что такое замена переменной
Замена переменных
Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.
В уравнении \(\displaystyle x^2+\frac
\(\triangle\) Если \(z(t) = y(e^t)\), то, применяя правило нахождения производной сложной функции, получаем
$$
\frac
$$
откуда \(\displaystyle \frac
Заметим, что уравнение \(\displaystyle \frac
$$
y(x)=C_1\sin(\ln |x|) + C_2\cos(\ln |x|).\qquad\blacktriangle\nonumber
$$
В системе уравнений:
$$
\left\<\begin
$$
перейти к полярным координатам.
\(\triangle\) Умножим первое уравнение на \(x\), второе на \(y\) и сложим. Аналогично умножим первое уравнение на \(y\) и вычтем из него второе уравнение, умноженное на \(x\). Получим новую систему уравнений, при \(x^2+y^2 > 0\) эквивалентную исходной системе уравнений,
$$
\left\<\begin
$$
Но \(x^2+y^2=r^2\), \(x=r\cos\varphi\), \(y=r\sin\varphi\). Поэтому систему \eqref
$$
\left\<\begin
$$
Заметим, что система \eqref
$$
r=\frac<1><\sqrt
Преобразовать уравнение \(y’y»’-3(y»)^2=x\), принимая \(y\) за независимую переменную, а \(x\) — за неизвестную функцию.
Таким образом, при \(y’\neq 0\) уравнение преобразуется к виду \(x»’+x(x’)^5=0\). Это частный случай уравнения общего вида \(x»’=\Phi(y,x,x’,x»)\) с непрерывно дифференцируемой в \(R^4\) функцией \(\Phi(y,u,v,w)\). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. \(\blacktriangle\)
Преобразовать выражение \(\omega=\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>\) к полярным координатам, полагая \(x=r\cos\varphi, \ y=r\sin\varphi\). Найти решение уравнения Лапласа \(\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>=0\), зависящее только от полярного радиуса \(r\).
Пусть \(u=v(r)\) есть решение уравнения Лапласа, зависящее только от \(r\). Тогда функция \(v(r)\) должна быть решением дифференциального уравнения
$$
\frac<\partial^2v><\partial r>+\frac1r\frac<\partial v><\partial r>=0\quad\Longleftrightarrow\quad\frac
$$
$$
r\frac
$$
где \(C_1\) и \(C_2\) — произвольные постоянные. \(\blacktriangle\)
Решение уравнения \(\displaystyle\frac<\partial^2\omega><\partial\xi\partial\eta>=0\) легко находится. Так как \(\displaystyle\frac\partial<\partial\xi>\left(\frac<\partial\omega><\partial\eta>\right)=0\), то \(\displaystyle\frac<\partial\omega><\partial\eta>=\varphi(\eta)\), где \(\varphi(\eta)\) — произвольная непрерывная функция \(\eta\).
Пусть \(\Phi(\eta)\) есть ее первообразная на \(R\). Тогда, интегрируя уравнение \(\omega_<\eta>=\varphi(\eta)\), получаем, что \(\omega=\Phi(\eta)+\Psi(\xi)\), где \(\Psi(\xi)\) — произвольная функция.
Если считать, что функции \(\Phi(\eta)\) и \(\Psi(\xi)\) есть непрерывно дифференцируемые функции, то общее решение уравнения \eqref
$$
u(x,t)=\Psi(x-at)+\Phi(x+at).\quad\blacktriangle\nonumber
$$
Метод замены переменной
Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.
Этот метод один из самых популярных при решении сложных заданий, в частности, в ЕГЭ и ОГЭ.
У нас довольно сложное уравнение. А если раскрыть скобки, оно станет еще сложнее. Что делать? Давайте попробуем заменить переменную.
Заменим выражение \(x+\frac<1>
Получилось обычное квадратное уравнение! Решив его, найдем чему равно \(t\), после чего, сделав обратную замену, вычислим \(x\).
Когда не стоит вводить новую переменную? Когда это не сделает уравнение проще. Например, если старая переменная остается, несмотря на замену:
Попробуем сделать замену здесь.
Заменим выражение \(\sin x\) буквой \(t\).
Видим, что в этой замене нет никакого смысла – она не упростила уравнение, даже наоборот, усложнила его, потому что теперь у нас в уравнении две переменные.
Примеры использования метода замены переменной
Заметим, что \(x^4=(x^2 )^2\) (см. свойства степеней ). Тогда наше уравнение приобретает следующий вид.
Теперь используем метод замены.
Вводим новую переменную, заменяя \(x^2\) на \(t\).
Мы нашли чему равно \(t\), но найти-то надо иксы! Поэтому делаем обратную замену.
Пример. Решить неравенство: \(\log^2_3x-\log_3x-2>0\)
Приступим к решению.
Что такое замена переменной
В чем состоит прием замены переменной в неопределенном интеграле.
Замена переменной — это очень сильный метод вычисления неопределенных интегралов. Суть метода состоит в том, что какое-то выражение, входящее в подынтегральную функцию, мы объявляем новой переменной, после чего вычисление интеграла упрощается.
Для того, чтобы выполнить замену переменной, нам нужно знать: 1) как старая переменная выражается через новую, и 2) как дифференциал старой переменной выражается через новую переменную. После этого мы подставляем новые выражения в наш интеграл и вычисляем его.
Следует иметь в виду, что результат вычислений после замены переменной будет выражен в терминах новой переменной. Поэтому после того, как интеграл вычислен, новую переменную нужно снова заменить на старую переменную.
Замена переменной — это сложный прием интегрирования. Точнее говоря, в нем нет ничего сложного, если замена переменной уже придумана нами (или подсказана нам кем-то, не важно). Самое сложное в методе замены переменной — придумать замену, после которой интеграл действительно упрощается, и его можно взять.
Никаких универсальных способов придумывать эффективные замены переменных в природе не существует. Есть только один путь: опыт. Придумывайте замены, пытайтесь их применить, и не расстраивайтесь, если ничего не получается. Придумывайте новые замены и снова пытайтесь их применить.
Просмотрите видео по теме «Замена переменной». Затем перейдите к вопросам по теме «Замена переменной» и попробуйте вычислить предложенные вам неопределенные интегралы, пользуясь подходящей заменой переменной. Наконец, проверьте себя, просмотрев ответы на вопросы по теме «Замена переменной».
Замена переменных в уравнениях (ЕГЭ 2022)
Метод замены переменных… Что это за зверь?
Это хитрый способ сначала сделать сложное уравнение простым (с помощью замены переменных) и потом быстро с ним разделаться.
Есть три способа замены переменной.
Читай эту статью — ты все поймешь!
Замена переменных — коротко о главном
Определение:
Замена переменных – метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.
Замена переменных – это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.
Виды замены переменной:
Степенная замена: за \( \displaystyle t\) принимается какое-то неизвестное, возведенное в степень: \( \displaystyle t=<
Дробно-рациональная замена: за \( \displaystyle t\) принимается какое-либо отношение, содержащее неизвестную переменную: \( \displaystyle t=\frac<<
_ _ \) – многочлены степеней n и m, соответственно. Замена многочлена: за \( \displaystyle t\) принимается целое выражение, содержащее неизвестное: \( \displaystyle t=< _ _ _ \) – многочлен степени \( \displaystyle n\). Обратная замена: После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену. Решение примера №1 Допустим, у нас есть выражение: \( \displaystyle < Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Правильно, данное уравнение необходимо привести к квадратному виду. Введем новую переменную \( \displaystyle t=< Метод замены переменной подразумевает, чтобы старой переменной \( \displaystyle x\) не оставалось – в выражении должна остаться только одна переменная – \( \displaystyle t\). Наше выражение приобретет вид: \( \displaystyle < Нашли ли мы корни исходного уравнения? Правильно, нет. На этом шаге не следует забывать, что нам необходимо найти значения переменной \( \displaystyle x\), а мы нашли только \( \displaystyle t\). Следовательно, нам необходимо вернуться к исходному выражению, то есть сделать обратную замену — вместо \( \displaystyle t\) ставим \( \displaystyle < Решаем два новых простых уравнения, не забывая область допустимых значений! При \( \displaystyle < \( \displaystyle < А что у нас будет при \( \displaystyle < Правильно. Решений данного уравнения нет, так как квадрат любого числа – число положительное, а в нашем случае – отрицательное, соответственно, при \( \displaystyle < В ответ следует записать необходимые нам корни, то есть \( \displaystyle x\), которые существуют: Точно таким же образом необходимо действовать при решении неравенств. Выполняя замену переменных, необходимо помнить два простых правила: Решение примера №2 Попробуй самостоятельно применить метод замены переменной в уравнении \( \displaystyle 3< Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Проверь свое решение: Введем новую переменную \( \displaystyle t=< Наше выражение приобретет вид: \( \displaystyle 3< Возвращаемся к исходному выражению, то есть делаем обратную замену: вместо \( \displaystyle t\) ставим \( \displaystyle < Оба значения \( \displaystyle < При \( \displaystyle < Ответ: \( \displaystyle \sqrt[3]<2>;\sqrt[3]<\frac<1><3>>\) Например, с помощью замены \( \displaystyle t=< В неравенствах все аналогично. Например, в неравенстве \( \displaystyle a< Дробно-рациональная замена – \( \displaystyle y=\frac<< _ \) многочлены степеней n и m соответственно. При этом необходимо помнить, что область допустимых значений (ОДЗ) данного уравнения \( \displaystyle < Решение примера №3 Допустим, у нас есть уравнение: Так как на ноль делить нельзя, то в данном случае ОДЗ будет: \( \displaystyle x\ne 0\) Введем новую переменную \( \displaystyle t\). Пусть \( \displaystyle t=x+\frac<3> Сравни, что дает возведение \( \displaystyle t\) в квадрат, с первой сгруппированной скобкой в нашем примере. Что ты видишь? Правильно. Разница между тем, что у нас в примере, и тем, что дает нам возведение в квадрат, заключается в удвоенном произведении слагаемых. Соответственно, его и следует вычесть, переписывая наш пример с переменной \( \displaystyle t\). \( \displaystyle 2 В итоге мы получаем следующее выражение: \( \displaystyle < Решаем получившееся уравнение: Как мы помним \( t\), не является конечным решением уравнения. Возвращаемся к изначальной переменной: Приводя к общему знаменателю \( \displaystyle x\), мы приходим к совокупности 2-x квадратных уравнений: Решим первое квадратное уравнение: На этой стадии не забываем про ОДЗ. Мы должны посмотреть, удовлетворяют ли найденные корни области допустимых значений? Если какой-то корень не удовлетворяет ОДЗ – он не включается в конечное решение уравнения. Решим второе квадратное уравнение: Снова смотрим, удовлетворяют ли полученные корни ОДЗ? Далее записываем конечный ответ. Ответ: \( \displaystyle \frac<5+\sqrt<13>><2>;\text< >\!\! У тебя получился такой же? Попробуй решить все с начала до конца самостоятельно. Решение пример №4 Какой ответ у тебя получился? У меня \( \displaystyle 1\) и \( \displaystyle 3\). Сравним ход решения: Пусть \( \displaystyle t=\frac<1><<<\left( Приведем слагаемые к общему знаменателю: Не забываем про ОДЗ — \( \displaystyle t\ne 0\). Решаем квадратное уравнение: Как ты помнишь, \( \displaystyle t\) не является конечным решением уравнения. Возвращаемся к изначальной переменной: Решим первое уравнение: Решением первого уравнения являются корни \( \displaystyle 1\) и \( \displaystyle 3\). Решим второе уравнение: Решения не существует. Подумай, почему? Правильно! \( \displaystyle \frac<1><<<\left( Ответ: \( \displaystyle 1\); \( \displaystyle 3\) \( \displaystyle < _ Например, при решении возвратных уравнений, то есть уравнений вида обычно используется замена \( \displaystyle t=x+\frac<1> Сейчас покажу, как это работает. Легко проверить, что \( \displaystyle x=0\) не является корнем этого уравнения: ведь если подставить \( \displaystyle x=0\) в уравнение, получим \( \displaystyle a=0\), что противоречит условию. Разделим уравнение на \( \displaystyle < Теперь делаем замену: \( \displaystyle t=x+\frac<1> Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x: Вернемся к нашему уравнению: \( \displaystyle \begin Теперь достаточно решить квадратное уравнение и сделать обратную замену. Замена многочлена \( \displaystyle y=< _ _ Здесь \( \displaystyle < _ \) — многочлена степени \( \displaystyle n\), например, выражение \( \displaystyle 12< Решение примера №4 Применим метод замены переменной. Как ты думаешь, что нужно принять за \( \displaystyle t\)? Уравнение приобретает вид: Производим обратную замену переменных: Решим первое уравнение: Решим второе уравнение: \( \displaystyle << Решил? Теперь проверим с тобой основные моменты. За \( \displaystyle t\) нужно взять \( \displaystyle 2<< Мы получаем выражение: \( \displaystyle \text Далее делаем обратную замену и решаем оба квадратных уравнения. Решением первого квадратного уравнения являются числа \( \displaystyle 1\) и \( \displaystyle 3,5\) Решением второго квадратного уравнения — числа \( \displaystyle 0,5\) и \( \displaystyle 4\). Ответ: \( \displaystyle 0,5\); \( \displaystyle 1\); \( \displaystyle 3,5\); \( \displaystyle 4\) \( \displaystyle t=< _ _ Здесь \( \displaystyle < _ (например, выражение \( \displaystyle 4< _<4>>\left( x \right)\)). Чаще всего используется замена квадратного трехчлена: \( \displaystyle t=a< Метод замены переменной имеет \( \displaystyle 3\) основных типа замен переменных в уравнениях и неравенствах: Степенная замена, когда за \( \displaystyle t\) мы принимаем какое-то неизвестное, возведенное в степень. Замена многочлена, когда за \( \displaystyle t\) мы принимаем целое выражение, содержащее неизвестное. Дробно-рациональная замена, когда за \( \displaystyle t\) мы принимаем какое-либо отношение, содержащее неизвестную переменную. Разбор 3 примеров на замену переменных Пример 7. \( \displaystyle \left( << Решение примера №6 Пусть \( \displaystyle \text Так как \( \displaystyle \text Решение примера №7 Пусть \( \displaystyle \text \( \displaystyle <<\text Решение: Это дробно-рациональное уравнение (повтори «Рациональные уравнения»), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение \( \displaystyle 6\) степени, поэтому применяется замена переменных. Все станет намного проще после замены: \( \displaystyle t=< Теперь делаем обратную замену: Ответ: \( \displaystyle \sqrt[3]<3>\); \( \displaystyle \sqrt[3]<4>\). Решение примера 10 (замена многочлена) Решите уравнение \( \displaystyle \left( < Решение: И опять используется замена переменных \( \displaystyle t=< \( \displaystyle t\cdot \left( t+1 \right)=12\text< >\Rightarrow \text< >< Корни этого квадратного уравнения: \( \displaystyle t=-4\) и \( \displaystyle t=3\). Имеем два случая. Сделаем обратную замену для каждого из них: \( \displaystyle t=-4\text< >\Rightarrow \text< >< \( \displaystyle D=<<5>^<2>>-4\cdot 13=-17 \( \displaystyle y 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=64-4\cdot 4\cdot 7=-48 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=81-4\cdot 4\cdot 7=-31 0\) Очень простой пример полезной замены переменной можно увидеть в задаче нахождения корней многочлена шестой степени: Полиномиальные уравнения шестой степени, как правило, невозможно решить в терминах радикалов (см. Теорему Абеля – Руффини ). Однако это конкретное уравнение можно записать которое представляет собой квадратное уравнение с двумя решениями: ты знак равно 1 и ты знак равно 8. <\ displaystyle u = 1 \ quad <\ text Затем, предполагая, что вас интересуют только реальные решения, решения исходного уравнения имеют вид Рассмотрим систему уравнений Это может быть функция потенциальной энергии для некоторой физической проблемы. Если решение не сразу видно, можно попробовать замену Цепное правило используются для упрощения сложной дифференциации. Например, рассмотрим задачу вычисления производной y знак равно грех ты и ты знак равно Икс 2 <\ displaystyle y = \ sin u \ quad <\ text Изменения переменных для дифференцирования и интегрирования обучаются элементарному исчислению, и шаги редко выполняются полностью. Очень часто проблема заменяется общей формой изменения, а параметры подбираются по ходу дела, чтобы максимально упростить проблему. Это легко показать с помощью цепного правила и линейности дифференцирования. Это изменение очень часто встречается в практических приложениях для получения физических параметров из задач, например, краевой задачи Масштабирование полезно по многим причинам. Это упрощает анализ как за счет сокращения количества параметров, так и за счет упрощения задачи. Правильное масштабирование может нормализовать переменные, то есть сделать их разумным безразмерным диапазоном, например от 0 до 1. Наконец, если проблема требует числового решения, чем меньше параметров, тем меньше количество вычислений. Рассмотрим систему уравнений Он обнаружил, что уравнения ∂ L ∂ y знак равно d d т ∂ L ∂ ш <\ displaystyle <\ frac <\ partial Фактически, когда подстановка выбрана правильно (используя, например, симметрии и ограничения системы), эти уравнения намного легче решить, чем уравнения Ньютона в декартовых координатах._
_
Степенная замена \( \displaystyle y=<
Степенная замена в общем виде
Дробно-рациональная замена
_
_
Дробно-рациональная замена в общем виде
_
Замена многочлена
Замена многочлена в общем виде
Подведем итоги
Важные советы при введении новой переменной
Содержание
Простой пример
Официальное введение
Другие примеры
Преобразование координат
Дифференциация
Интеграция
Дифференциальные уравнения
Масштабирование и смещение
Импульс против скорости
Лагранжева механика