что такое выходное сопротивление усилителя
Как влияет сопротивление усилителя на звук?
Как и наушники, усилитель имеет свое собственное сопротивление. Очень часто, пропуская этот параметр, оценивая одни и те же наушники, слушатели приходят к противоположным мнениям относительно их звучания, касаемо их громкости и частотного баланса.
Рассмотрим подробно влияние сопротивления усилителя но общее звучание.
В упрощенном виде электрическая схема выглядит так:
Условно, мы имеем дело с дополнительным сопротивлением R(Amplifier), которое многие не учитывают и потом удивляются, почему их ожидания от звучания наушников не оправдываются. В зависимости от величины сопротивления, усилители делятся на усилители напряжения (низкое значение сопротивления) и усилители тока (высокое сопротивление).
Само сопротивление принято называть импедансом или полным выходным сопротивлением усилителя. Более сложное название подчеркивает, что сопротивление может быть непостоянным и меняться в зависимости от частоты.
Из результатов измерений более 100 усилителей в проекте Reference Audio Analyzer можно выделить основные типы импедансов: равномерные и с повышением сопротивления в области низких частот.
Зависимость импеданса наушников и полного выходного сопротивления усилителя
Из прошлых материалов уже знаем, что когда наушники подключаются к усилителю, то их АЧХ меняется из-за индивидуального согласования импеданса наушников, сопротивления проводов и полного выходного сопротивления усилителя.
Закономерный вопрос, а от чего же меняется АЧХ наушников? Возвращаясь в электрической схеме и школьному курсу физики, можно увидеть, что из-за сопротивления усилителя будет дополнительное падение напряжения в цепи, зависящее от сопротивления нагрузки (в данном случае наушников). Чем ниже будет сопротивление нагрузки, тем выше будет падение напряжения на нагрузке.
У наушников зачастую импеданс неравномерный. Например, у Grado GR 10 сопротивление в области низких и средних частот равно 16 Ом, а в области высоких частот достигает 150 Ом.
При подключению к усилителям с разным выходным сопротивлением, АЧХ снижается по уровню, однако просадка неравномерна, в области низких частот снижение максимально, а в области высоких не так значительно.
Пользователь обычно никогда не знает, какой уровень напряжения он подал на наушники, и если громкость недостаточная, то регулятор громкости исправляет ситуацию. Однако из-за того, что первоначально частоты снизились неравномерно, то подъем громкости возвращает их суммарный уровень, но уже в измененной АЧХ.
На графике в примере видно, что при выравнивании громкости разница наблюдается в области высоких частот и достигает 12 дБ.
Усилители с характерными графиками полного выходного сопротивления
Усилители с ровным выходным сопротивлением
На графике показаны типовые линии импедансов с сопротивлением в 20, 50, 100 и 300 Ом.
При сопротивлении менее 3 Ом сопротивление называется «нулевым». К усилителям с «нулевым» сопротивлением относятся усилители Violectric.
К токовым усилителям можно отнести усилители Erzetich, где выходное сопротивление выше 60 Ом.
Близкое к нулю с повышением в области низких частот
Такую кривую импеданса можно наблюдать у усилителей с однополярным питанием, где постоянное смещение напряжение ликвидируется конденсатором на выходе. При подключении низкоомных наушников к такому усилителю на АЧХ обычно наблюдается снижение низких частот по уровню. Такие усилители относятся к категории усилителей с «нулевым» сопротивлением. Чаще всего такие усилители встречаются в плеерах и других мобильных устройствах.
Усилители «напряжения» против «токовых»
Что лучше и качественнее, усилители с низким сопротивлением или высоким?
В усилителях для колонок предпочтение отдается усилителям напряжения с высоким демпинг-фактором. Высокий демпинг-фактор обеспечивает лучший контроль низких частот в области резонансных частот у низкочастотного динамика. У многих наушников нет столь выраженных проблем с низкочастотным резонансом и можно использовать преимущества токового режима усилителя.
Напряжение на выходе усилителя с низким выходным сопротивлением зависит в величины сопротивления наушников. Сопротивление наушников в свою очередь зависит от температурного режима (если подать излишне высокую мощность, то температура окажется критической, достаточной для расплавления лакового покрытия изоляции или разрушения провода). В штатном режиме температура катушки индуктивности не приводит к разрушению, но при этом меняет свое сопротивление.
Из-за малой массы и габаритов, изменения температуры меняются очень быстро, что приводит к постоянным резким изменениям амплитуды сигнала и сказывается на общих искажениях.
При использовании токового усилителя с высоким выходным сопротивлением, изменения сопротивления наушников практически никак не отражается на амплитуде сигнала, что позволяет существенно снизить влияние температурных процессов и делает усилители с высоким выходным сопротивлением предпочтительными.
Подробно это исследовал профессор Агеев Д. В., в публикации «ДОЛЖЕН ЛИ УМЗЧ ИМЕТЬ МАЛОЕ ВЫХОДНОЕ СОПРОТИВЛЕНИЕ?» РАДИО №4, 1997 г.
Выводы
Какие можно сделать выводы? Гнаться за нулевым сопротивлением в большинстве случаев нет смысла. Для наушников с ярко выраженным резонансом в области низких частот может подойти как усилитель напряжения, так и токовый, и это будет компромисс между контролем низких частот и прозрачности звучания в остальном диапазоне.
Для ряда наушников, где производитель постарался снизить зависимость сопротивления от температуры, может вообще не быть разницы, с каким выходным сопротивлением усилитель используется.
У высокоомных наушников (таких как Sennheiser HD 650, HD 800, Beyerdynamic DT 880 Pro) есть преимущество, их колебания сопротивления мало отражаются на амплитуде сигнала и возможно поэтому за высокоомными наушниками закрепилась ассоциация как «качественный звук».
А в конечном итоге, связка «усилитель + наушники» выбирается по субъективному звучанию, где технически характеристики дают первичную информацию и на какие особенности стоит обратить внимание в первую очередь. Например, при оценке токового усилителя надо обратить внимание на качество низких частот, в то время как при использовании усилителя напряжения – нет ли излишней резкости или ощущения «мутности» в звучании. При использовании арматурных или гибридных наушников – подходит ли конечный частотный баланс.
Что такое выходное сопротивление?
Выходной импеданс – это величина импеданса между выходными устройствами предусилителя или усилителя (обычно транзисторами, но, возможно, трансформатором или лампой) и фактическими выходными клеммами компонента. Это включает в себя внутренний импеданс самого устройства.
Чтобы лучше понять это определение, давайте кратко повторим концепцию импеданса. Сопротивление – это степень, до которой что-то ограничивает поток электричества постоянного тока. Импеданс в основном то же самое, но с переменным током вместо постоянного тока. Как правило, полное сопротивление компонента будет меняться при изменении частоты электрического сигнала. Например, небольшая катушка провода будет иметь почти нулевое сопротивление при 1 Гц, но высокое сопротивление при 100 кГц. Конденсатор может иметь практически бесконечное полное сопротивление при 1 Гц, но почти полное сопротивление при 100 кГц.
Зачем вам нужен выходной импеданс?
Так почему же компонент имеет выходное сопротивление? По большей части, это защитить его от повреждений от коротких замыканий.
Любое устройство вывода ограничено по величине электрического тока, с которым оно может работать. Если выход устройства закорочен, его просят передать огромное количество тока. Например, выходной сигнал 2,83 В будет генерировать ток 0,35 А и мощность 1 Вт в типичном 8-омном громкоговорителе. Нет проблем там. Но если провод с сопротивлением 0,01 Ом был подключен к выходным клеммам усилителя, тот же выходной сигнал 2,83 В будет производить ток 282,7 А и мощность 800 Вт. Это гораздо больше, чем может обеспечить большинство устройств вывода. Если усилитель не имеет какой-либо схемы защиты или устройства, выходное устройство будет перегреваться и, вероятно, будет необратимо повреждено. И да, это может даже загореться.
С некоторым количеством импеданса, встроенного в выход, компонент, очевидно, имеет большую защиту от коротких замыканий, потому что выходное сопротивление всегда находится в цепи. Скажем, у вас есть усилитель для наушников с выходным сопротивлением 30 Ом, вы используете пару 32-омных наушников и вы укорачиваете шнур наушников, случайно обрезав его ножницами. Вы переходите от полного сопротивления системы 62 Ом к общему сопротивлению, возможно, 30,01 Ом, что не так уж важно. Конечно, намного менее экстремальный, чем переход с 8 Ом на 0,01 Ом.
Насколько низким должен быть выходной импеданс?
Очень общее правило в аудио: вы хотите, чтобы выходное сопротивление было как минимум в 10 раз ниже ожидаемого входного сопротивления, которое он будет подавать. Таким образом, выходное сопротивление не оказывает существенного влияния на производительность системы. Если выходной импеданс намного более чем в 10 раз превышает входной импеданс, который он подает, вы можете столкнуться с несколькими различными проблемами.
С любой аудиоэлектроникой слишком высокий выходной импеданс может создавать эффекты фильтрации, которые вызывают странные аномалии частотной характеристики, а также приводят к снижению выходной мощности. Чтобы узнать больше об этих явлениях, ознакомьтесь с моей первой и второй статьями о том, как кабели динамиков могут влиять на качество звука.
С усилителями есть дополнительная проблема. Когда усилитель перемещает диффузор динамика вперед или назад, подвеска динамика возвращает конус обратно в его центральное положение. Это действие генерирует напряжение, которое затем возвращается на усилитель. (Это явление известно как «обратная ЭДС» или обратная электродвижущая сила.) Если выходной импеданс усилителя достаточно низок, он эффективно закорачивает эту обратную ЭДС и действует как тормоз на конусе, когда он отскакивает назад. Если выходной импеданс усилителя слишком высок, он не сможет остановить диффузор, и диффузор будет продолжать подпрыгивать, пока не прекратится трение. Это создает эффект звонка и заставляет ноты задерживаться после того, как они должны были остановиться.
Это можно увидеть в рейтингах коэффициентов демпфирования усилителей. Коэффициент демпфирования – это ожидаемое среднее входное сопротивление (8 Ом), деленное на выходное сопротивление усилителя. Чем выше число, тем лучше коэффициент демпфирования.
Выходное сопротивление усилителя
Поскольку мы говорим об усилителях, давайте начнем с того примера, который показан на рисунке выше. Полное сопротивление колонок обычно составляет от 6 до 10 Ом, но обычно для колонок сопротивление падает до 3 Ом на определенных частотах, а в некоторых крайних случаях даже до 2 Ом. Если вы используете два динамика параллельно, как это обычно делают пользовательские установщики при создании многокомнатных аудиосистем, это уменьшает сопротивление в два раза, то есть динамик, который падает до 2 Ом, скажем, 100 Гц, теперь падает до 1 Ом на этой частоте, когда в паре с другим динамиком того же типа. Это, конечно, крайний случай, но разработчики усилителей должны учитывать такие крайние случаи, иначе они могут столкнуться с большой кучей усилителей, приходящих на ремонт.
Если минимальный импеданс динамика составляет 1 Ом, это означает, что выходной импеданс усилителя должен быть не более 0.1 Ом Очевидно, что нет места, чтобы добавить достаточное сопротивление к выходу этого усилителя, чтобы обеспечить надежную защиту выходных устройств.
Таким образом, усилитель должен будет использовать какую-то схему защиты. Это может быть то, что отслеживает токовый выход усилителя и отключает выход, если ток слишком велик. Или это может быть простой предохранитель или автоматический выключатель на входящей линии переменного тока или на линиях питания. Они отключают источник питания, когда потребляемая мощность больше, чем может выдержать усилитель.
Кстати, почти во всех ламповых усилителях мощности используются выходные трансформаторы, а поскольку выходные трансформаторы представляют собой просто катушки из проволоки, обернутой вокруг металлического каркаса, они имеют собственный собственный импеданс, иногда даже 0,5 Ом или даже больше. Фактически, чтобы имитировать звук лампового усилителя в его твердотельных (транзисторных) усилителях Sunfire, знаменитый дизайнер Боб Карвер добавил переключатель «токового режима», который последовательно помещал 1-омный резистор с выходными устройствами. Конечно, это нарушало минимальное отношение выходного сопротивления 1: 10 к ожидаемому входному сопротивлению, которое мы обсуждали выше, и, таким образом, оказало существенное влияние на частотную характеристику подключенного динамика, но это то, что вы получаете со многими ламповыми усилителями и это именно то, что Карвер хотел имитировать.
Выходной импеданс предусилителя/устройства-источника
С предусилителем или устройством-источником (CD-проигрыватель, кабельная приставка и т. Д.), Как показано на рисунке выше, ситуация другая. В этом случае вас не волнует сила или ток. Все, что вам нужно для передачи звукового сигнала, это напряжение. Таким образом, нисходящее устройство – усилитель мощности в случае предусилителя или предусилитель в случае устройства-источника – может иметь высокий входной импеданс. Любой ток, проходящий через линию, почти полностью блокируется этим высоким входным сопротивлением, но напряжение проходит нормально.
Для большинства усилителей мощности и предусилителей обычно используется входное сопротивление от 10 до 100 кОм. Инженеры могут идти выше, но они могут получить больше шума таким образом. Между прочим, гитарные усилители обычно имеют входное сопротивление от 250 кОм до 1 МОм, поскольку звукосниматели электрогитары обычно имеют выходное сопротивление в диапазоне от 3 до 10 кОм.
Короткие замыкания могут быть обычными для цепей линейного уровня, потому что так легко случайно натереть два оголенных провода вилки RCA о кусок металла, который их замыкает. Таким образом, выходные сопротивления 100 Ом или более распространены в предусилителях и устройствах-источниках. Я видел несколько экзотических высококлассных компонентов с выходным сопротивлением на уровне линии всего 2 Ом, но они будут иметь либо очень мощные выходные транзисторы, либо защитную схему для предотвращения повреждения от короткого замыкания. В некоторых случаях они могут иметь соединительный конденсатор на выходе, чтобы блокировать напряжение постоянного тока и предотвращать перегорание выходного устройства.
Фоно-предусилители – это совершенно другая тема. Хотя они обычно имеют выходные сопротивления, аналогичные импедансам CD-плеера, их входные сопротивления очень отличаются от импедансов линейного каскада. Это слишком много, чтобы вдаваться в подробности. Возможно, я углублюсь в эту тему в другой статье.
Выходное сопротивление усилителя наушников
Рост популярности наушников привел к довольно странному, нестандартному системному сопротивлению типичных усилителей для наушников. В отличие от обычных усилителей, усилители для наушников имеют широкий диапазон выходных сопротивлений. Действительно дешевые усилители для наушников, подобно тем, которые встроены в большинство ноутбуков, могут иметь выходное сопротивление до 75 или даже 100 Ом, хотя сопротивление наушников обычно составляет от 16 до 70 Ом.
Потребитель редко отключает и повторно подключает громкоговорители во время работы усилителя, а также редко повреждает кабели громкоговорителей во время работы усилителя. Но с наушниками такие вещи случаются постоянно. Люди обычно подключают или отключают наушники, когда работает усилитель для наушников. Кабели наушников часто повреждаются, иногда вызывая короткое замыкание, когда они используются. Конечно, большинство усилителей для наушников являются дешевыми устройствами, что может сделать создание достойной схемы защиты слишком дорогостоящим. Поэтому большинство производителей выбирают более простой путь: они повышают выходное сопротивление усилителя, добавляя резистор (или иногда конденсатор).
Как вы можете видеть из моих измерений в наушниках (переходите ко второму графику), высокий выходной импеданс может оказать огромное влияние на частотную характеристику наушников. Я измеряю частотную характеристику наушников сначала с помощью усилителя для наушников Musical Fidelity с выходным сопротивлением 5 Ом, а затем с дополнительным сопротивлением 70 Ом, добавленным для создания полного выходного сопротивления 75 Ом.
Эффект от высокого выходного импеданса зависит от импеданса подключенных наушников, особенно от изменения импеданса наушников на разных частотах.Наушники, которые имеют большие колебания импеданса – как большинство моделей наушников с драйверами сбалансированного якоря – обычно демонстрируют существенные изменения частотной характеристики, когда вы переключаетесь с усилителя с низким выходным сопротивлением на усилитель с высоким выходным сопротивлением. Часто наушники с естественным звучащим тональным балансом при использовании с источником с низким импедансом имеют низкочастотный, тусклый баланс при использовании с источником с высоким импедансом.
К счастью, низкий выходной импеданс доступен во многих высококачественных усилителях для наушников (особенно в твердотельных моделях), и даже в некоторых маленьких микросхемах для наушников, встроенных в такие устройства, как iPhone. Обычно нет способа точно узнать, озвучены ли наушники для использования с высоким или низким выходным сопротивлением, но я предпочитаю придерживаться низкого выходного сопротивления по причинам, упомянутым ранее в этой статье.
Я предпочел бы не использовать наушники с огромными колебаниями импеданса, которые могут привести к изменению частотной характеристики при использовании усилителей для наушников с высоким выходным сопротивлением (например, в ноутбуке, на котором я это печатаю). К сожалению, я обычно предпочитаю звучание хороших наушников-вкладышей со сбалансированной арматурой, а не наушников с динамическими драйверами, поэтому, когда я использую эти наушники с ноутбуком, я обычно подключаю внешний усилитель или USB-усилитель/ЦАП наушников.
О выходном сопротивлении усилителей мощности
Сергей Сакевич
sergey@sakevich.ru
Традиционно считается, что усилитель должен иметь максимально высокий фактор демпфирования (определяется отношением сопротивления нагрузки к выходному сопротивлению усилителя) и, соответственно, минимальное выходное сопротивление усилителя. Это облегчает работу разработчиков как усилителей, так и АС, т.к. первые не задаются лишними вопросами и просто делают выходное сопротивление максимально низким, а вторые в случае многополосных АС рассчитывают разделительные фильтры, исходя из нулевого выходного сопротивления источника, и проблем стыковки усилителей с АС как бы не возникает. Но.
Автором в начале 1990-х были спроектированы усилители мощности 1. 1,2 кВт/кан. Они нормально работали, но выход из строя относительно мощных динамиков даже при небольшой средней мощности, далекой от пика, заставил провести анализ (в основном анализировались динамики диаметром диффузора 15″ и 18″, диаметром подвижной катушки 100 и 112 мм и мощностью 250–500 Вт.). На первый взгляд причина очевидна –высокая выходная мощность, но оказалось, что это не совсем верно. Как правило, не было термических разрушений подвижной катушки, динамик выходил из строя от механических повреждений: отрыв катушки, центрирующей шайбы, обрыв тоководов и т.п. Динамик в простейшем приближении представляет собой линейный двигатель, а так как музыкальный сигнал имеет достаточно выраженный импульсный характер, то резкий разгон и торможение подвижной системы при больших мощностях сопровождается значительными механическими перегрузками. Это навело на мысль повысить выходное сопротивление, что смогло бы снизить ток разгона и торможения, возникающий вследствие действия противоЭДС подвижной системы динамика, и, соответственно, снизить динамические нагрузки на подвижную систему динамика при тех же мощностях.
Как известно, активные потери в динамической головке R=(Rm+B^2L^2)/(Rу+Rг)Sд^2, где Rm – потери в механической системе головки, B^2L^2 – коэффициент преобразования электрических сопротивлений в аналогичные акустические сопротивления (значок ^2 означает возведение в квадрат), B – плотность магнитного потока в магнитном зазоре, L – длина провода звуковой катушки, Sд – площадь диффузора, Rу – выходное сопротивление усилителя, Rг – активное сопротивление звуковой катушки. Как видно из формулы, повышение выходного сопротивления усилителя понижает величину активных потерь головки и позволяет более полно использовать потенциал динамика. При испытаниях на прочность динамиков при работе с усилителем мощностью 1,2 кВт/кан., имеющим выходное сопротивление порядка 10 Ом и работающим на больших мощностях, результаты превзошли все ожидания. Кроме резкого снижения процента «вылетов» динамиков заметно улучшилось качество звучания, расширился частотный диапазон динамиков (что естественно, т.к. динамик представляет собой комплексную нагрузку, в первом приближении похожую на LR-фильтр первого порядка, и повышение выходного сопротивления усилителя, суммируясь с активным сопротивлением динамика, ведет к повышению частоты среза этого фильтра). Повышение же качества связано со следующим: как известно, смещение подвижной системы громкоговорителя пропорционально току в звуковой катушке (а не напряжению, величине магнитной индукции в зазоре и длине провода). При близком к нулевому выходному сопротивлению усилителя ток в катушке зависит от ее сопротивления. Однако сопротивление катушки при ее работе имеет непостоянное значение, например, при частичном выходе катушки из магнитного зазора ее индуктивность и, следовательно, мгновенное сопротивление понижается. Также имеет место термическое изменение величины сопротивления катушки в течение периода ее колебания. Все это приводит к изменению величины сопротивления катушки в течение периода звукового сигнала, которое может достигать в некоторых случаях 10-15%, что приводит к соответствующему изменению тока в катушке громкоговорителя, приводящему к соответствующему росту коэффициента индермодуляционных и нелинейных искажений (естественно, эта величина у каждого громкоговорителя своя, но в принципе не существует АС, которым бы не были присущи эти проблемы, просто у АС высокого качества они менее заметны). Решение этой проблемы – перевод усилителя в режим генератора тока (высокого выходного сопротивления, где выходной ток является функцией входного напряжения, а не выходного напряжения).
Для иллюстрации эффекта снижения искажений ниже приводятся спектрограммы измерений интермодуляционных искажений НЧ-динамиков диаметром 12, 15 и 18 дюймов, мощностью 300 Вт. Магнитные системы у всех динамиков были одинаковы, как и диаметры звуковых катушек – 100 мм. При измерениях применялся конденсаторный микрофон УМ53У11 с головкой 8А3У11, усилитель SK1500 с переключаемым выходным сопротивлением 0 и 20 Ом, программа TrueRTA. Надо заметить, что для измерения интермодуляционных искажений низкочастотных динамиков стандартный набор частот 60 и 7000 Гц не подойдет, ввиду их неспособности воспроизвести 7 кГц, и было выбрано 190 и 2000 Гц.
Ниже измерения динамика 12”, при нулевом и высоком (20 Ом) выходном сопротивлении:
Входное и выходное сопротивление
Входное и выходное сопротивление является очень важным в электронике.
Предисловие
Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие «блок». Например, источник питания, собранный по этой схеме:
состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.
В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:
Блочная схема — это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод «от простого к сложному» полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем — готовое устройство, например, телевизор.
Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.
— Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?
Да! Именно на это нацелена сейчас современная электроника 😉 Микроконтроллеры и конструкторы, типа Arduino, добавляют еще больше гибкости в творческие начинания молодых изобретателей.
На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.
Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением. Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление — это сопротивление какого-то входа, а выходное — сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления? А вот «прячутся» они в самих блоках радиоэлектронных устройств.
Входное сопротивление
Итак, имеем какой-либо блок. Как принято во всем мире, слева — это вход блока, справа — выход.
Как и полагается, этот блок используется в каком-нибудь радиоэлектронном устройстве и выполняет какую-либо функцию. Значит, на его вход будет подаваться какое-то входное напряжение Uвх от другого блока или от источника питания, а на его выходе появится напряжение Uвых (или не появится, если блок является конечным).
Но раз уж мы подаем напряжение на вход (входное напряжение Uвх), следовательно, у нас этот блок будет кушать какую-то силу тока Iвх.
Теперь самое интересное… От чего зависит Iвх ? Вообще, от чего зависит сила тока в цепи? Вспоминаем закон Ома для участка цепи :
Значит, сила тока у нас зависит от напряжения и от сопротивления. Предположим, что напряжение у нас не меняется, следовательно, сила тока в цепи будет зависеть от… СОПРОТИВЛЕНИЯ. Но где нам его найти? А прячется оно в самом каскаде и называется входным сопротивлением.
То есть, разобрав такой блок, внутри него мы можем найти этот резистор? Конечно же нет). Он является своего рода сопротивлением радиоэлементов, соединенных по схеме этого блока. Скажем так, совокупное сопротивление.
Как измерить входное сопротивление
Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?
1)Замерить напряжение Uвх, подаваемое на этот блок
2)Замерить силу тока Iвх, которую потребляет наш блок
3) По закону Ома найти входное сопротивление Rвх.
Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.
Мы с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).
Падение напряжения на резисторе R обозначим, как UR
Из всего этого получаем…
Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!
Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление Rвх=1 МегаОм, а резистор взяли R=1 КилоОм. Пусть генератор выдает постоянное напряжение U=10 Вольт. В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.
В результате получается цепь:
Высчитываем силу тока в цепи в Амперах
Получается, что падение напряжения на сопротивлении R в Вольтах будет:
Грубо говоря 0,01 Вольт. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем китайском мультиметре.
Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также очень большого номинала. В этом случае работает правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.
Измерение входного сопротивления на практике
Ну все, запарка прошла ;-). Давайте теперь на практике попробуем замерить входное сопротивление какого-либо устройства. Мой взгляд сразу упал на Транзистор-метр. Итак, выставляем на блоке питания рабочее напряжение этого транзистор-метра, то есть 9 Вольт, и во включенном состоянии замеряем потребляемую силу тока. Как замерить силу тока в цепи, читаем в этой статье. По схеме все это будет выглядеть вот так:
Итак, у нас получилось 22,5 миллиАмпер.
Теперь, зная значение потребляемого тока, можно найти по этой формуле входное сопротивление:
Выходное сопротивление
Яркий пример выходного сопротивления — это закон Ома для полной цепи, в котором есть так называемое «внутреннее сопротивление». Кому лень читать про этот закон, вкратце рассмотрим его здесь.
Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогенную лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:
И как только подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.
Разница напряжения, то есть 0,3 Вольта (12,09-11,79) у нас падало на так называемом внутреннем сопротивлении r 😉 Оно же и есть ВЫХОДНОЕ СОПРОТИВЛЕНИЕ. Его также называют еще сопротивлением источника или эквивалентным сопротивлением.
У всех аккумуляторов есть это внутреннее сопротивление r, и «цепляется» оно последовательно с источником ЭДС (Е).
Но только ли аккумуляторы и различные батарейки обладают выходным сопротивлением? Не только. Выходным сопротивлением обладают все источники питания. Это может быть блок питания, генератор частоты, либо вообще какой-нибудь усилитель.
В теореме Тевенина (короче, умный мужик такой был) говорилось, что любую цепь, которая имеет две клеммы и содержит в себе туеву кучу различных источников ЭДС и резисторов разного номинала можно привести тупо к источнику ЭДС с каким-то значением напряжения (Eэквивалентное) и с каким-то внутренним сопротивлением (Rэквивалентное).
Eэкв — эквивалентный источник ЭДС
Rэкв — эквивалентное сопротивление
То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же выходное сопротивление.
В режиме холостого хода (то есть, когда к выходным клеммам не подцеплена нагрузка) с помощью мультиметра мы можем замерить ЭДС (E). С замером ЭДС вроде бы понятно, но вот как замерить Rвых ?
В принципе, можно устроить короткое замыкание. То есть замкнуть выходные клеммы толстым медным проводом, по которому у нас будет течь ток короткого замыкания Iкз.
В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что
Но есть небольшая загвоздка. Теоретически — формула верна. Но на практике я бы не рекомендовал использовать этот способ. В этом случае сила тока достигает бешеного значения, да вообще, вся схема ведет себя неадекватно.
Измерение выходного сопротивления на практике
Есть другой, более безопасный способ. Не буду повторяться, просто скопирую со статьи закон Ома для полной цепи, где мы находили внутреннее сопротивление аккумулятора. В той статье, мы к акуму цепляли галогенную лампочку, которая была нагрузкой R. В результате по цепи шел электрический ток. На лампочке и на внутреннем сопротивлении у нас падало напряжение, сумма которых равнялась ЭДС.
Итак, для начала замеряем напряжение на аккумуляторе без лампочки.
Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае E=12,09 Вольт.
Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем резисторе и на нагрузке, в данном случае на лампочке:
Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем резисторе падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r:
Заключение
Входное и выходное сопротивление каскадов (блоков) в электронике играют очень важную роль. В этом мы убедимся, когда начнем рассматривать статью по согласованию узлов радиоэлектронных схем. Все качественные вольтметры и осциллографы также стараются делать с очень высоким входным сопротивлением, чтобы оно меньше сказывалось на замеряемый сигнал и не гасило его амплитуду.
С выходным сопротивлением все намного интереснее. Когда мы подключаем низкоомную нагрузку, то чем больше внутреннее сопротивление, тем больше напряжение падает на внутреннем сопротивлении. То есть в нагрузку будет отдаваться меньшее напряжение, так как разница осядет на внутреннем резисторе. Поэтому, качественные источники питания, типа блока питания либо генератора частоты, пытаются делать как можно с меньшим выходным сопротивлением, чтобы напряжение на выходе «не проседало» при подключении низкоомной нагрузки. Даже если сильно просядет, то мы можем вручную подкорректировать с помощью регулировки выходного напряжения, которые есть в каждом нормальном источнике питания. В некоторых источниках это делается автоматически.