что такое значащие нули в двоичной записи числа

Что такое значащие нули в двоичной записи числа

№1. Ко­ли­че­ство зна­ча­щих нулей в дво­ич­ной за­пи­си де­ся­тич­но­го числа 222 равно

1. Пе­ре­ведём 22210 в дво­ич­ную си­сте­му счис­ле­ния. По­лу­чи­ли: 22210 =110111102.

2. Под­счи­та­ем ко­ли­че­ство зна­ча­щих нулей: их 2.

№2. Для каж­до­го из пе­ре­чис­лен­ных ниже чисел по­стро­и­ли дво­ич­ную за­пись. Ука­жи­те число, дво­ич­ная за­пись ко­то­ро­го со­дер­жит ровно две еди­ни­цы. Если таких чисел не­сколь­ко, ука­жи­те наи­боль­шее из них.

Пред­ста­вим все числа в дво­ич­ной си­сте­ме счис­ле­ния:

Из чисел 9 и 10 вы­би­ра­ем число 10, по­сколь­ку оно яв­ля­ет­ся наи­боль­шим.

Пра­виль­ный ответ ука­зан под но­ме­ром 3.

№3. Для каж­до­го из пе­ре­чис­лен­ных ниже чисел по­стро­и­ли дво­ич­ную за­пись. Ука­жи­те число, дво­ич­ная за­пись ко­то­ро­го со­дер­жит ровно два зна­ча­щих нуля. Если таких чисел не­сколь­ко, ука­жи­те наи­боль­шее из них.

Пред­ста­вим все числа в дво­ич­ной си­сте­ме счис­ле­ния:

Из чисел 9 и 10 вы­би­ра­ем число 10, по­сколь­ку оно яв­ля­ет­ся наи­боль­шим.

Пра­виль­ный ответ ука­зан под но­ме­ром 4.

№4. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 307?

Пе­ре­ве­дем число из де­ся­тич­ной си­сте­мы счис­ле­ния в дво­ич­ную: нужно де­лить его на 2, пока де­ли­мое не будет мень­ше 2. После за­пи­шем остат­ки от де­ле­ния на­чи­ная с конца.

№5. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 625?

Пе­ре­ве­дем число из де­ся­тич­ной си­сте­мы счис­ле­ния в дво­ич­ную: нужно де­лить его на 2, пока де­ли­мое не будет мень­ше 2. После за­пи­шем остат­ки от де­ле­ния на­чи­ная с конца.

№6. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 127?

Пе­ре­ведём 127 в дво­ич­ную си­сте­му счис­ле­ния и со­счи­та­ем ко­ли­че­ство еди­ниц:

№7. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 206?

№8. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 1025?

Пе­ре­ве­дем число в дво­ич­ную си­сте­му счис­ле­ния:

102510 = 1024 + 1 = 2 10 + 1 = 100000000012.

В дво­ич­ной за­пи­си 2 еди­ни­цы.

№9. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 514?

Пе­ре­ве­дем 514 в дво­ич­ную си­сте­му счис­ле­ния.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

В этой за­пи­си 2 еди­ни­цы.

№10. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 255?

Пе­ре­ве­дем де­ся­тич­ное число 255 в дво­ич­ную си­сте­му счис­ле­ния: Итого 8 еди­ниц. что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числаТакой ответ ука­зан под но­ме­ром 4.

Различные системы счисления

№1. Дано А = A716, B = 2518. Най­ди­те сумму A + B.

Пе­ре­ве­дем числа в де­ся­тич­ную си­сте­му счис­ле­ния, вы­пол­ним сло­же­ние, и пе­ре­ве­дем сумму в дво­ич­ную си­сте­му счис­ле­ния:

2518 = 2 ⋅ 8 2 + 5 ⋅ 8 + 1 = 16910.

33610 = 1 ⋅ 2 8 + 1 ⋅ 2 6 + 1 ⋅ 2 4 = 1010100002.

Также су­ще­ству­ет вто­рой спо­соб:

1. Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния (через три­а­ды и тет­ра­ды). А2 = 1010 0111,

2. Вы­пол­ним сло­же­ние дво­ич­ных чисел: 10100111 + 10101001 = 101010000.

№2. Ука­жи­те наи­мень­шее четырёхзнач­ное вось­ме­рич­ное число, дво­ич­ная за­пись ко­то­ро­го со­дер­жит 5 еди­ниц. В от­ве­те за­пи­ши­те толь­ко само вось­ме­рич­ное число, ос­но­ва­ние си­сте­мы счис­ле­ния ука­зы­вать не нужно.

Наи­мень­шее число из пяти еди­ниц в дво­ич­ной си­сте­ме счис­ле­ния — 1 11112. Пре­об­ра­зу­ем число так, чтобы при пе­ре­во­де в вось­ме­рич­ную си­сте­му счис­ле­ния по­лу­ча­лось четырёхзнач­ное число. Для этого нужно, что число со­сто­я­ло из четырёх триад, то есть со­сто­я­ло из две­на­дца­ти сим­во­лов. Наи­мень­шее число, удо­вле­тво­ря­ю­щее усло­вию за­да­чи: 001 000 001 1112 = 10178.

№3. Сколь­ко еди­ниц в дво­ич­ной за­пи­си де­ся­тич­но­го числа 245?

Пе­ре­ведём число 245 в дво­ич­ную си­сте­му:

24510 = 2 7 + 2 6 + 2 5 + 2 4 + 2 2 + 2 0 = 111101012.

№4. Какое из не­ра­венств вы­пол­ня­ет­ся для чисел А = 1648, В = А316 и С = 22004?

1) A ⋅ 8 2 + 6 ⋅ 8 1 + 4 ⋅ 8 0 = 64 + 48 + 4 = 11610.

В = A316 = 10 ⋅ 16 1 + З ⋅ 16 0 = 16310.

С = 22004 = 2 ⋅ 4 3 + 2 ⋅ 4 2 + 0 ⋅ 4 1 + 0 ⋅ 4 0 = 2 ⋅ (64 + 16) = 16010.

По­это­му: А ⋅ 16 + 5= 75_<16>.

№10. Чему равна сумма чисел BA16 и AB16? Ре­зуль­тат за­пи­ши­те в вось­ме­рич­ной си­сте­ме счис­ле­ния.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

№1. Дано: а = 7010, b = 1008 Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния и затем срав­ним их:

Оче­вид­но, что ответ 3.

№2. Дано: а = 3210, b = 328. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ведём оба числа в дво­ич­ную си­сте­му счис­ле­ния:

Из ва­ри­ан­тов от­ве­та вы­бе­рем удо­вле­тво­ря­ю­щий на­ше­му усло­вию.

№3. Дано: а = 3210, b = 358. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния и затем срав­ним их:

Пра­виль­ный ответ ука­зан под но­ме­ром 3.

№4. Дано: а = 1610, b = 228. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию а

№5. Дано: а = 1610, b = 1810. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию а

Пе­ре­ве­дем числа в де­ся­тич­ную си­сте­му счис­ле­ния и затем срав­ним их:

№6. Дано: а = ЗЗ10, b = 508. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию а

Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния и затем срав­ним их:

№7. Дано: а = 2110, b = 238. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ве­дем числа в де­ся­тич­ную си­сте­му счис­ле­ния и затем срав­ним их:

№8. Дано: а=1510, b=118. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния и затем срав­ним их:

№9. Дано: а = 1510, b = 128. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния и затем срав­ним их:

№10. Дано: а = 7010, b = 4010. Какое из чисел с, за­пи­сан­ных в дво­ич­ной си­сте­ме, от­ве­ча­ет усло­вию b

Пе­ре­ве­дем числа в дво­ич­ную си­сте­му счис­ле­ния и затем срав­ним их:

Источник

Что такое значащие нули в двоичной записи числа

Любой вид информации можно представить в виде чисел. Кодирование информации с помощью чисел осуществляется по определённым правилам. Для понимания этих правил, разберём логику образования любого числа.

| Система счисления – это правила записи чисел с помощью знаков – цифр и операций над ними.

Любое число, в данной системе счисления, образуется путём повторения одинаковых элементов (палочка, камешек, ракушка и т.д.).

Данная система счисления позволяет записывать только натуральные числа и запись «большого» числа получается очень громоздкой.

В дальнейшем, у человечества возникла необходимость производить серьёзные подсчёты. Для этого были придуманы непозиционные системы счисления.

| Непозиционная система счисления – это система счисления, в которой цифра не изменяет своего значения, от изменения позиции в числе.

Египетская система счисления что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
Кириллическая система счисления что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
Римская система счисления что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
| Позиционная система счисления – это система счисления, в которой цифра изменяет своё значения, при изменении позиции в числе.

Вспомним, что любое число в десятичной (арабской) системе счисления можно разложить на разряды. Например, в числе 753 цифра 7 обозначает сотни (700), цифра 5 – десятки (50), цифра 3 – единицы. Таким образом, число можно представить, как:

753 = 7 * 100 + 5 * 10 + 3 * 1
| Алфавит системы счисления – совокупность всех её цифр.

| Основание системы счисления – указывает на количество цифр в данной системе счисления.

Алфавит десятичной системы счисления состоит из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Следовательно, основанием данной системы счисления является 10.

Тогда, любое число будем записывать по правилу, с указанием основания данной системы счисления:

Число читается, как «семьсот пятьдесят три по основанию десять» или «семьсот пятьдесят три в десятичной системе счисления».

| Разряд – это позиция цифры в числе (нумерация в целых числах производится с права налево, начиная с нуля).

Укажем разряд каждой цифры в числе 753:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Развёрнутая форма представления чисел

В результате разбиения числа на разряды, любое такое число можно представить в развёрнутой форме.

Формула развёрнутой формы представления чисел:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

q – основание системы счисления;

a – цифра данного числа;

n – число разрядов в числе.

Представим число 75310 в развёрнутой форме.

1) Определим позиции каждой цифры в числе:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Каждую цифру в числе, умножим в соответствии занимаемой позицией:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Для упрощения данной записи, представим данное число, как основание 10 в степени n:

Запишем полученный результат.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Обратите внимание, что степень основания числа совпадает с позицией каждой цифры в числе!

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Перевод числа в десятичную систему счисления

С помощью развёрнутой формы представления чисел можно перевести число из любой системы счисления в десятичную.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Определение: каждую цифру числа нужно умножить на его основание, возведённое в степень, равную позиции цифры в числе.

Двоичная система счисления

Алфавит системы счисления: 0, 1.

Перевод десятичного числа в двоичную систему счисления методом подбора степеней числа 2

Для перевода двоичных чисел в десятичную систему счисления, используют метод подбора степеней двойки.

Пусть дано десятичное число 2110.

1) Подберём ближайшую наименьшую степень числа 2 к данному числу: 2 4 = 16;

3) Повторить, пока не достигнем нуля.

В результате, мы получим следующие степени:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Найденные нами степени – это позиции цифры 1 в двоичном числе, а отсутствующие степени – это нули:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Перевод целого десятичного числа в другую систему счисления методом деления на новое основание

Определение: Для перевода целого десятичного числа в другую систему счисления, необходимо делить данное число на новое основание (той системы счисления, в которую необходимо осуществить перевод). Ответ складывается из остатков от деления.

Переведите число 1310 в двоичную систему счисления.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Арифметические операции в двоичной системе счисления

Все вычисления в компьютере выполняются в двоичной системе счисления.

Рассмотрим базовые арифметические операции.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Кодирование числовой информации в памяти компьютера

Для представления целого числа без знака в памяти компьютера, необходимо:

1. перевести число в двоичную систему счисления;

2. поместить число в ячейку памяти компьютера;

3. заполнить пустые ячейки незначащими нулями.

Представьте число 5610 в компьютерной форме.

1. переведём число в двоичную систему счисления:

2. число состоит из 6 разрядов и помещается в одну ячейку:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

3. дополним незначащими нулями:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Диапазон значений целых чисел без знака что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Хранение чисел со знаком отличается от беззнаковой формы.

Знак «+» принято обозначать за «0», а знак «–» за «1». Знак записывается в старший бит ячейки. Для хранения таких чисел выделяют 1, 2 или 4 байта.

Для представления целого числа со знаком «+» в памяти компьютера, необходимо:

1. перевести число в двоичную систему счисления;

2. поместить число в ячейку памяти;

3. выделить старший бит ячейки под знак и поставить на это место нуль.

4. заполнить оставшиеся биты незначащими нулями.

Представьте число +29210 в компьютерной форме.

1. переведём число в двоичную систему счисления:

2. число состоит из 9 разрядов и для хранения требует двух ячеек:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

3. число положительное, значит в старший бит необходимо поместить нуль:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

4. заполним оставшиеся биты незначащими нулями:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Для представления целого числа со знаком «–» в памяти компьютера применяют метод прямого и обратного кода:

1. перевести модуль данного числа в двоичную систему;

2. Прямой код: поместить число в ячейку памяти и дополнить его незначащими нулями;

3. Обратный код: выполнить инверсию (заменить нули на единицы и наоборот);

4. Дополнительный код: увеличить получившееся число на единицу.

Представьте число –8710 в компьютерной форме.

1. переведём модуль числа в двоичную систему счисления:

2. число состоит из 7 разрядов и помещается в одну ячейку. Поместим число в ячейку и дополним незначащими нулями:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

4. прибавляем к числу единицу:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Обратите внимание на старший бит. Здесь 1 – это знак числа.

Переводы

1. Выполните перевод чисел из двоичной системы счисления в десятичную систему методом развёрнутой формы представления числа:

а) 11002д) 11000112з) 10011101110002
б) 110002е) 1001011012к) 10010000101112
в) 1010102ж) 1011101102л) 1011101011112
г) 11000112з) 1111112м) 11111112

2. Выполните перевод из десятичной системы счисления в двоичную методом подбора степеней числа 2:

а) 42д) 232з) 400
б) 97е) 286к) 405
в) 111ж) 309л) 528

3. Выполните перевод из десятичной системы счисления в двоичную методом деления на новое основание:

а) 20д) 100з) 568
б) 31е) 102к) 443
в) 49ж) 127л) 500
г) 96з) 269м) 600

Арифметические операции в двоичной СС

4. Выполните сложение чисел:

а) 10012 + 11002д) 1000012 + 110002
б) 10102 + 10102е) 1011102 + 10101002
в) 1110012 + 1101102ж) 10111112 + 10111112
г) 1010102 + 1100112з) 11110112 + 11110012

5. Выполните вычитание чисел:

6. Выполните умножение чисел:

а) 11002 × 1012д) 1011002 × 10112
б) 10102 × 1112е) 1011112 × 11012
в) 110112 × 10112ж) 1011012 × 11112
г) 111102 × 10112з) 1010112 × 11102

7. Найти значение выражения:

Кодирование чисел

8. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?

а) +25д) +204з) +512
б) +64е) +212к) +4096
в) +96ж) +256л) +32256
г) +128з) +302м) +65536

9. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?

10. Дано внутреннее представление целого числа со знаком. Какому десятичному числу оно соответствует?

Источник

Что такое значащие нули в двоичной записи числа

Любой вид информации можно представить в виде чисел. Кодирование информации с помощью чисел осуществляется по определённым правилам. Для понимания этих правил, разберём логику образования любого числа.

| Система счисления – это правила записи чисел с помощью знаков – цифр и операций над ними.

Любое число, в данной системе счисления, образуется путём повторения одинаковых элементов (палочка, камешек, ракушка и т.д.).

Данная система счисления позволяет записывать только натуральные числа и запись «большого» числа получается очень громоздкой.

В дальнейшем, у человечества возникла необходимость производить серьёзные подсчёты. Для этого были придуманы непозиционные системы счисления.

| Непозиционная система счисления – это система счисления, в которой цифра не изменяет своего значения, от изменения позиции в числе.

Египетская система счисления что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
Кириллическая система счисления что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
Римская система счисления что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
| Позиционная система счисления – это система счисления, в которой цифра изменяет своё значения, при изменении позиции в числе.

Вспомним, что любое число в десятичной (арабской) системе счисления можно разложить на разряды. Например, в числе 753 цифра 7 обозначает сотни (700), цифра 5 – десятки (50), цифра 3 – единицы. Таким образом, число можно представить, как:

753 = 7 * 100 + 5 * 10 + 3 * 1
| Алфавит системы счисления – совокупность всех её цифр.

| Основание системы счисления – указывает на количество цифр в данной системе счисления.

Алфавит десятичной системы счисления состоит из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Следовательно, основанием данной системы счисления является 10.

Тогда, любое число будем записывать по правилу, с указанием основания данной системы счисления:

Число читается, как «семьсот пятьдесят три по основанию десять» или «семьсот пятьдесят три в десятичной системе счисления».

| Разряд – это позиция цифры в числе (нумерация в целых числах производится с права налево, начиная с нуля).

Укажем разряд каждой цифры в числе 753:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Развёрнутая форма представления чисел

В результате разбиения числа на разряды, любое такое число можно представить в развёрнутой форме.

Формула развёрнутой формы представления чисел:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

q – основание системы счисления;

a – цифра данного числа;

n – число разрядов в числе.

Представим число 75310 в развёрнутой форме.

1) Определим позиции каждой цифры в числе:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Каждую цифру в числе, умножим в соответствии занимаемой позицией:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Для упрощения данной записи, представим данное число, как основание 10 в степени n:

Запишем полученный результат.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Обратите внимание, что степень основания числа совпадает с позицией каждой цифры в числе!

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Перевод числа в десятичную систему счисления

С помощью развёрнутой формы представления чисел можно перевести число из любой системы счисления в десятичную.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Определение: каждую цифру числа нужно умножить на его основание, возведённое в степень, равную позиции цифры в числе.

Двоичная система счисления

Алфавит системы счисления: 0, 1.

Перевод десятичного числа в двоичную систему счисления методом подбора степеней числа 2

Для перевода двоичных чисел в десятичную систему счисления, используют метод подбора степеней двойки.

Пусть дано десятичное число 2110.

1) Подберём ближайшую наименьшую степень числа 2 к данному числу: 2 4 = 16;

3) Повторить, пока не достигнем нуля.

В результате, мы получим следующие степени:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Найденные нами степени – это позиции цифры 1 в двоичном числе, а отсутствующие степени – это нули:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Перевод целого десятичного числа в другую систему счисления методом деления на новое основание

Определение: Для перевода целого десятичного числа в другую систему счисления, необходимо делить данное число на новое основание (той системы счисления, в которую необходимо осуществить перевод). Ответ складывается из остатков от деления.

Переведите число 1310 в двоичную систему счисления.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Арифметические операции в двоичной системе счисления

Все вычисления в компьютере выполняются в двоичной системе счисления.

Рассмотрим базовые арифметические операции.

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа
что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Кодирование числовой информации в памяти компьютера

Для представления целого числа без знака в памяти компьютера, необходимо:

1. перевести число в двоичную систему счисления;

2. поместить число в ячейку памяти компьютера;

3. заполнить пустые ячейки незначащими нулями.

Представьте число 5610 в компьютерной форме.

1. переведём число в двоичную систему счисления:

2. число состоит из 6 разрядов и помещается в одну ячейку:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

3. дополним незначащими нулями:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Диапазон значений целых чисел без знака что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Хранение чисел со знаком отличается от беззнаковой формы.

Знак «+» принято обозначать за «0», а знак «–» за «1». Знак записывается в старший бит ячейки. Для хранения таких чисел выделяют 1, 2 или 4 байта.

Для представления целого числа со знаком «+» в памяти компьютера, необходимо:

1. перевести число в двоичную систему счисления;

2. поместить число в ячейку памяти;

3. выделить старший бит ячейки под знак и поставить на это место нуль.

4. заполнить оставшиеся биты незначащими нулями.

Представьте число +29210 в компьютерной форме.

1. переведём число в двоичную систему счисления:

2. число состоит из 9 разрядов и для хранения требует двух ячеек:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

3. число положительное, значит в старший бит необходимо поместить нуль:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

4. заполним оставшиеся биты незначащими нулями:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Для представления целого числа со знаком «–» в памяти компьютера применяют метод прямого и обратного кода:

1. перевести модуль данного числа в двоичную систему;

2. Прямой код: поместить число в ячейку памяти и дополнить его незначащими нулями;

3. Обратный код: выполнить инверсию (заменить нули на единицы и наоборот);

4. Дополнительный код: увеличить получившееся число на единицу.

Представьте число –8710 в компьютерной форме.

1. переведём модуль числа в двоичную систему счисления:

2. число состоит из 7 разрядов и помещается в одну ячейку. Поместим число в ячейку и дополним незначащими нулями:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

4. прибавляем к числу единицу:

что такое значащие нули в двоичной записи числа. Смотреть фото что такое значащие нули в двоичной записи числа. Смотреть картинку что такое значащие нули в двоичной записи числа. Картинка про что такое значащие нули в двоичной записи числа. Фото что такое значащие нули в двоичной записи числа

Обратите внимание на старший бит. Здесь 1 – это знак числа.

Переводы

1. Выполните перевод чисел из двоичной системы счисления в десятичную систему методом развёрнутой формы представления числа:

а) 11002д) 11000112з) 10011101110002
б) 110002е) 1001011012к) 10010000101112
в) 1010102ж) 1011101102л) 1011101011112
г) 11000112з) 1111112м) 11111112

2. Выполните перевод из десятичной системы счисления в двоичную методом подбора степеней числа 2:

а) 42д) 232з) 400
б) 97е) 286к) 405
в) 111ж) 309л) 528

3. Выполните перевод из десятичной системы счисления в двоичную методом деления на новое основание:

а) 20д) 100з) 568
б) 31е) 102к) 443
в) 49ж) 127л) 500
г) 96з) 269м) 600

Арифметические операции в двоичной СС

4. Выполните сложение чисел:

а) 10012 + 11002д) 1000012 + 110002
б) 10102 + 10102е) 1011102 + 10101002
в) 1110012 + 1101102ж) 10111112 + 10111112
г) 1010102 + 1100112з) 11110112 + 11110012

5. Выполните вычитание чисел:

6. Выполните умножение чисел:

а) 11002 × 1012д) 1011002 × 10112
б) 10102 × 1112е) 1011112 × 11012
в) 110112 × 10112ж) 1011012 × 11112
г) 111102 × 10112з) 1010112 × 11102

7. Найти значение выражения:

Кодирование чисел

8. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?

а) +25д) +204з) +512
б) +64е) +212к) +4096
в) +96ж) +256л) +32256
г) +128з) +302м) +65536

9. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?

10. Дано внутреннее представление целого числа со знаком. Какому десятичному числу оно соответствует?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *