, вам нужно привести в действие гидравлический насос, которому требуется большой крутящий момент. Ваш источник энергии электродвигатель. Между мотором и насосом устанавливаем понижающий редуктор.
Как рассчитать передаточное число?
В таблице ниже приведены физические значения, которые мы собираемся использовать в наших расчетах. Со знаком вопроса (?) переменные, которые нам нужно вычислить.
Переменная | Описание | Данные | Единица измерения |
zIN | количество зубьев входной шестерни | 16 | — |
zOUT | количество зубьев ведомой шестерни | 24 | — |
rIN | базовый радиус входной шестерни | 80 | мм |
rOUT | базовый радиус ведомой шестерни | 120 | мм |
i | передаточное число | ? | — |
TqIN | входной крутящий момент | 250 | Нм |
TqOUT | выходной крутящий момент | ? | Нм |
ωIN | входная (вращательная) скорость | 1500 | об / мин |
ωOUT | выходная (вращательная) скорость | ? | об / мин |
Ft | контактная (касательная) сила | (нет потребности) | N |
vt | контактная (касательная) скорость | (нет потребности) | РС |
Под входными данными мы понимаем источник энергии, в нашем случае это может быть электродвигатель.
Передаточное число i можно рассчитать двумя способами:
i=zOUT/zIN
i=rOUT/rIN
Базовый радиус измеряется от центра вращения шестерни до точки контакта зубьев. Тот же результат достигается при использовании внешнего радиуса, который проходит от центра шестерни до вершины зубьев.
Заменяя математические выражения на фактическое количество зубьев и радиус, получаем передаточное число i :
i=zOUT/zIN=rOUT/rIN=24/16=120/80=1
Соотношение между выходным крутящим моментом и входным крутящим моментом следующее:
TqOUT=i⋅TqIN
Зубчатый редуктор будет увеличивать входной крутящий момент во столько раз, сколько передаточное число:
TqOUT=1.5⋅250=375 Nm
Соотношение между выходной скоростью и входной скоростью следующее:
ωOUT=ωIN/i
Зубчатый редуктор снизит входную скорость в несколько раз, равное передаточному отношению:
ωOUT=1500/1.5=1000 rpm
В точке контакта между зубьями шестерен возникает касательная сила. Эта касательная сила может быть вычислена функцией входной шестерни и функцией выходной шестерни.
Tqin=rIN⋅Ft
Отсюда извлекаем тангенциальную силу:
Ft=TqIN/rIN
Такое же усилие действует на ведомую шестерню:
Ft=TqOUT/rOUT
Соединяя два математических выражения тангенциальной силы, мы получаем:
TqOUT/rOUT = TqIN/rIN
TqOUT = (rOUT/rIN)⋅TqIN
TqOUT = i⋅TqIN
Теперь давайте продемонстрируем влияние передаточного числа на выходную скорость. Мы используем то же изображение, что и выше, но с обозначениями скорости вместо сил.
Схема скоростей зубчатой передачи
Тангенциальная скорость в точке контакта двух шестерен одинакова. В качестве тангенциальной силы мы можем записать функцию тангенциальной скорости входной шестерни и выходной шестерни:
vt=ωIN⋅rIN
Такая же скорость применяется на выходной шестерне:
vt=ωOUT⋅rOUT
Соединяя два математических выражения тангенциальной скорости, мы получаем:
ωOUT⋅rOUT = ωIN⋅rIN
ωOUT = (rIN/rOUT) ⋅ωIN
ωOUT = ωIN/i
В конце этой статьи вы должны знать, как рассчитать функцию передаточного числа шестерен, а также влияние передаточного числа на крутящий момент и скорость.
Выбор мотор-редуктора по крутящему моменту
Зубчатые передачи внутри редуктора обеспечивают механическое преобразование, которое увеличивает крутящий момент от входного вала к выходному. Это механическое преобразование называется передаточным числом редуктора и является значением, используемым для определения увеличения крутящего момента от входа к выходу. Например, передаточное число редуктора 30: 1 означает, что выходная сторона примерно в 30 раз сильнее, чем входная. Таким образом, если мотор-редуктор должен создавать крутящий момент при полной нагрузке 30 Нм на своем выходном валу, то входной крутящий момент должен составлять 1,0 Нм. (В этом простом примере не учитываются внутренние потери зубчатой передачи, измеряемые ее общим КПД.) Если известно требование к входному крутящему моменту, легко рассчитать требуемую потребляемую мощность двигателя на основе его входной скорости. Это как раз тот момент, когда многие люди хотят сосредоточиться на входной мощности двигателя. Расчеты конструкторы должны начать с определения, какой именно крутящий момент требуется на выходном валу редуктора, а затем работать в обратном направлении, чтобы определить требуемую входную мощность двигателя.
Чтобы повысить энергоэффективность, тщательно подумайте о типе двигателя и КПД редуктора.
В некоторых случаях можно значительно повысить эффективность мотор-редуктора, заменив двигатель переменного тока с постоянным разделенным конденсатором на двигатель постоянного тока с постоянным магнитом. Они могут иметь больший потенциал максимальной эффективности, но их эффективность может быть намного ниже в фактической рабочей точке нагрузки устройства. Также имейте в виду, что мотор-редукторы с трехфазным приводом намного эффективнее однофазного эквивалента (например, 64% против 53%) и более надежны из-за своей упрощенной конструкции. Однако, когда трехфазное питание недоступно, требуется частотно-регулируемый привод для преобразования однофазного входа в трехфазный выход для мотор-редуктора. Современные частотно-регулируемые приводы экономичны и быстро окупаются, если учесть их встроенные функции, такие как плавный пуск для уменьшения механических ударов и увеличения срока службы оборудования.
РИС. 3. Насадные мотор-редукторы
Расчет крутящего момента мотор-редуктора.
Основой расчёта крутящего момента редуктора является следующая формула:
Mc2 = Mr2 * Sf
где Mr2 – показатель, требуемый для мотор-редуктора, а Sf –коэффициент, зависящий от особенностей эксплуатации. Итоговое значение крутящего момента редуктора не может превышать номинального Mn2.
Параметр Mn2, как и некоторые другие, например, Рn – мощность, М2max – параметр пиковой нагрузки, КПД, срок наработки на отказ и т.п. обозначены в паспорте изделия.
Таким образом выбор редуктора на основании значения крутящего момента носит всегда индивидуальный характер и представляет собой не всегда простую задачу.
Правильный расчет и подбор мотор-редуктора.
При выборе двигателя с редуктором важно знать, соответствуют ли расчетные характеристики выходной мощности, а также учитываются ли КПД редуктора.
Чтобы увеличить общую эффективность мотор-редуктора. Избегайте снижения эффективности двигателя из-за перегрева. Хотя червячные редукторы являются хорошим решением для ограниченного пространства, их КПД составляет всего 50%; напротив, прямозубые и косозубые шестерни, используемые в редукторах с параллельными валами, обычно имеют КПД около 98%. В ограниченных пространствах рассмотрите вариант мотор-редуктора со смещенным параллельным валом, в котором прямозубые цилиндрические и косозубые шестерни с более высоким КПД расположены вертикально, а выходной вал образует компактную U- или S-образную конфигурацию относительно приводного двигателя.
Крутящий момент редуктора
Крутящий момент редуктора
Unfortunately, you are using an outdated browser. Please update your browser to improve performance, quality of the displayed material, and improve security.
Крутящий момент редуктора
Принцип мотор-редуктора заключается в одновременном уменьшении количества оборотов, передаваемых на быстроходный вал и наращивании (контроле) силы, получаемой выходным валом. Обе величины – снижение оборотов и увеличение крутящего момента – являются ключевыми техническими характеристиками. Первую определяет передаточное число, а что собой представляет вторая величина?
Суть показателя
Согласно технической терминологии, крутящий момент редуктора – это расчетный показатель, вычисляемый произведением прилагаемой силы и длины плеча ее приложения (рычага) в метрах. Измеряется в Ньютон-метрах (1 Н*м означает, что при присоединении рычага длиной 1 м усилие, прилагаемое на его конце, не должно превышать 1 Ньютона, иначе привод не будет работать).
При «переходе» на килограммы получаем, что при метровой длине рычага (радиусе барабана, например, на тихоходном выходном валу) механизм сможет поднять максимальный груз весом 0,522 т (5116/9,81 = 521,5 кг). Приближение точки приложенного усилия – укорочение рычага вдвое до 50 см – даст увеличение показателя до 10232 Н*м. То есть максимальный вес груза на конце рычага увеличится до 1,043 т.
Максимально допустимый крутящий момент редуктора
Допустимый крутящий момент мотор-редуктора определяет условия, при которых последний сможет выдерживать усилие, чтобы обеспечить нормальную работу пары «электродвигатель – рабочий механизм», промежуточным звеном которой и выступает мотор-редуктор. При этом ключевым условием является нагнетаемая тяга, а она зависит от передаточного числа.
Крутящий момент мотор-редуктора в зависимости от его исполнения
Расчет начинается с типа устройства – для червячного редуктора и цилиндрического применяются разные подходы. Это связано со спецификой исполнения червячной и цилиндрической передачи.
Так, в червячном редукторе показатель, который отвечает за длину плеча прилагаемого усилия, с изменением модели, практически не меняется. Итоговый крутящий момент мотор-редуктора в большей степени зависит от прилагаемого усилия, которое меняется с увеличением количества зубьев на вращающемся колесе, а радиус рычага – колеса и червяка – становятся условной константой.
На выходе при всех условиях наибольшая толщина колесного зуба в червячном редукторе (мотор-редукторе) фиксируется при одном передаточном числе – 31,5. Поскольку нагрузка на него определяется толщиной зубьев (чем она больше, тем выше допустимый крутящий момент мотор-редуктора), такой принцип задает условия технического расчета. Правда, при расчетах крутящего момента редуктора следует учитывать и другие его конструктивные особенности – потери из-за трения по сравнению с цилиндрическими устройствами и сниженный КПД.
С механизмами на цилиндрической передаче ситуация обстоит иначе. Здесь нагнетаемая тяга создается за счет разницы диаметров шестерен. Диаметр/радиус шестерни цилиндрического модуля, таким образом, выступает ключевым фактором при расчете. А прилагаемое усилие одинаковое (в пределах серии) – зубья цилиндрической передачи нарезаются в одном размере для всех передаточных чисел.
Расчет крутящего момента мотор-редуктора
Расчет крутящего момента редуктора на валу производится с учетом условий его установки:
В мешалках разного типа или бурах хорошо себя показали 3МП и 4МП. Они «заточены» на равномерное распределение радиальной нагрузки, что важно при обслуживании механизмов такого принципа действия.
Для машин, занятых перемещением тяжелых грузов, на первое место выходит выносливость. Здесь подходят мотор-редукторы 1МЦ2С/4МЦ2С (крутящий момент редуктора на выходном валу увеличен).
Выбор мотор-редуктора по крутящему моменту
При выборе редуктора по крутящему моменту используют несколько показателей:
Расчет крутящего момента мотор-редуктора на выходном валу Mc2 производят по формуле:
где Mr2 – это необходимый (требуемый) показательдля мотор-редуктора, а Sf – эксплуатационный коэффициент мотор-редуктора (Service Factor). Результирующий показатель крутящего момента редуктора по формуле не может превышать номинального Mn2.
Профессиональный расчет и заказ мотор-редуктора
Если вы хотите получить качественную помощь в выборе изделий, наши специалисты помогут вам рассчитать крутящий момент редуктора (мотор-редуктора) на выходном валу и подобрать наиболее подходящую модель под конкретные условия его эксплуатации. ООО ПТЦ «Привод» занимается производством данных механизмов и поставляет свою продукцию по всей России, в страны ближнего зарубежья (СНГ).
Доверьте подбор редуктора Группе Компаний «Элком»!
С недавних пор Группа Компаний «Элком» предоставляет на своём сайте уникальную возможность — самостоятельный подбор мотор-редуктора. В данном материале содержится подробная информация о том, как правильно и быстро подобрать необходимый Вам червячный мотор-редуктор. Надеемся, что предложенные сведения дадут детальное понимание процесса подбора мотор-редуктора, и окажутся Вам полезны.
Осуществляется подбор посредством стыковки редукторных частей ESQ NMRW и общепромышленных двигателей 5АИ производства ГК «Элком».
Таким образом, для того чтобы узнать соответствующую заданным параметрам модель, клиенту нужно только обозначить желаемые характеристики и выбрать один из двенадцати предустановленных диапазонов сервис-фактора — всё остальное рассчитает программа.
При выборе червячного мотор-редуктора учитываются основные технические характеристики:
Что такое передаточное отношение I и обороты на выходном валу мотор-редуктора.
Передаточное отношение — это разница между скоростью вращения входного вала и выходного вала. (По сути если i = 10, то входной вал редуктора сделает 10 оборотов в минуту а выходной 1 оборот в минуту).
— это отношение числа зубьев ведомого зубчатого колеса к числу зубьев ведущего колеса. Передаточное число зубчатой передачи определяется по формуле:
В червячной редукторной части NMRW используются передаточные отношения:
5; 7,5; 10; 15; 20; 25; 30; 40; 50; 60; 80; 100.
Рассмотрим расчёт оборотов на выходном валу мотор-редуктора на примере редукторной части NMRW с двигателем.
Возьмём редукторную часть червячного мотор-редуктора NMRW150-60/100 B5. В данном случае i=60, т. е. данная редукторная часть имеет передаточное отношение 60. Соединим данную редукторную часть с различными двигателями для расчета оборотов на выходном валу мотор-редуктора:
100 L2 5.5/3000 Китай (5АИ). При соединении данного двигателя с редуктором (редукторной частью) с передаточным отношением 60 мы получим мотор-редуктор с оборотами на выходе около 50 об/мин.
Что мы сделали, для расчета оборотов на выходе мотор-редуктора? Мы разделили 3000 на 60 и получили 50.
100 L4 4.0/1500 Китай (5АИ). При соединении данного двигателя с редуктором (редукторной частью) с передаточным отношением 60 мы получим мотор-редуктор с оборотами на выходе около 25 об/мин.
Что мы сделали, для расчета оборотов на выходе мотор-редуктора? Мы разделили 1500 на 60 и получили 25.
100 L6 2.2/1000 Китай (5АИ). При соединении данного двигателя с редуктором (редукторной частью) с передаточным отношением 60 мы получим мотор-редуктор с оборотами на выходе около 17 об/мин.
Что мы сделали, для расчета оборотов на выходе мотор-редуктора? Мы разделили 1000 на 60 и получили 16,6.
Крутящий момент мотор-редуктора M2
Крутящий момент (синонимы: момент силы; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело. Если по простому, то это усилие с которым мотор-редуктор вращает выходной вал.
Энергия, которую электродвигатель передает редуктору в основном передается на оборудование с понижением оборотов выходного вала и частично уходит на преодоление силы трения, которое сопровождается выделением тепла (происходит нагрев редуктора).
Если попробовать представить крутящий момент графически, то это будет выглядеть так:
Крутящий момент (синонимы: момент силы; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело. Если по простому, то это усилие с которым мотор-редуктор вращает выходной вал.
Энергия, которую электродвигатель передает редуктору в основном передается на оборудование с понижением оборотов выходного вала и частично уходит на преодоление силы трения, которое сопровождается выделением тепла (происходит нагрев редуктора).
Если попробовать представить крутящий момент графически, то это будет выглядеть так:
Формула крутящего момента
Расчет крутящего момента для мотор-редуктора NMRW 150-48-5,5-B3.
Сервис-фактор f.s.
Для определения числового значения f.s. необходимо знать:
характер нагрузки;
продолжительность работы привода в сутки;
число включений в час.
Формула сервис-фактора
Номинальный крутящий момент — это максимальный крутящий момент, на безопасную передачу которого рассчитан редуктор, исходя из следующих величин:
Рабочий крутящий момент — это крутящий момент, который выдает редуктор при определенном двигателе соединенным с данным редуктором.
Рассчитаем сервис-фактор для мотор-редуктора NMRW 150-48-5,5-B3.
Для мотор-редуктора NMRW 150-48-5,5-B3 (двигатель 5,5-3000) рабочий крутящий момент составляет 816Н*м. Как считали: РКМ=(5,5кВт*9550/48об/мин)*0,738=816Н*м
Номинальный крутящий момент для редукторной части NMRW150-60 — 990Н*м. Найти его можно на 26 стр. каталога NMRW. Смотрим таблицу NMRW150, находим передаточное отношение 60 и цифра в столбце М2 = 990 Н*м.
Рассчитываем сервис-фактор: f.s.=990/816=1,21
В результате произведенных расчетов у Вас появится информация, воспользовавшись которой Вы, не обладая техническим образованием, не имея на руках каталогов и специальной литературы, сможете подобрать нужный мотор-редуктор.
Например, Вам нужен мотор-редуктор со следующими характеристиками:
Воспользуйтесь таблицей быстрого подбора и определите подходящий именно Вам мотор-редуктор менее чем за 5 секунд! Ждём Вас на нашем сайте.
Все мотор-редукторы находятся на нашем складе в наличии, всё что Вам нужно — оставить заказ или связаться с нами по телефону +7 (812) 320-88-81 доб. 21 97