что такое второй дифференциал функции
Второй дифференциал сложной функции двух переменных.
Введение.
Сформулируем некоторые факты из теории функций многих переменных, которые понадобятся нам далее.
Определение: функция z=f(u,v) называется дифференцируемой в точке (u, v), если ее приращение Δz представимо в виде:
Линейная часть приращения называется полным дифференциалом и обозначается dz.
Теорема (достаточное условие дифференцируемости) см[1].
Если в некоторой окрестности т.(u, v) существуют непрерывные частные производные и
, то функция f(u, v) дифференцируема в этой точке и
(du=Δu, dv=Δv). (1)
Определение: Вторым дифференциалом функции z=f(u, v) в данной точке (u, v) называется первый дифференциал от первого дифференциала функции f(u, v), т.е.
Из определения второго дифференциала z=f(u, v), где u и v – независимые переменные, следует
Таким образом, справедлива формула:
(2)
При выводе формулы использована теорема Шварца о равенстве смешанных производных . Это равенство справедливо при условии, что
определены в окрестности т.(u, v) и
непрерывны в т.(u, v). cм[1].
Формула для нахождения второго дифференциала может быть записана символически в следующем виде: – формальное возведение скобки в квадрат с последующим формальным умножением справа на f(x y) дает полученную ранее формулу [1]. Аналогично справедлива формула для 3-го дифференциала:
и вообще:
, где формальное возведение в n-ую степень производится по формуле бинома Ньютона:
;
Отметим, что первый дифференциал функции двух переменных обладает свойством инвариантности формы. То есть, если u и v — независимые переменные, то для функции z=f(u, v), согласно (1)
Пусть теперь u=u(x y), v=v(x y), тогда z=f(u(x y), v(x y)), x и y — независимые переменные, тогда
Используя известные формулы для производной сложной функции:
Тогда из (3) и (4) получим:
.
(5)
где — первый дифференциал функции u,
— первый дифференциал функции v.
Сравнивая (1) и (5), видим, что формальная запись формулы для dz сохраняется, но если в (1) du=Δu, dv=Δv — приращения независимых переменных, то в (5) du и dv — дифференциалы функций u и v.
Второй дифференциал сложной функции двух переменных.
Прежде всего, покажем, что второй дифференциал не обладает свойством инвариантности формы.
Пусть z=z(u, v) в случае независимых переменных u и v второй дифференциал находим по формуле (2)
Пусть теперь u=u(x y), v=v(x y), z=z(u(x y), v(x y)), где независимые переменные x и y. Тогда
.
Итак, мы получили окончательно:
Формулы (2) и (6) не совпадают по форме, следовательно, второй дифференциал не обладает свойством инвариантности.
Ранее были выведены формулы частных производных 1-го порядка для сложной функции z=f(u, v), где u=u(x y), v=v(x y), где x и y — независимые переменные см [1].
Выведем формулы для вычисления частных производных и дифференциала второго порядка для функции z=f(u, v), u=u(x y), v=v(x y), где x и y — независимые переменные.
Для функций u(x y), v(x y) независимых переменных x, y имеем формулы:
Подставим формулы (8) в (6).
Таким образом, получили формулу для дифференциала второго порядка сложной функции двух переменных.
Сравнивая коэффициенты при для частных производных второго порядка сложной функции двух переменных в (2) и (9), получаем формулы:
Пусть z=f(u, v), u=xy, v= . Найти второй дифференциал.
Решение: вычисляем частные производные:
,
,
,
,
,
,
Подставив полученные результаты в (9), получаем ответ:
Важные частные случаи.
1. Рассмотрим случай, когда z=f(u, v), u=u(t), v=v(t).
Для первого дифференциала имеем:
;
Если в формуле (9) положить x≡t и учесть, что все производные по y отсутствуют, то получим:
Отметим, что в квадратных скобках формулы (13) стоит формула производной второго порядка для случая, если z=f(u, v), где u=u(t), v=v(t).
2. Рассмотрим случай, когда z=f(u), где u=u(x y).
Для первого дифференциала имеем:
Далее по формуле (6):
Сравнивая коэффициенты при , получаем формулы для вторых частных производных:
Пусть . Найти
.
Решение: обозначим u= . Находим частные производные:
Находим второй дифференциал:
3. Рассмотрим случай, когда z=f(x y), y=y(x).
Для первого дифференциала имеем:
Далее из 1.получаем:
1.Архипов Г.И. Садовничий В.А. Чубариков В.Н. Лекции по математическому анализу. М.: Дрофа, 2004
2.Виноградова И.Л. Олехник С.Н. Садовничий В.А. Задачи и упражнения по математическому анализу М.В.Ш., 2002
3.Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука,1990.
При выполнении некоторых расчётов в исследованиях, проектировании, анализе полученных опытных путём данных часто возникает необходимость предварительной прикидки результата, которую удобно выполнять, используя дифференциал функции. Приближённые вычисления, выполненные с его помощью, могут дать новые направления дальнейшего изучения объектов и их разработок.
Понятие и геометрический смысл дифференциала
Пусть y = f (x) имеет производную
Применяя свойства предела функции, получают равенство
После умножения обеих частей на приращение аргумента Δx, образуется тождество:
в котором в правой части записано слагаемое, являющееся бесконечно малой одного порядка с Δx, далее идет слагаемое более высокого порядка.
Определение 1
Дифференциалом функции y = f (x) первого порядка называется главная часть её приращения f′(x)Δx, которую обозначают dy (или d(f(x)).
Для наглядного представления и понимания определения рассматривается касательная к графику функции y = f(x) в точке x. Когда значение переменной сдвигается по построенной прямой (получает приращение) на некоторую малую величину Δx, значение второй координаты точки тоже меняется.
Значит, дифференциал функции y = f(x) в точке x равен приращению ординаты касательной, когда её абсцисса меняется на величину Δx.
Определение 2
Дифференциал от дифференциала называется дифференциалом второго порядка. Таким же рекуррентным образом вводятся понятия дифференциалов более высоких порядков.
Формы записи дифференциала
Для нахождения дифференциала независимой переменной рассматривают функцию y = x, учитывая, что x’ = 1, а, следовательно:
Отсюда получается формула:
Для второго порядка вводится обозначение d 2 y.
Свойства дифференциала
Существующая таблица производных помогает выделить некоторые свойства дифференциалов, например, для суммы, произведения, частного получаются следующие правила:
Одним из важных свойств является инвариантность (неизменность) формы записи, независимо от того, является ли функция элементарной или композицией элементарных (сложной). Фактически,
Примеры решения задач
Задача №1
Найти дифференциал функции
Задача №2
Вычислить значение дифференциала функции
В помощь студентам создан онлайн калькулятор, который позволяет ввести функцию, нажать кнопку и получить форму или значение дифференциала.
Если dx есть константа, то для высших порядков имеет место следующая формула:
Этот результат вытекает непосредственно из определения:
Задача №3
Найти d 2 y, если y = cos2x и x – независимая переменная.
Если x – функция от некоторой другой независимой переменной, то свойство инвариантности перестаёт работать, следовательно,
Задача №4
Найти d 2 y, если y = x 2 и x = t 3 + 1, t – независимый аргумент.
Нетрудно заметить, что если выразить y напрямую через t, то получится тот же результат.
с высокой степенью точности можно вычислить приращение любой дифференцируемой зависимости.
Раскрыв Δy, сделав соответствующие преобразования, приходят к формуле приближённых вычислений:
Задача №5
Вычислить приближённо arctg1,05.
Пусть f(x) = arctg x. Тогда
Полный дифференциал функции
Математика не ограничивается множеством функций одного независимого аргумента. Рассматриваются зависимости от двух и более переменных.
Определения похожи, отличается вид главной части. Рассматриваются несколько слагаемых.
Например, если z = f(x;y) то
Последнее равенство есть формула полного дифференциала. Для функции нескольких переменных сохраняется принцип построения.
Если рассматривают приращения только по одной переменной, то приходят к понятию частных дифференциалов.
Заключение
Высшая математика позволяет находить приближённо общий корень системы уравнений, пользуясь дифференциальным исчислением, делать прикидку результатов, прогнозировать получаемое.
Дифференциал функции определение, виды, свойства, формула полного дифференциала функции, геометрический смысл, правило применения, примеры решения уравнений
При выполнении некоторых расчётов в исследованиях, проектировании, анализе полученных опытных путём данных часто возникает необходимость предварительной прикидки результата, которую удобно выполнять, используя дифференциал функции.
Приближённые вычисления, выполненные с его помощью, могут дать новые направления дальнейшего изучения объектов и их разработок.
Понятие и геометрический смысл дифференциала
Пусть y = f (x) имеет производную
Применяя свойства предела функции, получают равенство
После умножения обеих частей на приращение аргумента Δx, образуется тождество:
в котором в правой части записано слагаемое, являющееся бесконечно малой одного порядка с Δx, далее идет слагаемое более высокого порядка.
Определение 1
Дифференциалом функции y = f (x) первого порядка называется главная часть её приращения f′(x)Δx, которую обозначают dy (или d(f(x)).
Для наглядного представления и понимания определения рассматривается касательная к графику функции y = f(x) в точке x. Когда значение переменной сдвигается по построенной прямой (получает приращение) на некоторую малую величину Δx, значение второй координаты точки тоже меняется.
Значит, дифференциал функции y = f(x) в точке x равен приращению ординаты касательной, когда её абсцисса меняется на величину Δx.
Определение 2
Дифференциал от дифференциала называется дифференциалом второго порядка. Таким же рекуррентным образом вводятся понятия дифференциалов более высоких порядков.
Формы записи дифференциала
Для нахождения дифференциала независимой переменной рассматривают функцию y = x, учитывая, что x’ = 1, а, следовательно:
Отсюда получается формула:
Для второго порядка вводится обозначение d 2 y.
Свойства дифференциала
Существующая таблица производных помогает выделить некоторые свойства дифференциалов, например, для суммы, произведения, частного получаются следующие правила:
Одним из важных свойств является инвариантность (неизменность) формы записи, независимо от того, является ли функция элементарной или композицией элементарных (сложной). Фактически,
Примеры решения задач
Задача №1
Найти дифференциал функции
Задача №2
Вычислить значение дифференциала функции
В помощь студентам создан онлайн калькулятор, который позволяет ввести функцию, нажать кнопку и получить форму или значение дифференциала.
Если dx есть константа, то для высших порядков имеет место следующая формула:
Этот результат вытекает непосредственно из определения:
Задача №3
Найти d 2 y, если y = cos2x и x – независимая переменная.
Если x – функция от некоторой другой независимой переменной, то свойство инвариантности перестаёт работать, следовательно,
Задача №4
Найти d 2 y, если y = x 2 и x = t 3 + 1, t – независимый аргумент.
Нетрудно заметить, что если выразить y напрямую через t, то получится тот же результат.
с высокой степенью точности можно вычислить приращение любой дифференцируемой зависимости.
Раскрыв Δy, сделав соответствующие преобразования, приходят к формуле приближённых вычислений:
Задача №5
Вычислить приближённо arctg1,05.
Пусть f(x) = arctg x. Тогда
Полный дифференциал функции
Математика не ограничивается множеством функций одного независимого аргумента. Рассматриваются зависимости от двух и более переменных.
Определения похожи, отличается вид главной части. Рассматриваются несколько слагаемых.
Например, если z = f(x;y) то
Последнее равенство есть формула полного дифференциала. Для функции нескольких переменных сохраняется принцип построения.
Если рассматривают приращения только по одной переменной, то приходят к понятию частных дифференциалов.
Заключение
Высшая математика позволяет находить приближённо общий корень системы уравнений, пользуясь дифференциальным исчислением, делать прикидку результатов, прогнозировать получаемое.