что такое звуковая волна в физике

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Звуковые волны

Процесс распространения связан с колебательным механическим движением частиц. Достаточно каким-либо образом создать скачок давления, и частицы «толкнут» соседние.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Уравнение звуковой волны в газе (гармоничные колебания) будет выглядеть так:

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

p0 – начальное давление (Па);

ω – круговая частота (Гц);

Формулы связи длины звуковой волны, скорости, иные характеристики:

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

v – скорость волны (м/с);

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи голосовых связок.

Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Зависит от перемещаемой волной энергии. Замеряют в Вт/м 2 . Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

3. Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Источник

Что такое звуковая волна в физике

183 дн. с момента
до конца учебного года

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Источники звука. Звуковые колебания. Характеристики звука

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам удовольствие. Нам приятно слушать человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Причина звука – вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда.

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Колебания с частотой меньше 16 Гц называется инфразвуком. Колебания с частотой больше 20000 Гц называются ультразвуком.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений (например, в результате колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Привычное для всех нас понятие «звук» означает всего лишь воспринимаемый слуховым аппаратом человека набор звуковых колебаний. О том, какие колебания человек воспринимает, а какие нет, мы поговорим позднее.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В отношении звуковых волн очень важно упомянуть такую характеристику, как скорость распространения.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воде — 1500 м/с.

Скорость звука в металлах, в стали — 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Высота, тембр и громкость звука

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

70 дБ – шум пишущей машинки;

80 дБ – шум работающего двигателя грузового автомобиля;

120 дБ – шум работающего трактора на расстоянии 1 м

130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Частота зв уковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Согласно легенде, Пифаго р все музыкальные звуки расположил в ряд, разбив этот ряд на части – октавы, – а

октаву – на 12 частей (7 основных то нов и 5 полутонов). Всего насчитывается 10 октав, обычно при исполнении музыкальных произведений используются 7–8 октав. Звуки частотой более 3000 Гц в качестве музыкальных тонов не используются, они слишком резки и пронзительны.

Источник

Звуковые волны

Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.

Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.

Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.

Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.

Источники звуковых волн

Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Распространение звуковых волн

Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.

Скорость звука

Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.

Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.

1. Скорость звука в воздухе

Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.

Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.

2. Скорость звуковых волн в твёрдых телах

Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе

Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.

Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.

3. Скорость звука в разных средах

Сила звука

Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.

На точном научном языке закон о силе звука излагается так:

Сила звука изменяется обратно пропорционально квадрату расстояния от его источника

Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.

Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.

Отражение звука

Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.

Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Волны Рэлея

Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.

Источник

Физика звука

Акустика — это раздел физики, изучающий возбуждение, распространение, прием звуковых волн, а также их взаимодействие со средой. Особенностью звуковых волн, отличающих их от электромагнитных или гравитационных, является то, что они могут распространяться только в сплошной упругой среде. Звук окружает нас повсюду: в атмосфере, под водой, под землей, в биологических средах и материалах и даже в космосе. Только звук может распространяться в земных структурах и под водой без существенного затухания, поэтому он широко используется в исследованиях природных сред.

Обычно мы называем звуком то, что мы слышим. Принято считать, что диапазон частот слышимого нами звука лежит в пределах от 20 Гц до 20 кГц. Это соответствует 20–20 000 колебаний в секунду. Звуковые волны, частота колебаний которых выходит за этот диапазон, получили свои специальные названия.

Ультразвуком называют звуковые волны, частота колебаний которых выше 20 кГц. Технологически развитый диапазон применения ультразвука лежит в пределах от 20 кГц до 100 МГц. Более высокочастотная область ультразвука получила название гиперзвук. Звуковые волны гиперзвуковых частот могут распространяться только в кристаллах с малым поглощением звука, таких, как монокристаллы кварца, сапфира, ниобата лития, железо-иттриевого граната и др. Гиперзвук используется при обработке больших массивов информации, в том числе оптических изображений, и исследовании строения твердых тел. Этим занимается наука акустоэлектроника. Диапазон, в котором гиперзвук возбуждается искусственным, контролируемым образом, ограничивается частотами порядка 10 ГГЦ, что связано с высоким затуханием. При столь высоких частотах длина волны такого звука будет уже соизмеримой с межатомным расстоянием в кристалле. В таком случае мы уже не можем считать кристалл сплошной средой.

Звуковые волны, частота которых ниже 20 Гц, называют инфразвуком. Затухание инфразвука невелико, и поэтому инфразвуковые волны активно используются для исследования океана и структуры земли. Звуки взрывов вулканов могут обогнуть весь земной шар, низкочастотный подводный звук распространяется через океаны на тысячи километров.

Далее мы обсудим современные идеи и новые акустические технологии исследования и освоения окружающего мира. Часто акустические методы не имеют альтернативы и поэтому оказываются наиболее эффективными для решения той или иной важной задачи.

Звук и инфразвук в исследовании природы

Объяснение этому интересному эффекту дал Л. М. Бреховских — впоследствии академик и лауреат Государственной премии СССР. Он обратил внимание на то, что температура воды быстро падает до глубины 100–200 м, а затем принимает постоянное значение около 4°C. Падение температуры приводит к уменьшению скорости распространения звука, а рост давления с глубиной приводит к увеличению этой скорости. Таким образом, в зависимости скорости распространения звука от глубины оказывается минимум, в котором и концентрируется акустическая энергия. На рисунке 1 видно, что если поместить излучатель на уровень минимума скорости звука, то звуковые лучи, выходящие из излучателя, в результате рефракции будут удерживаться вблизи этого минимума. В итоге часть звуковых лучей, вышедших из источника под не очень крутыми углами, остаются при распространении в слое толщиной в несколько сот метров. Такой слой представляет собой подводный акустический волновод, или подводный звуковой канал.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Рис. 1. Схематическое изображение распространения сигнала в подводном звуковом канале. Слева — профиль скорости звука в зависимости от глубины. Источник и приемник звука расположены на оси канала, соответствующей минимальной скорости звука. Лучи в результате рефракции звука совершают циклические осцилляции. Цифры над лучами указывают угол выхода луча из источника. В нижней части рисунка показаны две серии осциллограмм зарегистрированных сигналов, отличающихся температурными условиями в приповерхностной части канала

Стоит отметить, что эффект акустического волновода использовался средневековыми мастерами при создании «шепчущих» галерей. Такие галереи имеют кривые или замкнутые стены. Если вы вблизи такой стены говорите шепотом, то звуковые лучи концентрируются около нее и на расстоянии в несколько десятков метров можно отчетливо слышать ваш шепот, находясь также около стены. Такие шепчущие галереи есть в соборах Святого Павла в Лондоне и Святого Петра в Риме, в Храме Неба под Пекином и, возможно, где-то еще.

Характер распространения звука в акустическом волноводе аналогичен распространению лазерного излучения в оптическом волноводе. В настоящее время особенности распространения звука в подводном акустическом волноводе используются для термометрии океана.

Океан можно рассматривать как гигантский, занимающий огромную площадь термометр. Следя за изменениями температуры глубинных слоев океана, можно следить за потеплением климата. Дело в том, что масштабные климатические изменения надежно определить чрезвычайно трудно из-за больших флуктуаций во времени и пространстве. Огромные массы воды в океане усредняют эти флуктуации. Определить среднюю температуру глубинных слоев океана на масштабах в несколько тысяч километров можно только акустическими методами, электромагнитные волны в морской воде не распространяются на заметное расстояние.

Скорость распространения звука увеличивается с ростом температуры. На рисунке 1 внизу показаны две серии зарегистрированных акустических импульсов, отличающихся тем, что во второй серии верхние слои океана имели несколько более высокую температуру, чем в первой. Как видно, сигналы, распространяющиеся по красному лучу, который максимально близко подходит к нагретой поверхности океана, приходят несколько раньше, чем сигналы, распространяющиеся по другим лучам. Для дистанции 250 км эти изменения во времени распространения могут составлять доли секунды. По другим лучам изменений во времени распространения нет. Таким образом, из такого опыта можно узнать, на сколько градусов и на какую глубину прогрелась вода в океане. Ясно, что чем больше дистанция распространения звука, тем выше чувствительность этого метода. Звук пробегает 250 км в океане за 167 с, что соответствует скорости распространения около 1500 м/с. Заметим, что первыми приходят наиболее быстрые сигналы, распространяющиеся по наиболее крутым лучам, лежащим в слоях океана с большей скоростью распространения. А наиболее интенсивные сигналы приходят последними по пологим лучам, находящимся в окрестности оси подводного звукового канала, где скорость распространения минимальна.

Такая особенность распространения звука используется для дистанционного мониторинга теплопереноса в океане, что важно для прогнозирования климата. Океан формирует погоду на земле. Северный Ледовитый океан является кухней погоды для Европы и существенной части Азии. Распределенная по всему океану система излучателей и приемников звука может решать самые разнообразные задачи. Среди них можно выделить измерение времени распространения сигналов на протяженных трассах для определения содержания тепла и циркуляции океанических вод как на масштабах всего океана, так и в отдельных его частях; обеспечение подводного позиционирования и навигации подо льдом; мониторинг динамики льда, землетрясений и перемещения морских животных при пассивном прослушивании акватории океана. Все эти процедуры система может выполнять в реальном времени.

Исследование атмосферы. Распространение звука в атмосфере подчиняется тем же самым законам, что и распространение звука в океане, с той разницей, что скорость распространения звука в воздухе в нормальных условиях у поверхности земли составляет 340 м/с. Это существенно меньше скорости звука в воде.

На рисунке 2 представлена схема звуковых лучей, выходящих из источника звука в атмосфере. Как видно, в присутствии ветра лучи по-разному ведут себя в зависимости от направления распространения. Поток воздуха увеличивает скорость распространения звука по ветру и несколько снижает ее в противоположном направлении. Как правило, приземный поток воздуха или ветер увеличивает свою скорость с высотой. Скорость распространения звука по ветру на большой высоте больше, чем у земли, поэтому фронт звуковой волны при подъеме вверх заворачивается и волна направляется вниз, где скорость меньше. Возникает рефракция звука. Благодаря этому в приповерхностном слое атмосферы образуется звуковой волновод, в котором концентрируется звук, и на поверхности земли можно регистрировать акустические сигналы, которые распространялись на высоте в несколько десятков километров. Эффект рефракции при распространении против ветра приводит к тому, что звук быстро уходит на большую высоту (десятки километров). Поэтому мы плохо слышим против ветра и хорошо по ветру.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Рис. 2. Схема звуковых лучей, выходящих из источника звука в атмосфере в присутствии ветра

Приземный звуковой волновод может образоваться не только в результате ветра. В тихий безветренный морозный день где-то за городом можно далеко слышать лай собак или шум машины. В такую погоду в приземной атмосфере возможна так называемая температурная инверсия. Обычно температура воздуха понижается с высотой, но в морозный день температура у поверхности земли, особенно в низине, может быть ниже, чем на некоторой высоте. Минимальная температура в приземном слое воздуха соответствует минимуму скорости распространения звука. Таким образом, температурная инверсия обеспечивает волноводное распространение звука у поверхности земли.

На рисунке 3 показано распределение температуры с высотой в атмосфере. Как видно, эта характеристика, как и в океане, имеет слоистую структуру. В областях нижней границы стратосферы (тропопауза) и нижней границы термосферы (мезопауза) температура, а следовательно, и скорость распространения звука достигают минимума. Здесь выполняются условия для существования атмосферных звуковых каналов. Звуковые волны от извержений вулканов или наземных взрывов распространяются по этим каналам на огромные расстояния и даже могут обогнуть Земной шар. Поэтому средняя атмосфера (от 20 до 120 км высоты) является хорошим проводником инфразвука. Это свойство атмосферы позволило ученым разработать методику инфразвукового зондирования атмосферы, базирующейся на явлении рассеяния акустических импульсов на слоистых неоднородностях скорости ветра и температуры атмосферы вплоть до высот нижней термосферы порядка 140 км. С помощью такой методики можно определить флуктуации скорости ветра в диапазоне высот от верхней стратосферы до нижней термосферы (90–140 км).

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Рис. 3. Стратификация температуры в атмосфере. Изменение давления показано в гектапаскалях (1 гПа = 100 Па). В областях тропопаузы и мезопаузы температура, а следовательно, и скорость распространения звука достигают минимума. Здесь находятся атмосферные звуковые каналы

Сейсмические волны в земле. Аналогичным образом распространяются сейсмические волны в земле. Они могут быть как естественного происхождения, так и искусственные. В качестве естественных источников сейсмических волн мы можем назвать землетрясения, извержения вулканов, горные обвалы. Искусственным образом сейсмические волны возбуждаются наиболее эффективно взрывом или специальными многотонными вибраторами. Если в океане и атмосфере распространяются только продольные звуковые волны (в жидкостях и газах отсутствует сдвиговая упругость), то сейсмические волны могут быть как продольные, так и поперечные. Поперечные волны, в зависимости от плоскости колебаний, могут иметь разную поляризацию. Скорость распространения поперечных волн, как правило, в 2–3 раза меньше скорости распространения продольных. Наличие сейсмических волн двух типов расширяет возможности сейсмического зондирования в сравнении с зондированием океана или атмосферы.

Центральной задачей сейсмического зондирования является исследование структуры земли и поиск полезных ископаемых. Обе эти задачи требуют выполнения противоречивых подходов. С одной стороны, интересно заглянуть как можно глубже под поверхность земли. Этого можно достичь, понижая частоту сейсмического излучения. С понижением частоты снижаются потери, связанные с затуханием, и звуковые волны распространяются дальше. С другой стороны, уменьшение частоты ведет к росту длины излучаемой волны, а это снижает разрешающую способность дистанционного метода зондирования. Всё возрастающие требования к качеству разведки полезных ископаемых заставляют искать способы повышения разрешающей способности, а следовательно, и точности сейсморазведки.

Разрешить возникшее противоречие удалось за счет развития методов приема сейсмических сигналов. Известно, что чем больше приемная антенна, тем выше ее пространственное разрешение. Если принимать сигналы большим количеством приемников, объединенных в единую сеть, то можно повысить пространственную точность дистанционного зондирования. Но для этого требуется сложная обработка сигналов от многих сотен или даже тысяч приемников. Современная сейсморазведка обеспечивает достаточную точность зондирования, чтобы определить продуктивные залежи полезных ископаемых, например нефти или газа, на глубинах более 10 км. Современные технологии обеспечивают прохождение скважины горизонтально вдоль пласта, чтобы повысить эффективность добычи нефти. Толщина пласта составляет порядка 10 м на глубине несколько километров. При этом длина скважины может быть более 10 км. Точность прокладки скважины соизмерима с точностью выведения ракеты на траекторию к межпланетному полету.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Рис. 4. Вертикальный сейсмический разрез строения верхних слоев земли

Для зондирования структур земли используют естественные низкочастотные сейсмические сигналы от землетрясений или даже приливных волн, вызванных движением Луны. На рисунке 4 показан пример результатов такого зондирования на глубину более 50 км. Он свидетельствует о том, что в структуре земли есть не только горизонтальные слои, но и крупные вертикальные разломы, которые могут доходить до мантии.

Знание особенностей распространения низкочастотного звука в океане, атмосфере и земле позволило разработать и создать эффективную международную систему контроля за выполнением договора о всеобщем запрещении ядерных испытаний. Существует специальная схема расположения станций на земле и в океане, осуществляющих постоянный мониторинг и регистрирующих сейсмические, гидроакустические и инфразвуковые сигналы в атмосфере. Эти станции объединены в общую сеть и поэтому могут определить место и время события, приведшего к появлению того или иного сигнала.

Примером такой эффективности является обнаружение взрыва метеороида в небе над Челябинском 15 февраля 2013 года. Метеороид вошел в атмосферу под углом 20° со скоростью 18 км/с. По мере полета в атмосфере скорость метеороида уменьшалась и происходил его нагрев. Перед ним возникла ударная волна, в которой воздух был сильно сжат и разогрет. Метеороид разрушился, когда разность давлений на фронте ударной волны и на противоположной его стороне превысила предел прочности метеороида. Это разрушение (взрыв) сопровождалось вспышкой яркости излучения в течение пяти секунд. Максимум яркости наблюдался на высоте 23,3 км южнее Челябинска. Примерный эффективный диаметр метеороида равен 18 м, а его масса 11 000 тонн. Семнадцать станций зарегистрировали ударную волну этого взрыва. Последующий анализ позволил оценить эквивалент мощности взрыва в 2–3 кт тринитротолуола.

Современные проблемы применения медицинского ультразвука

Ультразвук мегагерцового диапазона частот достаточно хорошо распространяется в биологических тканях. Как известно, живые организмы почти на 90% состоят из воды. Поэтому скорость распространения звука в таких условиях близка к 1500 м/с, что соответствует скорости распространения звука в воде. Длина волны ультразвука на частоте 1 МГЦ равна при этом 1,5 мм, что обеспечивает достаточно высокое пространственное разрешение ультразвуковых методов.

Хорошо известно применение ультразвука в медицине для диагностики и исследования внутренних органов и суставов (УЗИ). Менее известны успехи в области ультразвуковой хирургии, хотя и здесь есть существенные результаты. Прежде всего это дробление и удаление камней из почек с помощью фокусированного воздействия ударными волнами — так называемая литотрипсия. Начиная с 1980-х годов литотрипсия является наиболее распространенной процедурой для удаления камней из почек. Другим быстро развивающимся направлением исследований является терапевтическое направление применения ультразвука, основное преимущество которого — лечебное воздействие внутри тела без повреждения окружающей ткани. Широкие возможности различных видов ультразвуковой терапии были продемонстрированы экспериментально, а некоторые из них уже нашли применение в клинической практике. Одним из примеров является интенсивный фокусированный ультразвук.

Рисунок 5 иллюстрирует основную идею применения фокусированного ультразвука. Акустическая интенсивность вблизи излучающего преобразователя достаточно низка, так что ткани не повреждаются. В фокальной области интенсивность заметно возрастает, и нагрев за счет поглощения волны достаточен для теплового разрушения белков ткани. Это позволяет неинвазивно «прижечь» место внутреннего кровотечения или вызвать некроз опухолевых тканей в глубоко расположенных областях человеческого тела. Наиболее перспективными, с точки зрения расширения применения ультразвуковых методов в медицине, являются гемостазис (остановка кровотечения), хирургия и стимуляция иммунного отклика. Можно также упомянуть ультразвуковой контроль и интенсификацию транспорта лекарств. Экспериментально было показано, что ультразвук может улучшать транспорт лекарств и генов через биологические барьеры: клетки, ткани и тромбы.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Рис. 5. Схема ультразвукового воздействия на биологические ткани. Пучок интенсивного фокусированного ультразвука используется для локализованного разрушения опухоли или остановки внутреннего кровотечения без повреждения окружающей ткани. Акустическая энергия, излучаемая ультразвуковым преобразователем, концентрируется в объем, примерно равный объему рисового зерна

Укажем на некоторые основные проблемы, которые нуждаются в решении для успешного применения интенсивного ультразвука в практике.

Одной из важных задач является получение больших значений амплитуды акустической волны в фокусе с учетом структуры человеческого тела. Усиление ультразвуковой волны при фокусировке необходимо для обеспечения высокой интенсивности в небольшой фокальной области, чтобы не повредить остальные участки ткани на пути распространения ультразвука. Ультразвуковой ожог кожи является одним из характерных побочных эффектов при применении интенсивного ультразвука, поскольку в коже коэффициент поглощения ультразвука в несколько раз выше, чем в ткани. Поэтому на этом участке акустическая интенсивность должна быть как можно более низкой. Такую процедуру возможно реализовать, применяя многоэлементные ультразвуковые антенны, излучение которых будет согласовано со структурой тела, по которой должно пройти излучение.

Важными также являются технические разработки по созданию хорошего акустического согласования ультразвукового излучателя с телом. Дело в том, что ультразвуковые излучатели делаются, как правило, из пьезоэлектрической керамики. И для того чтобы обеспечить наилучшую передачу звуковой энергии в человеческое тело, нужно согласовать условия прохождения звука от твердой пьезокерамики к мягким биологическим тканям. Для этого применяют специальные контактные смазки или жидкости. Например, по сравнению с вогнутыми источниками плоские УЗ преобразователи гораздо труднее сделать фокусирующими, но зато для них легче обеспечить согласование при непосредственном контакте с кожей. Поглощение в костях еще сильнее, вот почему важно минимизировать попадание на них ультразвука. Соответствующая технология предполагает использование многоэлементных фазированных антенн для осуществления электронной фокусировки. На рисунке 6 показано схематическое изображение такой антенны для фокусировки ультразвукового излучения в мозг через кости черепа.

что такое звуковая волна в физике. Смотреть фото что такое звуковая волна в физике. Смотреть картинку что такое звуковая волна в физике. Картинка про что такое звуковая волна в физике. Фото что такое звуковая волна в физике

Рис. 6. Схема ультразвукового транскраниального воздействия на мозг

Мозг является тем органом, где применение терапии с использованием фокусированного ультразвука имеет свои особенности. Принципиальной трудностью здесь является тот факт, что ультразвуковые волны плохо проходят сквозь черепную коробку из-за поглощения в кости и отражения на ее границах. Кроме того, кости черепа неоднородны по толщине и характеризуются более высокой (по сравнению с расположенными за ними мягкими тканями) скоростью звука, что приводит к трудно предсказуемым эффектам рефракции. Решение проблемы ультразвукового воздействия и визуализации через толстые кости черепа возможно при использовании разработанных в последнее время методов волновой физики, связанных с компенсацией потерь и аберраций при распространении волн в неоднородной среде. В основе лежит голографический принцип, согласно которому распределение характеристик волнового поля на некоторой поверхности в этом поле содержит информацию о всей трехмерной структуре поля, а также принцип обратимости недиссипативных волновых процессов во времени и связанный с этим метод обращения волнового фронта.

Метод обращения волнового фронта, применяемый в радиолокации и при исследовании структуры подводных акустических каналов в океане, предполагает использование пробной волны, которая, проходя по неоднородной среде, регистрируется многоэлементной антенной. Зарегистрированный сигнал имеет сложную пространственную и временную структуру, что отражает многолучевое распространение через неоднородную среду. Если на антенне обратить во времени фазовые задержки зарегистрированного сигнала и излучить сигнал с такой сложной пространственно-временной фазовой модуляцией, то излученный сигнал, проходя в обратном порядке через те же самые неоднородности среды, соберется, т.е. сфокусируется в точку излучения пробного сигнала. Для реализации такого подхода необходимо использовать многоэлементные приемоизлучающие антенны, управляемые мощными вычислительными процессорами, обеспечивающими в реальном времени сложную многоканальную обработку сигналов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *