что такое жирнокислотный состав молочных продуктов
Выявление фальсификации жировой фазы молочной продукции
Читайте и узнаете:
ЕЛ. Юрова
заведующая лабораторией технохимического контроля ФГБНУ «ВНИМИ», канд. техн. наук
Т.В. Кобзева
старший научный сотрудник лаборатории технохимического контроля ФГБНУ «ВНИМИ»
Н.А. Жижин
младший научный сотрудник лаборатории технохимического контроля ФГБНУ «ВНИМИ»
Приведены результаты исследований молочной продукции различными методами по нескольким критериям, позволяющим идентифицировать молочный, растительный или говяжий жир в ее составе. Впервые предложен способ комплексной оценки жировой фазы по жирнокислотному и триглицеридному составу. На основе полученных результатов исследований разработаны методики измерений для определения состава стеринов и триглицеридов
Жировой состав относится к числу важнейших составляющих биологической ценности молочной продукции. На свойства молочного жира влияют в первую очередь строение и состав жирных кислот. Кроме того, жирнокислотный состав (ЖКС) жировой фазы молока может изменяться в зависимости от сезона года, воздействия зоотехнических факторов, кормления, породных изменений и т.д., а также в процессе технологической переработки. Для имитации молочного жира все чаще применяются животные жиры, в частности говяжий, что усложняет процесс идентификации жировой фазы молока и молочных продуктов по ЖКС. В связи с этим была проведена работа по изучению состава жировой фазы молочной продукции и разработке метода комплексной оценки жирового состава.
Из всех природных жиров молочный жир по химическому составу является самым сложным и уникальным. На 98-99 % он представляет собой нейтральный жир в виде простых липидов — глицеридов. Фактически нейтрального жира в молоке нет, он всегда частично гидролизован и содержит следы жирных кислот.
Основной составляющей жиров животного и растительного происхождения являются сложные эфиры трехатомного спирта глицерина и жирных кислот, называемые глицеридами (ацилглицеридами). Жирные кислоты входят в состав не только глицеридов, но и большинства других липидов. Разнообразие физических и химических свойств природных жиров обусловлено химическим составом жирных кислот глицеридов. В триглицеридный состав жиров входят различные жирные кислоты. В зависимости от вида животного или растения, из которых получены жиры, ЖКС триглицеридов различен. В состав глицеридов жиров и масел входят главным образом высокомолекулярные жирные кислоты с числом углеродных атомов 16, 18, 20, 22 и выше, низкомолекулярные с числом углеродных атомов 4, 6 и 8 (масляная, капроновая и капри- ловая кислоты). Число выделенных из жиров кислот достигает 170, однако некоторые из них еще недостаточно изучены и сведения о них весьма ограниченны.
Как уже было сказано выше, ЖКС молочного жира в значительной степени зависит от кормов, молочной продуктивности, от генетической особенности животных, поэтому содержание отдельных жирных кислот может существенно меняться, о чем свидетельствуют границы колебаний, установленные нормированием. Поэтому для идентификации жировой фазы молочных продуктов требуется дополнительный параметр — содержание молочного жира, который, как правило, является расчетной величиной по идентификационным жирным кислотам — масляной, миристиновой и др. “ Но основная жирная кислота, которая присуща именно молочному жиру коровьего молока — масляная. В молочной железе под действием бактерий рубца ацетат и p-гидроксибутират преобразуются в жирные кислоты и получаются жиры с высоким содержанием насыщенных низкомолекулярных жирных кислот (С4 : 0 и С6 : 0), которые не встречаются ни в каких других жирах, потому что это специфично именно для жвачных животных, так как гидроксимасляную кислоту продуцируют микроорганизмы в рубце животного. В рубце жвачных животных полиненасыщенные жирные кислоты гидролизуются до стеариновой кислоты, а в молоко попадает лишь незначительное количество полиненасыщенных жирных кислот (ПНЖК), и даже при повышенном их содержании в корме в молоке увеличения их количества все же не наблюдается.
В зарубежных изданиях ЖКС уже давно относят к критериям для обнаружения фальсификации молочной продукции растительными маслами, главным образом потому, что молочный жир характеризуется короткоцепочечными жирными кислотами, тогда как растительные масла имеют жирные кислоты в основном средне- и длинноцепочечные. После того как фальсификация растительными маслами получила широкое распространение и молочный жир стал чаще заменяться животным или жирами морских млекопитающих, появилась необходимость в определении критериев оценки жировой фазы не только по ЖКС. В ходе исследований было установлено, что немолочные жиры в молочном жире можно определить путем анализа триацилглицеридов. Это позволило осуществлять идентификацию жирового состава с применением метода газожидкостной хроматографии, но по триглицеридному составу.
Основным документом, устанавливающим требования к оценке качества, безопасности, идентификации, маркировке молочной продукции, является технический регламент Таможенного союза «О безопасности молока и молочной продукции» (ТР ТС 033/2013), согласно которому идентификация жировой фазы молочной продукции должна осуществляться по составу стеринов.
Стерины (холестерин и эргостерин) содержатся в молоке в небольшом количестве в виде сложных эфиров — холестеридов. Основной стерин — холестерин (C27H46O) — находится в молоке в свободном и в связанном с жирными кислотами состоянии. Растительные масла, напротив, содержат фитостерины, которые относятся к группе стероидных спиртов, естественным образом присутствующих в растениях. Состав фитостеринов разнообразен, основным фитостерином, который содержится практически во всех растениях и лишь изредка встречается в одноклеточных водорослях — (3-ситостерин. Также в составе стеринов встречаются кампестерин, стигмастерин, брассикастерин, ситостерин. Но согласно установленным ТР ТС 033/2013 требованиям наличие именно фитостеринов является идентификационным признаком присутствия в жировой фазе продукта растительных жиров и масел. При этом форма холестерина и его состояние в продукте (свободное или связанное с жирными кислотами) не является идентификационным признаком, что делает способ идентификации несовершенным. Присутствие в продукции нерастительных жиров немолочного происхождения не позволяет осуществить идентификацию жировой фазы.
Одним из основных стандартов для определения ЖКС является ГОСТ 32915-2014 «Молоко и молочная продукция. Определение жирнокислотного состава жировой фазы методом газовой хроматографии». Определение состава стеринов проводят в соответствии с требованиями ГОСТ 31979-2012 «Молоко и молочные продукты. Метод обнаружения растительных жиров в жировой фазе газожидкостной хроматографией стеринов». Метод, приведенный в указанном документе, является качественным и позволяет установить наличие именно фитостеринов, по содержанию которых делается вывод о присутствии в продукте растительного жира. Данное обстоятельство очень сужает рамки применения этого стандарта, так как методика не позволяет выявлять наличие немолочных жиров животного происхождения (говяжьего, свиного, бараньего и др.) и проводить количественные измерения. К сожалению, не всегда применение ГОСТ 31979-2012 позволяет сделать верные выводы и осуществить идентификацию жировой фазы продукта. Данное обстоятельство привело к необходимости разработки нового подхода к оценке жировой фазы молочной продукции с учетом применяемой методики измерений.
Новый метод
Комплексную оценку жировой фазы молочной продукции проводили с применением методик определения ЖКС, триглицеридного состава и состава стеринов. Разделение и идентификацию жирных кислот в исследованных образцах осуществляли с использованием газового хроматографа «Кристаллюкс» модели 4000М, снабженного капиллярной колонкой SP-2560 (Supelco) 100 м х 0,25 мм, df = 0,20 мкм (Sigma-Aldrich, США) и пламенноионизационным детектором. Анализ проводили в следующих условиях: объем пробы 1 мкл, расход газа-носителя (азота) 1,0 мл/мин с разделением потока 50:1. Температура инжектора 230 °С, детектора — 260 °С. Начальная температура колонки 140 °С. Температурная программа изменялась со 140 °С до 260 °С с шагом 4°С/мин. Время анализа — 50 мин.
Разделение и идентификацию триацилглицеридов проводили с использованием газового хроматографа «Кристаллюкс» модели 4000М, оснащенного капиллярной колонкой Supelco НТ-5 (25 м х 0,32 мм, df = 0,10 мкм, (Sigma- Aldrich) и пламенно-ионизационным детектором. Условия, в которых проходил анализ:
Для исследования состава стеринов использовали метод высокоэффективной жидкостной хроматографии с применением жидкостного хроматографа фирмы Gilson (Франция), оснащенного спектрофотометрическим детектором. Разделение состава стеринов проводили при длине волны 205 нм при помощи колонки ReproSil Pur-С18 250 x 4.6, 5 мкм (Dr.Maisch). Использовалось изократическое элюирование смесью подвижной фазы ацетонитрил/вода (95/5) при скорости потока 1 мл/мин, с температурой колонки 30 °С. Объем вводимой пробы составлял 20 мкл. Состав стеринов анализировали по хроматограмме стандартных образцов.
В качестве объектов исследований было использовано молоко питьевое пастеризованное с массовой долей жира 3,2%, молоко ультрапастеризованное с массовой долей жира 3,2 %, сметана с массовой долей жира 20,0%, продукт сметанный с массовой долей жира 20,0%, молоко сгущенное цельное с сахаром с массовой долей жира 8,5 % и консервы молокосодержащие сгущенные с сахаром с массовой долей жира 8,5%. Комплексная оценка жировой фазы молочной продукции проводилась в образцах до и после хранения.
Анализ результатов
Анализ полученных результатов исследований показал, что значительным изменениям подвергалось содержание следующих жирных кислот: масляной, стеариновой, олеиновой, линолевой и линоленовой. Наименьшим изменениям были подвержены такие кислоты, как миристиновая, пальмитиновая и лауриновая. Было отмечено, что изменения в ЖКС не случайны, а связаны в первую очередь с составом жировой фазы молочной продукции, на которую оказывают влияние и температурные режимы обработки, и время хранения продукта, и содержание молочной кислоты. В табл. 1 и 2 приведены значения ЖКС в различных продуктах и в процессе хранения, видно, что в той или иной степени все жирные кислоты подвержены изменениям.
Набранный массив данных позволил установить диапазоны колебаний содержания исследованных жирных кислот, как в молочном сырье, так и в продуктах. Содержание жирных кислот в 80% исследованных образцов соответствовало среднему значению от полученных данных. Наиболее сильно выраженные отклонения наблюдались только в 5% образцов.
Проанализировав ЖКС молочной продукции, можно сделать заключение о том, что он подвержен изменениям под действием различных факторов: при хранении, нарастании кислотности, пастеризации, в процессе сквашивания и т.д. А в продуктах молокосодержащих, в частности в консервах сгущенных, изменения ЖКС были значительны, наблюдалось увеличение трансизомеров жирных кислот и снижение полиненасыщенных жирных кислот, особенно в тех продуктах, где молочный жир заменялся животным (см. табл. 1).
В ходе исследования был сделан вывод о завышенном верхнем пороге содержания олеиновой кислоты в действующих нормативных документах, составляющем 33% от суммы жирных кислот. На практике такое значение достигается только при полном замещении молочного жира растительным. Как только содержание олеиновой кислоты достигает 27,0% или превышает это значение, содержание масляной кислоты падает ниже минимально установленного нормативными документами порога в 2,0%, что свидетельствует о фальсификации продукции.
Как видно из приведенных выше данных, по триглицеридному составу (см. табл. 3) говяжий и молочный жиры различаются. И даже небольшая замена второго первым вносит существенный дисбаланс в характерное содержание всех минорных жирныхкислот молочного жира. При этом изменения в содержании отдельных жирных кислот в исследованных образцах достаточно специфичны. Можно отметить, что для растительных жиров характерно наличие высоких значений пальмитиновой и линолевой жирных кислот, в то время как для говяжьего жира ситуация противоположная. В данном случае наблюдается снижение содержания полиненасыщенных жирных кислот, причем значительное.
Для проверки полученных данных были проведены исследования на искусственно созданных образцах, которые были получены путем смешивания молочного и говяжьего жиров в определенных пропорциях. На диаграмме (см. рисунок) видно, что содержание масляной, лауриновой, миристиновой и пальмитиновой жирных кислот пропорционально снижается при уменьшении количества молочного жира, в то время как массовая доля стеариновой и олеиновой кислот значительно увеличивается. Также на диаграмме видно, что содержание молочного жира напрямую зависит от концентрации масляной жирной кислоты, и во всех случаях наблюдается ее снижение, даже при невысокой замене молочного жира.
Проведенные исследования позволили разработать метод комплексной оценки жировой фазы молочной продукции на основе критериев идентификации с учетом внешних факторов и различных технологических режимов переработки. Комплексная оценка состава жировой фазы молочной продукции проводится в три этапа:
Разбор: Как выявляют фальсификацию молочных продуктов в России
В июне Роспотребнадзор опубликовал ежеквартальные результаты лабораторной проверки молочной продукции. По итогам исследования за первые три месяца 2018 года более 15 тысяч проб молока и молочной продукции было выявлено 4% фальсификата. За весь 2017 год показатель фальсификации снизился с 5% до 4%.
Однако за борьбой с фальсификатом скрывается множество технологических и нормативных нюансов и методологических противоречий. Milknews расспросил экспертов, какими методами определяют замену молочных жиров растительными и какие разработки в этом направлении сейчас ведутся.
Фальсификация жировой фазы
В документе среди критериев фальсификации как сырого молока, так и всех молочных продуктов, числится использование немолочных видов сырья и добавление растительных масел.
Больше всего волнует потребителя и контролирующие органы именно замена жиров. Если опустить все прочие существующие виды фальсификации (в числе которых ассортиментная, количественная и т.д.) и говорить только о фальсификации состава, то здесь основным действующим документом являются Методические указания “Оценка подлинности и выявления фальсификации молочной продукции”, разработанные Федеральным Центром гигиены и эпидемиологии (Роспотребнадзор).
1. Метод обнаружения растительных стеринов
Согласно лабораторным исследованиям, такой метод обнаружения растительных стеринов позволяет выявить фальсификацию при 2% содержания фитостеринов.
2. Метод определения жирно-кислотного состава
Метод заключается в измерении массовой доли метиловых эфиров жирных кислот (МЭЖК), расчете соотношений массовых МЭЖК и сравнении полученных данных с нормативными. По результатам этих анализов устанавливается факт наличия или отсутствия фальсификации продукта.
Кроме того, содержание жирных кислот в молочном жире может меняться от множества других факторов: сезона сбора молока, породы КРС, рациона и технологий производства продукта.
Таким образом, с точки зрения точности методов, обнаружение растительных стеринов является более достоверным, так как выявляет растительный компонент от 2%. Из-за того, что состав молочного жира зависит от многих факторов и может изменяться в широких диапазонах, метод определения жирно-кислотного состава позволяет выявить грубые нарушения, где содержание растительных добавок превышает 20%.
Разработка нового метода
Врио директора ВНИИ маслоделия и сыроделия Елена Топникова рассказала Milknews, что 7 февраля 2018 года на ТК 470/МТК 532 рассматривалась окончательная редакция стандарта «Молоко и молочная продукция. Определение состава стеринов методом высокоэффективной жидкостной хроматографии», разработчиком которой является ФГАНУ «ВНИМИ».
“Данная методика не затрагивает вопросы жирно-кислотного состава продукта, а относится к области оценки стеринового состава жировой фазы продукта путем сравнения хроматограмм стеринов продукта со временем удерживания стандартных веществ стеринов (холестерина, ß-ситостерина, брассикастерина, кампестерина и стигмастерина). Он позволяет устанавливать фальсификацию продукта растительными жирами и относится к качественным методам. Фитостерины считаются обнаруженными, если время удерживания стерина на хроматограмме отличается от времени удерживания стерина рабочего раствора не более чем на 1 %. При оценке не учитываются пики фитостеринов с соотношением сигнал/шум не более 3.
Данный проект стандарта уже был одобрен ТК и принят Евразийским советом по стандартизации, метрологии и сертификации (протокол от 30 августа 2018 г. №111-П по результатам голосования в АИС МГС). Ему присвоен номер ГОСТ 34456-2018.
Жирнокислотный состав молочного жира
Ацилглицерины молочного жира могут включать в свой состав более 140 различных жирных кислот с числом углеродных атомов от С4 до С26..
В зависимости от относительного содержания жирных кислот в молочном жире различают основные жирные кислоты, их – 14 и минорные. Содержание каждой из основных жирных кислот превышает 1%, минорных – менее 1%. Участие в образовании триацилглицеринов только основных жирных кислот может дать около 1,5 тысяч смешанных триацилглицеринов. Этот цифровой пример дает представление о комплексности молочного жира и о многообразии факторов, определяющих его состав, а следовательно и физико-химические свойства. Количественное определение содержания жирных кислот в молочном жире проводят, используя методы газожидкостной хроматографии.
На долю основных жирных кислот в молочном жире приходится 98-99%, поэтому именно эта группа кислот определяет в основном свойства молочного жира.
Из основных жирных кислот, входящих в состав молочного жира, следует выделить две группы: насыщенных и ненасыщенных (табл. 6.1).
Содержание основных жирных кислот в молочном жире колеблется в значительных пределах и зависит от ряда факторов: рационов кормления, стадии лактации, сезона года, породы животных и др.
Таблица 6.1 – Общая характеристика основных жирных кислот
Наименование кислот, индекс | Летучесть с водяным паром | Температура плавления, о С | Массовая доля в жире, % (пределы колебаний) |
Насыщенные: | 58,0-77,0 | ||
С4:0 бутановая (масляная) | Летучая и водорастворима | минус 4,0 | 2,0-3,6 |
С6:0 гексановая (капроновая) | Летучая и водорастворима | минус 3,4 | 1,0-3,5 |
С8:0 октановая (каприловая) | Летучая, плохо растворима в воде | 16,7 | 1,0-1,7 |
С10:0 декановая (каприновая) | Летучая, плохо растворима в воде | 31,6 | 2,2-3,6 |
С12:0 додекановая (лауриновая) | Частично летучая, практически нерастворима в воде | 44,2 | 2,0-3,9 |
С14:0 тетрадекановая (миристиновая) | Нелетучая, нерастворима в воде | 52,5 | 10,5-15,3 |
С16:0 гексадекановая (пальмитиновая) | Нелетучая, нерастворима в воде | 63,1 | 20,0-38,0 |
С18:0 октадекановая (стеариновая) | Нелетучая, нерастворима в воде | 69,6 | 6,0-15,7 |
С20:0 эйкозановая (арахиновая) | Нелетучая, нерастворима в воде | 75,4 | 0,3-1,8 |
Ненасыщенные: | 23,0-42,0 | ||
С14:1 9-цис-тетраде-ценовая (миристолеиновая) | Нелетучая, нерастворима в воде | минус 4,5 | 1,5-2,5 |
С16:1 9-цис-гексаде-ценовая (пальмитолеиновая) | Нелетучая, нерастворима в воде | минус 0,5 | 1,6-4,0 |
С18:1 9цис-октаде-ценовая (олеиновая) | Нелетучая, нерастворима в воде | 13,4 | 18,6-37,6 |
С18:2 9-цис, 12-цис-октадекадиеновая (линолевая) | Нелетучая, нерастворима в воде | минус 8,0 | 2.8-5,2 |
С18:3 9-цис, 12-цис, 15-цис-октадекатрие-новая | Нелетучая, нерастворима в воде | минус 16,5 | 0,5-2,2 |
Особенно ощутимы различия в составе молочного жира в зимний и летний периоды (соотношение насыщенных и ненасыщенных жирных кислот в основном зависит от липидного состава кормов).
В составе ацилглицеринов молочного жира преобладают насыщенные жирные кислоты (от 58 до 77%), достигая максимума зимой и минимума – летом. Среди насыщенных кислот преобладают пальмитиновая (20-38%), миристиновая (10-15%) и стеариновая (6-16%).
Особенностью молочного жира является высокое содержание в нем миристиновой кислоты и низкомолекулярных летучих жирных кислот от С4 до С10 – масляной, капроновой, каприловой, каприновой, составляющих в сумме от 6,2 до 12,4%.
Содержание ненасыщенных жирных кислот в молочном жире достигает максимума в летний период – до 42%, а зимой – колеблется от 23 до 39%. Из ненасыщенных жирных кислот преобладающей является олеиновая кислота (18,6-37,6%).
Молочный жир содержит также биологически важные (незаменимые жирные кислоты) – линолевую (С8:2), линоленовую (С18:3) и арахидоновую (С20:4). Содержание их в молочном жире относительно невысокое – от 3 до 7% по сравнению с растительными маслами и повышается в летний период относительно других периодов года.
Все основные жирные кислоты, приведенные в таблице 6.1 имеют четное число углеродных атомов, что обусловлено спецификой их синтеза в молочной железе. Однако, в составе молочного житра обнаружены насыщенные жирные кислоты с нечетным числом углеродных атомов от С5 до С23, но суммарное их содержание не превышает 2% общего содержания кислот, в их число входят и кислоты с разветвленной цепью атомов углерода в различных изомерных формах. Кроме этого молочный жир в незначительном количестве (не более 0,1%) содержит мононенасыщенные и полиненасыщенные высокомолекулярные жирные кислоты, а также транс-изомеры олеиновой кислоты и следы транс-изомеров других моно- и диеновых кислот. Основные ненасыщенные жирные кислоты присутствуют в молочном жире в виде цис-изомеров. Цис-изомеры и транс-изомеры представлены молекулами с одинаковой последовательностью и типом химических связей, но различающихся пространственным строением относительно плоскости двойной связи. Геометрические изомеры различаются по физическим свойствам, они могут переходить из одной формы в другую при нагревании, под действием света, химических реагентов или самопроизвольно.
В составе молочного жира обнаружены транс-изомеры олеиновой кислоты, в том числе транс-9-октадеценовой (элаидиновой) кислоты (от 0,15 до 0,35%), транс-11-октадеценовой (вакценовой) кислоты (от 1,0 до 4,0%) При этом содержание транс-изомеров жирных кислот в молочном жире летнего периода не превышает 2-3%, а зимнего 4-5%. Транс-изомеры жирных кислот не обладают биологической активностью цис-изомеров, повышенное содержание их отрицательно влияет на жировой и углеводный обмен в организме человека, поэтому количество транс-изомеров в рационе регламентируется рекомендуемыми нормами потребления в соответствии с концепцией сбалансированного питания.
Основные свойства жирных кислот. Насыщенные жирные кислоты определяют такие свойства молочного жира как способность к плавлению и кристаллизации, а, следовательно, его консистенцию и влияют на вкус и запах. Насыщенные кислоты с числом углеродных атомов до 8 при комнатной температуре остаются жидкими, а высокомолекулярные – кристаллические соединения. С увеличением молекулярной массы повышается и температура их плавления. Жирные кислоты с нечетным числом углеродных атомов обладают более низкой температурой плавления, чем кислоты с четным числом атомов углерода, но содержание их в молочном жире незначительно (не более 2%).
Все низкомолекулярные жирные кислоты от С4 до С10 улетучиваются с водным паром при отгонке, их относят в группу летучих жирных кислот – ЛЖК. В отличие от других жирных кислот масляная и капроновая частично растворяются в воде, поэтому их можно оттитровать гидроксидом натрия в водном растворе (определяются числом Рейхерта-Мейссля). Летучие жирные кислоты (С8) – каприловая и (С10) – каприновая не растворяются в воде (определяются числом Поленске). Летучие жирные кислоты обусловливают формирование неприятного прогорклого вкуса и запаха в молочном жире, что приводит к снижению качества молочных продуктов. Накопление ЛЖК в молочном жире обусловлено его гидролизом. Однако, ЛЖК при оптимальном их содержании и соотношении участвуют в формировании вкуса и аромата продуктов. Все насыщенные кислоты устойчивы к окислительным процессам при обработке и переработке молока.
Ненасыщенные жирные кислоты оказывают гораздо большее влияние на физические и химические свойства молочного жира, чем насыщенные. Наличие в них двойных связей обусловливает следующие свойства молочного жира:
— возможность образования изомерных форм;
— легкую окисляемость кислородом воздуха и образование низкомолекулярных продуктов окисления;
— способность к реакциям присоединения с галогенами (это свойство используется при определении содержания ненасыщенных ацилглицеринов в молочном жире и является косвенным показателем его консистенции).
Ненасыщенные жирные кислоты (полиеновые) с 2 и 3-мя двойными связями более реакционноспособные по сравнению с моноеновыми. Из-за своей реакционной способности они могут явиться причиной нестойкости в хранении молочного жира и его порчи. Однако, присутствие их в составе молочного жира крайне важно, так как они являются незаменимыми в организме человека, выполняя важные биологические функции: участвуют в биосинтезе гормоноподобных веществ, препятствующих отложению холестерина на стенках кровеносных сосудов, предотвращают заболевания кожи, улучшают проницаемость капилляров.