кэс что это за станция

Конденсационная электростанция

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Содержание

История

Первая ГРЭС «Электропередача», сегодняшняя ГРЭС-3 им. Р. Э. Классона, сооружена под Москвой в г. Электрогорске в 1912—1914 гг. по инициативе инженера Р. Э. Классона. Основное топливо — торф, мощность — 15 МВт. В 1920-х годах планом ГОЭЛРО предусматривалось строительство нескольких тепловых электростанций, среди которых наиболее известны Каширская ГРЭС и Шатурская ГРЭС.

Принцип работы

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

В котёл с помощью питательного насоса подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идёт процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, передающейся питательной воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C с давлением 13–24 МПа и по одному или нескольким трубопроводам подаётся в паровую турбину.

Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя.

Благодаря этой особенности технологического процесса конденсационные электростанции и получили своё название.

Основные системы

КЭС является сложным энергетическим комплексом, состоящим из зданий, сооружений, энергетического и иного оборудования, трубопроводов, арматуры, контрольно-измерительных приборов и автоматики. Основными системами КЭС являются:

При проектировании и строительстве КЭС её системы размещаются в зданиях и сооружениях комплекса, в первую очередь в главном корпусе. При эксплуатации КЭС персонал, управляющий системами, как правило, объединяется в цеха (котлотурбинный, электрический, топливоподачи, химводоподготовки, тепловой автоматики и т. п.).

Котельная установка располагается в котельном отделении главного корпуса. В южных районах России котельная установка может быть открытой, то есть не иметь стен и крыши. Установка состоит из паровых котлов (парогенераторов) и паропроводов. Пар от котлов передается турбинам по паропроводам «острого» пара. Паропроводы различных котлов, как правило, не соединяются поперечными связями. Такая схема называется «блочной».

Паротурбинная установка располагается в машинном зале и в деаэраторном (бункерно-деаэраторном) отделении главного корпуса. В неё входят:

Топливное хозяйство имеет различный состав в зависимости от основного топлива, на которое рассчитана КЭС. Для угольных КЭС в топливное хозяйство входят:

Система пылеприготовления, а также бункера угля располагаются в бункерно-деаэраторном отделении главного корпуса, остальные устройства топливоподачи — вне главного корпуса. Изредка устраивается центральный пылезавод. Угольный склад рассчитывается на 7-30 дней непрерывной работы КЭС. Часть устройств топливоподачи резервируется.

Топливное хозяйство КЭС на природном газе наиболее просто: в него входит газораспределительный пункт и газопроводы. Однако на таких электростанциях в качестве резервного или сезонного источника используется мазут, поэтому устраивается и мазутное хозяйство. Мазутное хозяйство сооружается и на угольных электростанциях, где мазут применяется для растопки котлов. В мазутное хозяйство входят:

Система золошлакоудаления устраивается только на угольных электростанциях. И зола, и шлак — негорючие остатки угля, но шлак образуется непосредственно в топке котла и удаляется через лётку (отверстие в шлаковой шахте), а зола уносится с дымовыми газами и улавливается уже на выходе из котла. Частицы золы имеют значительно меньшие размеры (порядка 0,1 мм), чем куски шлака (до 60 мм). Системы золошлакоудаления могут быть гидравлические, пневматические или механические. Наиболее распространённая система оборотного гидравлического золошлакоудаления состоит из смывных аппаратов, каналов, багерных насосов, пульпопроводов, золошлакоотвалов, насосных и водоводов осветлённой воды.

Выброс дымовых газов в атмосферу является наиболее опасным воздействием тепловой электростанции на окружающую природу. Для улавливания золы из дымовых газов после дутьевых вентиляторов устанавливают фильтры различных типов (циклоны, скрубберы, электрофильтры, рукавные тканевые фильтры), задерживающие 90—99 % твёрдых частиц. Однако для очистки дыма от вредных газов они непригодны. За рубежом, а в последнее время и на отечественных электростанциях (в том числе газо-мазутных), устанавливают системы десульфуризации газов известью или известняком (т. н. deSOx) и каталитического восстановления оксидов азота аммиаком (deNOx). Очищенный дымовой газ выбрасывается дымососом в дымовую трубу, высота которой определяется из условий рассеивания оставшихся вредных примесей в атмосфере.

Электрическая часть КЭС предназначена для производства электрической энергии и её распределения потребителям. В генераторах КЭС создается трехфазный электрический ток напряжением обычно 6—24 кВ. Так как с повышением напряжения потери энергии в сетях существенно уменьшаются, то сразу после генераторов устанавливаются трансформаторы, повышающие напряжение до 35, 110, 220, 500 и более кВ. Трансформаторы устанавливаются на открытом воздухе. Часть электрической энергии расходуется на собственные нужды электростанции. Подключение и отключение отходящих к подстанциям и потребителям линий электропередачи производится на открытых или закрытых распределительных устройствах (ОРУ, ЗРУ), оснащенных выключателями, способными соединять и разрывать электрическую цепь высокого напряжения при номинальном токе или токах короткого замыкания с образованием и гашением электрической дуги.

Система технического водоснабжения обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин. Системы разделяются на прямоточные, оборотные и смешанные. В прямоточных системах вода забирается насосами из естественного источника (обычно из реки) и после прохождения конденсатора сбрасывается обратно. При этом вода нагревается примерно на 8—12 °C, что в ряде случаев изменяет биологическое состояние водоёмов. В оборотных системах вода циркулирует под воздействием циркуляционных насосов и охлаждается воздухом. Охлаждение может производиться на поверхности водохранилищ-охладителей или в искусственных сооружениях: брызгальных бассейнах или градирнях.

В маловодных районах вместо системы технического водоснабжения применяются воздушно-конденсационные системы (сухие градирни), представляющие собой воздушный радиатор с естественной или искусственной тягой. Это решение обычно вынужденное, так как они дороже и менее эффективны с точки зрения охлаждения.

Система химводоподготовки обеспечивает химическую очистку и глубокое обессоливание воды, поступающей в паровые котлы и паровые турбины, во избежание отложений на внутренних поверхностях оборудования. Обычно фильтры, ёмкости и реагентное хозяйство водоподготовки размещается во вспомогательном корпусе КЭС. Кроме того, на тепловых электростанциях создаются многоступенчатые системы очистки сточных вод, загрязненных нефтепродуктами, маслами, водами обмывки и промывки оборудования, ливневыми и талыми стоками.

Влияние на окружающую среду

Воздействие на атмосферу

При горении топлива потребляется большое количество кислорода, а также происходит выброс значительного количества продуктов сгорания таких как: летучая зола, газообразные окислы углерода, серы и азота, часть которых имеет большую химическую активность, и радиоактивные элементы, содержащиеся в исходном топливе. Также выделяется большое количество тяжелых металлов, в том числе ртуть и свинец.

Воздействие на гидросферу

Прежде всего, сброс воды из конденсаторов турбин, а также промышленные стоки.

Воздействие на литосферу

Для захоронения больших масс золы требуется много места. Данные загрязнения снижаются использованием золы и шлаков в качестве строительных материалов.

Примечания

См. также

Литература

Полезное

Смотреть что такое «Конденсационная электростанция» в других словарях:

КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ — (КЭС) ТЭС, рабочий двигатель которой конденсационная турбина. Полная мощность КЭС достигает нескольких ГВт: Рефтинская и Костромская ГРЭС (Российская Федерация) 3,8 и 3,6 ГВт, Кашима (Япония) 4,4 ГВт … Большой Энциклопедический словарь

конденсационная электростанция — КЭС Паротурбинная электростанция, предназначения для производства электрической энергии. [ГОСТ 26691 85] Тематики теплоэнергетика в целом Синонимы КЭС … Справочник технического переводчика

Конденсационная электростанция — 18. Конденсационная электростанция Паротурбинная электростанция, предназначения для производства электрической энергии Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 3.8 конденсационная электростанция :… … Словарь-справочник терминов нормативно-технической документации

КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ — паротурбинная электростанция, вырабатывающая только электрич. энергию. Отработавший в турбинах пар превращается в конденсаторах при глубоком вакууме в воду, направляемую в котельные агрегаты К. э. для повторного использования. Повышение нач.… … Большой энциклопедический политехнический словарь

конденсационная электростанция — (КЭС), ТЭС, рабочий двигатель которой конденсационная турбина. Полная мощность КЭС достигает нескольких ГВт: Рефтинская и Костромская ГРЭС (Россия) 3,8 и 3,6 ГВт, Кашима (Япония) 4,4 ГВт. * * * КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ КОНДЕНСАЦИОННАЯ… … Энциклопедический словарь

конденсационная электростанция — kondensacinė elektrinė statusas T sritis Energetika apibrėžtis Garo turbininė elektrinė, kai kondensuojamas garas kondensatoriuje turbinos gale labai išretėja, todėl padidėja garo slėgių skirtumas prieš turbiną ir už jos ir mažiau sunaudojama… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Конденсационная электростанция — (КЭС) тепловая паротурбинная электростанция, назначение которой производство электрической энергии с использованием конденсационных турбин (См. Конденсационная турбина). На КЭС применяется органическое топливо: твердое топливо,… … Большая советская энциклопедия

Электростанция — электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В… … Большая советская энциклопедия

конденсационная атомная электростанция — Атомная электростанция, предназначенная для производства электрической энергии. [ГОСТ 26691 85] Тематики теплоэнергетика в целом … Справочник технического переводчика

Конденсационная атомная электростанция — АЭС 27. Конденсационная атомная электростанция Атомная электростанция, предназначенная для производства электрической энергии Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 27. Конденсационная атомная… … Словарь-справочник терминов нормативно-технической документации

Источник

Конденсационные электрические станции

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Кондесационными называют паровые турбины, у которых пар после отработки подвергается конденсации в специальных устройствах – конденсаторах. Соответственно и тепловые электростанции, которые снабжают потребителя только электрический энергией, называют конденсационными (КЭС).

Как и другие промышленные предприятия конденсационные электростанции тоже имеют производственные цеха и помещения. К основным цехам можно отнести котельную, зал турбогенераторов и цех распределительных электрических устройств. Все эти цеха оборудуются множеством вспомогательного оборудования (очистка воды, подача топлива, насосы, дымососы и множество другого оборудования).

Давайте рассмотрим схему производственных процессов конденсационной электростанции:

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Из – за разности в температуре и давлении на входе и выходе турбины пар, проходящий через нее, совершает механическую работу и вращает вал турбины, а вместе с ним и генератор 19, вырабатывающий электрический ток.

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Механическая работа, которая совершается паром, с увеличением разности между давлением и температурой входящего и выходящего пара будет расти. Поэтому чем больше используется энергия, выработанная на конденсационной электростанции, тем выше ее КПД. Также наряду с повышением давления пара входящего в турбину стараются параллельно и снизить давление его при выходе, то есть на выходе он должен иметь давление ниже атмосферного. После выполнения механической работы отработанный пар направляется по трубам в конденсатор 18. Конденсатор – это цилиндр, внутри которого располагают трубы, по которым циркулирует холодная вода, а пар, пришедший из турбины, омывая эти трубы, превращается в результате охлаждения в дистиллированную воду. Через подогреватель низкого давления 14 конденсат с помощью насоса 15 направляется в деаэратор 13. Деаэратор служит для очистки конденсата от различных растворенных газов, и особенно от кислорода, поскольку он вызывает интенсивную коррозию труб котла конденсационных электростанций. В деаэраторе хранится питательная вода, которая служит для восполнения потерь воды и пара, поэтому добавочная вода, поступающая в него, проходит через водоочистительные сооружения. С помощью насоса 12 из деаэратора питательная вода через подогреватель высокого давления 11 и водяной экономайзер 6 подается в котел конденсационной электрической станции.

Холодную воду из реки или другого источника 16 для конденсации пара в конденсаторе насосом 17 подают холодную воду. Так как через трубы протекает довольно большое количество воды, то ее температура на выходе с конденсатора, как правило, не превышает 25-36 0 С. Воду с такой температурой невозможно использовать для обслуживания бытовых или промышленных потребителей, поэтому ее сбрасывают в пруд или реку (рисунок а):

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Если поблизости водоемов нет, то для охлаждения используют башни-охладители (градирен) (рисунок б), или же, брызгательные бассейны (рисунок в). Таким образом, на конденсационных электрических станциях воду используют по замкнутому циклу.

Вырабатываемая электрическими генераторами на станции электрическая энергия при напряжении 10 кВ подается на открытую повышающую трансформаторную подстанции 21, на которой электрическое напряжение генератора 10 кВ будет повышено до значений 110, 220, 500 кВ или выше и подается по линиям электропередач ЛЭП до потребителей. Тепловые конденсационные электростанции имеют очень низкий КПД порядка 30-40%. Именно из-за низкого КПД работа конденсационных электростанций на привозном топливе экономически нецелесообразна. В большинстве случаев крупные конденсационные электрические станции называют Государственными районными электрическими станциями (ГРЭС) и сооружаются в районах с большими запасами низкосортного топлива, снабжая при этом электрической энергией потребителей, которые находятся на большом расстоянии от электростанций.

Источник

Конденсационная электростанция

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Полезное

Смотреть что такое «Конденсационная электростанция» в других словарях:

КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ — (КЭС) ТЭС, рабочий двигатель которой конденсационная турбина. Полная мощность КЭС достигает нескольких ГВт: Рефтинская и Костромская ГРЭС (Российская Федерация) 3,8 и 3,6 ГВт, Кашима (Япония) 4,4 ГВт … Большой Энциклопедический словарь

конденсационная электростанция — КЭС Паротурбинная электростанция, предназначения для производства электрической энергии. [ГОСТ 26691 85] Тематики теплоэнергетика в целом Синонимы КЭС … Справочник технического переводчика

Конденсационная электростанция — Яйвинская ГРЭС Конденсационная электростанция (КЭС) тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы. Исторически по … Википедия

Конденсационная электростанция — 18. Конденсационная электростанция Паротурбинная электростанция, предназначения для производства электрической энергии Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 3.8 конденсационная электростанция :… … Словарь-справочник терминов нормативно-технической документации

КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ — паротурбинная электростанция, вырабатывающая только электрич. энергию. Отработавший в турбинах пар превращается в конденсаторах при глубоком вакууме в воду, направляемую в котельные агрегаты К. э. для повторного использования. Повышение нач.… … Большой энциклопедический политехнический словарь

конденсационная электростанция — (КЭС), ТЭС, рабочий двигатель которой конденсационная турбина. Полная мощность КЭС достигает нескольких ГВт: Рефтинская и Костромская ГРЭС (Россия) 3,8 и 3,6 ГВт, Кашима (Япония) 4,4 ГВт. * * * КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ КОНДЕНСАЦИОННАЯ… … Энциклопедический словарь

конденсационная электростанция — kondensacinė elektrinė statusas T sritis Energetika apibrėžtis Garo turbininė elektrinė, kai kondensuojamas garas kondensatoriuje turbinos gale labai išretėja, todėl padidėja garo slėgių skirtumas prieš turbiną ir už jos ir mažiau sunaudojama… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Электростанция — электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В… … Большая советская энциклопедия

конденсационная атомная электростанция — Атомная электростанция, предназначенная для производства электрической энергии. [ГОСТ 26691 85] Тематики теплоэнергетика в целом … Справочник технического переводчика

Конденсационная атомная электростанция — АЭС 27. Конденсационная атомная электростанция Атомная электростанция, предназначенная для производства электрической энергии Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 27. Конденсационная атомная… … Словарь-справочник терминов нормативно-технической документации

Источник

Конденсационная электростанция

тепловая паротурбинная электростанция, назначение которой — производство электрической энергии с использованием конденсационных турбин (См. Конденсационная турбина). На КЭС применяется органическое топливо: твердое топливо, преимущественно уголь разных сортов в пылевидном состоянии, газ, мазут и т. п. Тепло, выделяемое при сжигании топлива, передаётся в котельном агрегате (парогенераторе) рабочему телу, обычно — водяному пару. КЭС, работающую на ядерном горючем, называют атомной электростанцией (См. Атомная электростанция) (АЭС) или конденсационной АЭС (АКЭС). Тепловая энергия водяного пара преобразуется в конденсационной турбине в механическую энергию, а последняя в электрическом генераторе — в электрическую энергию. Отработавший в турбине пар конденсируется, конденсат пара перекачивается сначала конденсатным, а затем питательным насосами в паровой котёл (котлоагрегат, парогенератор). Таким образом создаётся замкнутый пароводяной тракт: паровой котёл с пароперегревателем — паропроводы от котла к турбине — турбина — конденсатор — конденсатный и питательные насосы — трубопроводы питательной воды — паровой котёл. Схема пароводяного тракта является основной технологической схемой паротурбинной электростанции и носит название тепловой схемы КЭС.

Для конденсации отработавшего пара требуется большое количество охлаждающей воды с температурой 10—20°С (около 10 м 3 /сек для турбин мощностью 300 Мвт). КЭС являются основным источником электроэнергии в СССР и большинстве промышленных стран мира; на долю КЭС в СССР приходится 2 /3 общей мощности всех тепловых электростанций страны. КЭС, работающие в энергосистемах Советского Союза, называют также ГРЭС.

Первые КЭС, оборудованные паровыми машинами, появились в 80-х гг. 19 в. В начале 20 в. КЭС стали оснащать паровыми турбинами. В 1913 в России мощность всех КЭС составляла 1,1 Гвт. Строительство крупных КЭС (ГРЭС) началось в соответствии с планом ГОЭЛРО; Каширская ГРЭС и Шатурская электростанция им. В. И. Ленина были первенцами электрификации СССР. В 1972 мощность КЭС в СССР составила уже 95 Гвт. Прирост электрической мощности на КЭС СССР составил около 8 Гвт за год. Возросла также единичная мощность КЭС и установленных на них агрегатов. Мощность наиболее крупных КЭС к 1973 достигла 2,4—2,5 Гвт. Проектируются и сооружаются КЭС мощностью 4—5 Гвт (см. табл.). В 1967—68 на Назаровской и Славянской ГРЭС были установлены первые паровые турбины мощностью 500 и 800 Мвт. Создаются (1973) одновальные турбоагрегаты мощностью 1200 Мвт. За рубежом наиболее крупные турбоагрегаты (двухвальные) мощностью 1300 Мвт устанавливаются (1972—73) на КЭС Камберленд (США).

Основные технико-экономические требования к КЭС — высокая надёжность, манёвренность и экономичность. Требование высокой надёжности и манёвренности обусловливается тем, что производимая КЭС электроэнергия потребляется сразу же, т. е. КЭС должна производить столько электроэнергии, сколько необходимо её потребителям в данный момент.

Экономичность сооружения и эксплуатации КЭС определяется удельными капиталовложениями (110—150 руб. на установленный квт), себестоимостью электроэнергии (0,2—0,7 коп./квтч), обобщающим показателем — удельными расчётными затратами (0,5—1,0 коп./квтч). Эти показатели зависят от мощности КЭС и её агрегатов, вида и стоимости топлива, режимов работы и кпд процесса преобразования энергии, а также местоположения электростанции. Затраты на топливо составляют обычно более половины стоимости производимой электроэнергии. Поэтому к КЭС предъявляют, в частности, требования высокой тепловой экономичности, т. е. малых удельных расходов тепла и топлива, высокого кпд.

Преобразование энергии на КЭС производится на основе термодинамического цикла Ренкина, в котором подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой в конденсаторе турбины происходят при постоянном давлении, а работа пара в турбине и повышение давления воды в насосах — при постоянной энтропии (См. Энтропия).

Общий кпд современной КЭС — 35—42% и определяется кпд усовершенствованного термодинамического цикла Ренкина (0,5—0,55), внутренний относительный кпд турбины (0,8—0,9), механический кпд турбины (0,98—0,99), кпд электрического генератора (0,98—0,99), кпд трубопроводов пара и воды (0,97—0,99), кпд котлоагрегата (0,9—0,94).

Часть вырабатываемой электроэнергии потребляется вспомогательным оборудованием КЭС (насосами, вентиляторами, угольными мельницами и т. д.). Расход электроэнергии на собственные нужды пылеугольной КЭС составляет до 7%, газомазутной —до 5%. Значит, часть — около половины энергии на собственные нужды расходуется на привод питательных насосов. На крупных КЭС применяют паротурбинный привод; при этом расход электроэнергии на собственные нужды снижается. Различают кпд КЭС брутто (без учёта расхода на собственные нужды) и кпд КЭС нетто (с учётом расходов на собственные нужды). Энергетическими показателями, равноценными кпд, служат также удельные (на единицу электроэнергии) расходы тепла и условного топлива с теплотой сгорания 29,3 Мдж/кг (7000 ккал/кг), равные для КЭС 8,8 — 10,2Мдж/квтч (2100 — 2450 ккал/квтч) и 300—350 г/квтч. Повышение кпд, экономия топлива и уменьшение топливной составляющей эксплуатационных расходов обычно сопровождаются удорожанием оборудования и увеличением капиталовложений. Выбор оборудования КЭС, параметров пара и воды, температуры уходящих газов котлоагрегатов и т. д. производится на основе технико-экономических расчётов, учитывающих одновременно капиталовложения и эксплуатационные расходы (расчётные затраты).

Основное оборудование КЭС (котельные и турбинные агрегаты) размещают в главном корпусе, котлы и пылеприготовительную установку (на КЭС, сжигающих, например, уголь в виде пыли) — в котельном отделении, турбоагрегаты и их вспомогательное оборудование — в машинном зале (См. Машинный зал) электростанции. На КЭС устанавливают преимущественно по одному котлу на турбину. Котёл с турбоагрегатом и их вспомогательным оборудование образуют отдельную часть — моноблок электростанции. Для турбин мощностью 150—1200 Мвт требуются котлы производительностью соответственно 500—3600 м/ч пара. Ранее на ГРЭС применяли по два котла на турбину, т. е. дубль-блоки (см. Блочная тепловая электростанция). На КЭС без промежуточного перегрева пара с турбоагрегатами мощностью 100 Мвт и меньше в СССР применяли неблочную централизованную схему, при которой пар 113 котлов отводится в общую паровую магистраль, а из неё распределяется между турбинами. Размеры главного корпуса определяются размещаемым в нём оборудованием и составляют на один блок, в зависимости от его мощности, по длине от 30 до 100 м, по ширине от 70 до 100 м. Высота машинного зала около 30 м, котельной — 50 м и более. Экономичность компоновки главного корпуса оценивают приближённо удельной кубатурой, равной на пылеугольной КЭС около 0,7—0,8 м 3 /квт, а на газомазутной — около 0,6—0,7 м 3 /квт. Часть вспомогательного оборудования котельной (дымососы, дутьевые вентиляторы, золоуловители, пылевые циклоны и сепараторы пыли системы пылеприготовления) устанавливают вне здания, на открытом воздухе.

В условиях тёплого климата (например, на Кавказе, в Средней Азии, на Ю. США и др.), при отсутствии значительных атмосферных осадков, пылевых бурь и т. п., на КЭС, особенно газомазутных, применяют открытую компоновку оборудования. При этом над котлами устраивают навесы, турбоагрегаты защищают лёгкими укрытиями; вспомогательное оборудование турбоустановки размещают в закрытом конденсационном помещении. Удельная кубатура главного корпуса КЭС с открытой компоновкой снижается до 0,2—0,3 м 3 /квт, что удешевляет сооружение КЭС. В помещениях электростанции устанавливают мостовые краны и др. грузоподъёмные механизмы для монтажа и ремонта энергетического оборудования.

КЭС сооружают непосредственно у источников водоснабжения (река, озеро, море); часто рядом с КЭС создают пруд-водохранилище. На территории КЭС, кроме главного корпуса, размещают сооружения и устройства технического водоснабжения и химводоочистки, топливного хозяйства, электрические трансформаторы, распределительные устройства, лаборатории и мастерские, материальные склады, служебные помещения для персонала, обслуживающего КЭС. Топливо на территорию КЭС подаётся обычно ж. д. составами. Золу и шлаки из топочной камеры и золоуловителей удаляют гидравлическим способом. На территории КЭС прокладывают ж. д. пути и автомобильные дороги, сооружают выводы линий электропередачи (См. Линия электропередачи), инженерные наземные и подземные коммуникации. Площадь территории, занимаемой сооружениями КЭС, составляет, в зависимости от мощности электростанции, вида топлива и др. условий, 25—70 га.

Крупные пылеугольные КЭС в СССР обслуживаются персоналом из расчёта 1 чел. на каждые 3 Мвт мощности (примерно 1000 чел. на КЭС мощностью 3000 Мвт); кроме того, необходим ремонтный персонал.

Мощность отдаваемая КЭС ограничивается водными и топливными ресурсами, а также требованиями охраны природы: обеспечения нормальной чистоты воздушного и водного бассейнов. Выброс с продуктами сгорания топлива твёрдых частиц в воздух в районе действия КЭС ограничивают установкой совершенных золоуловителей (электрофильтров с кпд около 99%). Оставшиеся примеси, окислы серы и азота рассеивают сооружением высоких дымовых труб для вывода вредных примесей в более высокие слои атмосферы. Дымовые трубы высотой до 300 м и более сооружают из железобетона или с 3—4 металлическими стволами внутри железобетонной оболочки или общего металлического каркаса.

Управление многочисленным разнообразным оборудованием КЭС возможно только на основе комплексной автоматизации производственных процессов. Современные конденсационные турбины полностью автоматизированы. В котлоагрегате автоматизируется управление процессами горения топлива, питания котлоагрегата водой, поддержания температуры перегрева пара и т. д. Осуществляется комплексная автоматизация др. процессов КЭС, включая поддержание заданных режимов эксплуатации, пуск и остановку блоков, защиту оборудования при ненормальных и аварийных режимах. С этой целью в системе управления на крупных КЭС в СССР и за рубежом применяют цифровые, реже аналоговые, управляющие электронные вычислительные машины.

Крупнейшие конденсационные электростанции мира

Название электростанцииГод пускаЭлектрическая мощность Гвт
на 1973полная (проектная)
Приднепровская (СССР)19552,42,4
Змиёвская (СССР)19602,42,4
Бурштынская (СССР)19652,42,4
Конаковская (СССР)19652,42,4
Криворожская № 2 (СССР)19652,73,0
Новочеркасская (СССР)19652,42,4
Заинская (СССР)19662,42,4
Кармановская (СССР)19681,83,4
Костромская (СССР)19692,14,8
Запорожская (СССР)19721,23,6
Сырдарьинская (СССР)19720,34,4
Парадайс (США)19692,552,55
Камберленд (США)19732,6
Феррибридж С (Великобритания)19662,52,5
Дрекс (Великобритания)19702,14,2
Гавр (Франция)19670,853,25
Поршвиль В (Франция)19680,62,4
Фриммередорф—П (ФРГ)19612,32,3
Специя (Италия)19661,841,84

Лит.: Гельтман А. Э., Будняцкий Д. М., Апатовский Л. Е., Блочные конденсационные электростанции большой мощности, М.—Л., 1964; Рыжкин В. Я., Тепловые электрические станции, М.—Л., 1967; Шредер К., Тепловые электростанции большой мощности, пер. с нем., т. 1—3, М.—Л., 1960—64: Скротцки Б.-Г., Вопат В.-А., Техника и экономика тепловых электростанций, пер. с англ., М.—Л., 1963.

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Рис. 1. Простейшая тепловая схема КЭС: Т — топливо; В — воздух; УГ — уходящие газы; ШЗ — шлаки и зола; ПК — паровой котёл; ПЕ — пароперегреватель; ПТ — паровая турбина; Г — электрический генератор; К — конденсатор; КН — конденсатный насос; ПН — питательный насос.

кэс что это за станция. Смотреть фото кэс что это за станция. Смотреть картинку кэс что это за станция. Картинка про кэс что это за станция. Фото кэс что это за станция

Рис. 2. Пространственный вид (разрез) главного корпуса электростанции и связанных с ним устройств: I — кoтельное отделение; II — машинное отделение (машинный зал); III — береговая водонасосная установка; 1 — угольный склад; 2 — дробильная установка; 3 — водяной экономайзер; 4 — пароперегреватель; 5 — паровой котёл; 6 — топочная камера; 7 — пылеугольные горелки; 8 — паропровод от котла к турбине; 9 — барабанно-шаровая угольная мельница; 10 — бункер угольной пыли; 11 — бункер сырого угля; 12 — щит управления блоком электростанции; 13 — деаэратор; 14 — паровая турбина; 15 — электрический генератор; 16 — электрический повысительный трансформатор; 17 — паровые конденсаторы; 18 — трубопроводы охлаждающей воды; 19 — конденсатные насосы; 20 — регенеративные подогреватели низкого давления; 21 — питательный насос; 22 — регенеративные подогреватели высокого давления; 23 — дутьевой вентилятор; 24 — золоуловитель; 25 — шлак, зола; ЭЭ — электрическая энергия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *