что такое вирусные антигены
Что такое вирусные антигены
Совершенствование или создание новых вакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма.
Вирусными антигенами называются продукты вирусспецифического синтеза, несущие признаки чужеродной генетической информации и вызывающие иммунный ответ. К ним относятся структурные и неструктурные вирусные белки.
Защита от вирусной инфекции зависит от выраженности иммунного ответа на антигены, расположенные на поверхности вирионов или инфицированных клеток. Иммунный ответ на неструктурные вирусные антигены играет меньшую роль в защите от инфекции.
Однако у герпесвирусов, например, клеточный иммунный ответ индуцируется множеством вирусспецифических белков, не входящих в структуру вирионов. Белки герпесвирусов эксперссируются каскадно и большинство нестук-турных белков синтезируется на ранней стадии репликации вируса. После про-цессинга они презентируются МНС классом I (главным комплексом гистосов-местимости, класс I) на плазматической мембране инфицированных клеток и распознаются специфическими цитотоксическими Т-клетками.
Поэтому инфицированные клетки могут различаться эффекторными цитотоксическими Т-лимфоцитами до завершения цикла вирусной репликации.
Каждый вирус представляет собой сложную смесь антигенов, определяемую в первую очередь структурными белками. Являясь сложными корпускулярными антигенами вирусы обычно вызывают выраженный иммунный ответ и большая часть их белков способна вызывать синтез специфических антител. Вирусные белки неравнозначны по своей антигенной активности. Наиболее явные и доступные мишени для иммунного ответа — белки, расположенные на поверхности вирусных частиц. Это прежде всего относится к вирусным гликопротеинам, расположенным на поверхности вирусных частиц, и экспрессированным на поверхности зараженных клеток.
Гликопротеины поверхности оболочечных вирусов и капсидные белки безоболочечных вирусов являются главными протективными антигенами.
Под специфичностью вирусного антигена подразумевают его способность избирательно реагировать с антителами или сенсибилизированными лимфоцитами, являющимися ответом на введение данного антигена. Участок антигена, который узнается специфическим лимфоцитом, и с которым впоследствии взаимодействует специфическое антитело, называется антигенной детерминантой.
Иммунологическая специфичность определяется не всей молекулой антигена, а лишь входящими в ее состав антигенными детерминантами (эпитопами). Участки вирусного белка, индуцирующие образование антител и специфически связывающиеся с ними, принято называть антигенными участками (доменами). Антитела соответствующей специфичности образуются к каждой антигенной детерминанте. Антитела к определенной детерминанте реагируют только с ней или с другой очень сходной структурой. Специфичность антигена определяется совокупностью детерминант, а его валентность — количеством однородных антигенных детерминант. Антигенность детерминант зависит от их пространственной структуры и размера молекулы антигена.
Антигенные детерминанты состоят обычно из 10—20 аминокислотных остатков и содержат гидрофильные группы. Наиболее гидрофильными аминокислотами являются лизин, аргинин, аспарагиновая кислота и глютаминовая кислота. Считается, что те участки молекулы белка, в которых их содержание относительно велико, предпочитают водное окружение и поэтому располагаются на поверхности. Различают линейные (непрерывные) и конформационные (прерывистые) детерминанты. Антитела образуются преимущественно к конформационным детерминантам, расположенным, как правило, на поверхности вирионов, и зависят от третичной структуры молекулы антигена.
Антигенная и иммуногенная активность вирусов определяется, главным образом, конформационными эпитопами. Разные антитела различают специфические антигенные участки вирусных антигенов. Например, прикрепительный гликопротеин (HN) вируса парагриппа имеет, по крайней мере, 6 антигенных сайтов, три из которых различаются нейтрализующими антителами.
Денатурация белков приводит к потере некоторых конформационных детерминант, обнажая ранее экранированные детерминанты. В результате денатурации белки частично или полностью изменяют антигенную специфичность, что может отразиться на иммунном ответе.
Вирионные белки разных вирусов различаются типоспецифичностью и вариабельностью. Одни из них обладают высокой вариабельностью, другие характеризуются консервативностью. Группоспецифические антигены являются высококонсервтивными, находятся обычно внутри вирионов и могут быть сходными у нескольких представителей рода данного семейства вирусов. Например, субвирусные частицы 12S вируса ящура содержат высококонсервативный белок, который выявляется моноклональными антителами одной специфичности у шести из семи известных типов вируса. Однако иммунизация ими не сопровождалась образованием ВН-антител.
Типоспецифические антигены связаны с вариабельными областями белков, обычно расположенными в наружных частях вирионов, и обладают узкой специфичностью, присущей одной группе вирусов.
Вакцины, антитела, антигены. Гид по иммунологии для чайников
Андрей Смирнов
Антитела, антигены, титры, тесты, вакцины — сейчас все это буквально из каждого утюга. «СПИД.ЦЕНТР» объясняет, какими бывают антитела, откуда они берутся и как все это связано с вакцинами и иммунитетом.
Что такое антитела?
Антитела (они же иммуноглобулины) — это специальные белки, которые вырабатывают клетки нашей иммунной системы для борьбы с «чужеродным вторжением» — проникновением в организм практически чего угодно, что наша иммунная система посчитает потенциально опасным. Это могут быть бактерии, вирусы, их токсины — так наш организм защищается от инфекции, или даже безобидная пыльца растений и лекарства — и в этом случае развивается аллергия.
Вещество, в ответ на которое начали вырабатываться антитела, называют антигеном. И да, антиген — это именно вещество, так как антитела вырабатываются не против вируса или бактерии «целиком», а против тех или иных конкретных вирусных или бактериальных белков. Например, если говорят об антителах против вируса гриппа, подразумевают антитела против двух белков из оболочки этого вируса — гемагглютинина и нейраминидазы. В случае SARS-CoV-2 речь чаще всего идет о шиповидном белке оболочки вируса (он же S-белок или спайк-белок).
Антитела обладают высокой специфичностью, то есть работают строго против определенного антигена или небольшой группы антигенов, очень сходных по своей структуре. Суть работы антител довольно простая — они химически связываются с антигеном и блокируют его взаимодействие с другими молекулами. Например, антитела против шиповидного белка оболочки коронавируса будут «прилипать» к этому белку, обволакивая вирусную частицу, — и такой вирус уже не сможет «прилипнуть» к клетке и проникнуть в нее. Кроме того, частицы с «налипшими» на них антителами гораздо «аппетитнее» выглядят для клеток нашей иммунной системы и будут быстрее поглощаться и перевариваться макрофагами — этот эффект называется «опсонизация».
Как организм понимает, какие антитела вырабатывать?
Выработка антител — довольно сложный и многостадийный процесс. Если очень коротко, то специальные клетки иммунной системы поглощают и переваривают потенциально опасную частицу (например, бактерию или вирус), буквально разбирают ее на кусочки. И затем показывают эти кусочки другим клеткам, которые подбирают подходящую структуру антитела так, чтобы это антитело могло химически связаться с одним из «кусочков» переваренной бактерии. Когда нужная структура найдена — запускается массовое производство антител. На этот процесс требуется немало времени, поэтому после первого контакта с антигеном накопление антител начинается примерно через 2 недели. Выработанные антитела циркулируют в крови около 4 недель, после чего разрушаются, при этом выработка новых антител может продолжаться.
Хорошая новость в том, что иммунная система умеет «запоминать» антигены, и при следующем контакте организму уже не нужно тратить 2 недели на поиск нужной структуры антитела — выработка начинается практически сразу. Именно так работает приобретенный иммунитет.
Иммунологическая память хранится разное время. Для некоторых инфекций, например для клещевого энцефалита, это 3–5 лет. Для других, например гепатита B или кори, — от десятков лет до пожизненной «гарантии». Именно от времени хранения иммунологической памяти, а не от текущей концентрации антител в крови зависит стойкость иммунитета и риск повторной инфекции.
Как антитела вырабатываются при вакцинации?
Для начала синтеза антител организму не обязательно сталкиваться с живой опасной бактерией или вирусом. Достаточно будет «убитого» или ослабленного микроба, кусочка его оболочки или даже отдельного белка — это тоже запустит иммунную реакцию и выработку антител. Эти антитела будут совершенно нормально работать и против живого опасного возбудителя инфекции. В этом и заключается смысл вакцинации — знакомим иммунную систему с ослабленным или убитым микробом, чтобы она научилась убивать живых и опасных.
Продолжительность вакцинного иммунитета тоже зависит от иммунологической памяти и может отличаться от естественного иммунитета, возникшего после болезни. Когда иммунитет угасает, нужно вакцинироваться снова. Для вакцин от разных инфекций есть свои графики повторной вакцинации, их частота зависит от времени хранения иммунологической памяти.
Вакцины, полученные по различной технологии, могут отличаться по времени действия вакцинного иммунитета. Обычно эти различия не слишком велики, так как продолжительность иммунитета в гораздо большей степени зависит от вида самого возбудителя, чем от конкретной вакцины.
На формирование защитного иммунитета также влияет состояние самого организма. Например, при тяжелых заболеваниях иммунной системы (наследственные иммунодефициты, злокачественные новообразования) иммунный ответ на вакцину может быть снижен или не формироваться вообще. Как показывает многолетний опыт использования разных вакцин, в случае ВИЧ-инфекции иммунный ответ на вакцины, как правило, ничем не отличается от иммунного ответа у ВИЧ-негативных людей. Поэтому графики вакцинации и дозы вакцины для ВИЧ-позитивных пациентов не будут иметь никаких особенностей.
по теме
Лечение
Безумно дорогое лекарство, которое спасет мир от пандемии
Некоторые лекарства, например глюкокортикоиды и иммунодепрессанты, могут подавлять формирование вакцинного иммунитета. В таких случаях тактику вакцинации нужно обсудить с врачом.
Для вакцин от новой коронавирусной инфекции время действия вакцинного иммунитета остается одним из главных вопросов. Предсказать продолжительность защиты той или иной вакцины очень трудно. Обычно это выясняют на практике, регистрируя частоту инфекций у привитых во время массовой вакцинации людей спустя разное количество времени, а также измеряя титр защитных антител.
Титр? Какой еще титр?
Как мы уже выяснили, антитела — это белки, которые циркулируют в крови. Для того чтобы обеспечивать эффективную защиту, эти белки должны быть в крови в определенной концентрации — ее и называют титром. Выражают титр в виде чисел, разделенных двоеточием, например 1:50 или 1:100 (читается как «один к пятидесяти» или «один к ста»).
Так как антитела — это сложные белки, определять их химическими методами крайне трудно. Поэтому для определения антител используют иммунологические реакции. Конкретных методов очень много, но в самом общем виде суть этих реакций очень простая. Мы берем раствор нужного антигена (например, того самого шиповидного белка коронавируса) и смешиваем его с сывороткой, в которой ищем антитела. Если антитела в сыворотке есть, то они связываются с антигеном и их соединение выпадает в виде осадка или раствор мутнеет. На практике проведение такой реакции выглядит сложнее, часто используют специальные гелевые среды и разные способы детектирования, но суть от этого не меняется.
Проблема в том, что такой подход отвечает нам только на вопрос, есть антитела в сыворотке или их нет, но ничего не говорит о количестве самих антител. Как в таком случае сравнить между собой две разные сыворотки? По количеству выпавшего осадка — не вариант, слишком большая погрешность. Но есть другой способ — можно разводить исследуемую сыворотку до тех пор, пока реакция (осадок) все еще будет обнаруживаться. И вот последнее, самое сильное разведение, при котором мы еще можем наблюдать реакцию сыворотки с раствором антигена, и называют титром этой сыворотки. То есть титр 1:50 говорит нам о том, что эту сыворотку можно развести в 50 раз и она еще будет давать реакцию с антигеном. Соответственно, чем больше вторая цифра в обозначении титра, тем выше концентрация антител в сыворотке.
Недостаток титра в том, что он указывает на относительное содержание антител. Если у нас есть две сыворотки с титрами 1:50 и 1:100, мы можем с уверенностью сказать, что во второй сыворотке антител в 2 раза больше, чем в первой. Но какая именно концентрация антител в каждой из этих сывороток, мы не знаем. На практике это часто бывает и не нужно: нам достаточно знать, с каким титром антител человек еще защищен от инфекции, а с каким — уже нет. Это легко выяснить, измеряя титр антител у вакцинированных людей, которые все же заразились.
В результатах лабораторных анализов обычно указывают концентрацию антител в международных единицах (МЕ) или относительных единицах (ОЕ). Результаты, полученные в МЕ, можно сравнивать между собой — значение не будет зависеть от лаборатории, тест-системы и условий анализа (для коронавируса таких пока нет). Результаты, выраженные в ОЕ, можно сравнивать между собой только для тестов одной марки, при этом сама лаборатория и время анализа роли не играют, то есть можно отслеживать динамику изменения уровня антител у одного человека.
Чтобы понять, нужна ли вакцина и подействовала ли она, достаточно измерить уровень антител? Какой нужен для ковида?
К сожалению, все немного сложнее. Антитела отвечают за гуморальный иммунитет — и это только лишь часть нашей иммунной системы. Помимо гуморального, есть еще клеточный иммунитет, работа которого не зависит от уровня антител. При защите от разных инфекций разные звенья иммунитета играют неодинаковые роли. В каких-то случаях ведущую роль имеет гуморальный иммунитет и антитела (например, в случае гепатита В, гриппа, столбняка и многих других инфекций). В других случаях — ведущая роль у клеточного иммунитета, например, при туберкулезе. По новой коронавирусной инфекции пока слишком мало данных, чтобы делать выводы о важности каждого из звеньев иммунитета и необходимом уровне антител. То есть даже если вы сделаете тест на антитела, эта информация практически ничего не даст по ряду причин.
Если вы еще не вакцинировались и тест на антитела будет положительным, что говорит о перенесенной инфекции в бессимптомной форме, это все равно не является противопоказанием к вакцинации. Мы не знаем, какова продолжительность естественного иммунитета, так что вакцина может продлить или усилить защиту.
Если вы делаете тест на антитела после вакцинации, сейчас нет надежных данных, с которыми можно было бы соотнести полученные результаты и сделать вывод о том, подействовала ли вакцина. Другими словами, пока никто не знает, сколько должно быть антител после вакцинации, чтобы гарантировать надежный уровень защиты. Плюс уровень антител ничего не говорит о состоянии клеточного иммунитета, а он тоже может быть очень важен для защиты.
Если вы наблюдаете за динамикой концентрации антител после вакцинации и видите ее снижение, это еще не говорит о снижении уровня защиты. Как мы выяснили выше, падение концентрации антител в крови с течением времени — это нормальное явление, а долговременную защиту обеспечивает иммунологическая память, которая с концентрацией антител не связана.
Не все антитела одинаково полезны
Для характеристики антител важно понимать их класс, тип и с каким антигеном они связываются.
Антитела бывают разных классов (A, M, G, E и др.). Основной класс защитных антител — G, в лабораторных исследованиях и тестах их обычно обозначают IgG. Наличие этих антител в крови говорит о наличие иммунитета после вакцинации или перенесенного заболевания. IgM — тоже защитные антитела, которые начинают вырабатываться первыми, раньше, чем IgG. Обычно IgM менее эффективны, чем IgG, и почти полностью исчезают к концу заболевания. Наличие этих антител обычно указывает на еще протекающее, или совсем недавно перенесенное заболевание, или на хроническую инфекцию. То есть, если нас интересует устойчивый иммунитет, в тестах ищем IgG.
Если антитело связывается с каким-то белком на поверхности вируса или бактерии, это далеко не всегда означает, что бактерия и вирус становятся после этого полностью безвредными. Например, вирус может использовать другой участок поверхностного белка для проникновения в клетку, не тот, с которым связалось антитело. Антитела, которые связываются с патогенами, но не подавляют их опасность, называют связывающими. Если же связывание антитела полностью «обезвреживает» микроб, «нейтрализует» его опасное влияние, такое антитело называют нейтрализующим. Связывающие антитела нельзя назвать полностью бесполезными — прикрепляясь к вирусу или бактерии, такие антитела делают их более заметными для клеток иммунной системы и ускоряют реакцию иммунитета. Но именно нейтрализующие антитела, которые могут самостоятельно обезвреживать опасные микробы, обеспечивают основную защиту, и именно их уровень важен при оценке вакцинного или естественного иммунитета. То есть в анализах нам нужно искать нейтрализующие IgG.
И, наконец, антиген. Как мы разбирали выше, антитела обладают очень высокой специфичностью и связываются только с определенными белками. Когда иммунная система, столкнувшись с инфекцией, подбирает нужное антитело, она чаще всего начинает синтезировать сразу несколько разных видов, нацеленных на разные белки возбудителя. Ведь клетки, синтезирующие антитела, получают для анализа разные кусочки полупереваренного микроба — и поверхностные, и внутренние белки — и для каждого из них ищут антитело. Для эффективной защиты важны именно те антитела, которые связываются с белками на поверхности вируса или бактерии. Ведь антитела — это крупные молекулы, которые не могут поникать внутрь вирусных частиц или бактерий, для них доступны только поверхностные белки. Именно поэтому защитный иммунитет в первую очередь обеспечивают антитела к поверхностным антигенам. Например, в случае коронавирусной инфекции вырабатывается как минимум 2 вида антител — к S-белку (который на поверхности вирусной частицы) и к N-белку (он же нуклеокапсидный белок, который находится внутри вирусной частицы). Так как до N-белка антитела добраться не могут, защиту будут обеспечивать именно антитела к S-белку. То есть, если вы все же хотите определить уровень защитных антител после прививки от ковида, нужно искать тест на нейтрализующие IgG к S-белку.
Что такое вирусные антигены
Инфекция сумма биологических реакций, которыми макроорганизм отвечает на внедрение микробного (инфекционного) агента, вызывающего нарушение постоянства внутренней среды (гомеостаза).
Аналогичные процессы, вызванные простейшими, называются инвазиями.
Сложный процесс взаимодействия между микроорганизмами и их продуктами, с одной стороны, клетками, тканями и органами человека и животных с другой, характеризуется чрезвычайно широким разнообразием своего проявления. Патогенетические и клинические проявления этого взаимодействия между микроорганизмами и макроорганизмом обозначаются термином инфекционная болезнь (заболевание).
Другими словами, понятия «инфекционная болезнь» и «инфекция» абсолютно не равнозначны, заболевание это только одно из проявлений инфекции. Хотя даже в специальной литературе в настоящее время термин «инфекция» достаточно широко употребляется для обозначения соответствующих инфекционных болезней. Например, в выражениях «кишечные инфекции», «воздушнокапельные инфекции. Инфекционные болезни попрежнему наносят огромный ущерб различным биологическим видам.
За последние годы зарегистрировано 38 новых инфекций так называемых эмерджентных болезней, в том числе ВИЧ, геморрагические лихорадки, «болезнь легионеров», вирусные гепатиты, прионные болезни; причем в 40% случаев это нозологические формы, ранее считавшиеся неинфекционными.
Особенности инфекционных болезней состоят в следующем:
1.2. КЛИНИЧЕСКИЕ СТАДИИ ИНФЕКЦИОННОГО ЗАБОЛЕВАНИЯ
В соответствии с этими особенностями любое инфекционное заболевание имеет определенные клинические стадии (периоды) своего течения, выраженные в той или иной степени:
Период разгара заболевания проявление специфических симптомов заболевания. При наличии в этом периоде развития заболевания характерного симптомокомплекса клиницисты называют такое проявление заболевания манифестной инфекцией, а в тех случаях, когда заболевание в этот период протекает без выраженных симптомов, бессимптомной инфекцией. Этот период развития инфекционного заболевания, как правило, сопровождается выделением возбудителя из организма, вследствие чего больной представляет эпидемиологическую опасность для окружающих; данные состояния характеризуются периодом исходов. В этот период возможны:
В учении об инфекции существует также понятие персистентности (инфицированности): микроорганизмы попадают в организм животного и могут существовать в нем, не проявляя себя достаточно долгое время.
Это происходит очень часто с возбудителем туберкулеза.
Отличие бактерионосительства от персистениии:
Кроме перечисленных терминов, существует еще понятие «инфекционный процесс» это ответная реакция организма на проникновение и циркуляцию в нем микробного агента.
Из определения понятия «инфекция» становятся очевидными и факторы, необходимые для ее возникновения и развития:
внешняя среда, в которой они взаимодействуют.
1.3. СВОЙСТВА АНТИГЕНОВ
Иммунный ответ это сложная многокомпонентная, кооперативная реакция иммунной системы организма, индуцированная антигеном и направленная на его элиминацию. Явление иммунного ответа лежит в основе иммунитета.
Иммунный ответ зависит от:
Антигены
Первоначально термин антиген (от англ. Antibodi generator) применяли для обозначения любой молекулы, индуцирующей образование Вклетками специфических антител. Однако теперь этот термин имеет более широкий смысл, обозначая любую молекулу, которую могут специфически распознавать элементы системы приобретенного иммунитета, т.е. Вклетки или Тклетки, либо и те и другие.
Антиген это инициатор и движущая сила всех реакций приобретенного иммунитета. Иммунная система возникла для распознавания и разрушения чужеродных агентов, а также устранения источника их образования бактерий, инфицированных вирусом клеток и т.п. Когда антиген элиминирован, иммунный ответ прекращается.
Антигены вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти).
Свойства антигена определяются комплексом признаков: иммуногенность, антигенность, специфичность.
Иммуногенность способность антигена индуцировать в организме иммунный ответ.
Антигенность способность антигена взаимодействовать только с гомологичными антителами и лимфоцитами определенного клона.
Специфичность структурные особенности, отличающие один антиген от другого.
Способность вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы антигена антигенная детерминанта (эпитоп), избирательно реагирующая с антигенраспознающими рецепторами и антителами. Молекула антигена может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула антигена и чем больше у нее эпитопов, тем больше вероятность развития иммунной ответа.
Иммуногены или полные антигены это вещества, вызывающие полноценный иммунный ответ и обладающие свойствами: иммуногенностью, антигенностью и специфичностью. Иммуногенами являются биополимеры белки, их комплексы с углеводами (гликопротеиды), а также сложные полисахариды, липополисахариды с высокой молекулярной массой. Чем дальше от человека в эволюционном отношении отстоят организмы, тем большую иммуногенность проявляют их белки.
Гаптены неполные антигены, относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные самостоятельно индуцировать иммунный ответ. Гаптены обладают свойствами антигенностью и специфичностью, но не обладают иммуногенностью.
Гаптены после присоединения к крупным, обычно белковым молекулам (носителям), могут приобретать свойства полного антигена.
Толерогены антигены, способные подавлять иммунные реакции с развитием специфической неспособности отвечать на них.
Антигены химические вещества, свободные, либо входящие в состав клеток, способные индуцировать иммунный ответ организма.
Полноценный антиген состоит из двух частей:
Если реализованы оба указанных свойства, то такой антиген называют полноценным, если реализовано только второе свойство, то такой антиген называют неполноценным или гаптеном.
Гаптен может быть фиксирован на специальные носители адьюванты. Механизм действия адьювантов:
АНТИГЕНЫ МИКРООРГАНИЗМОВ
Большинство возбудителей инфекционных заболеваний человека, их структуры и токсины полноценные антигены, вызывающие развитие иммунных реакций.
АНТИГЕНЫ БАКТЕРИЙ
По расположению в бактериальной клетке выделяют антигены:
Капсульный антиген К Ag
Жгутиковый антиген H Ag
Соматический антиген O Ag
ОАг большинства бактерий представлены термостабильным липополисахариднополипептидным комплексом; у грамотрицательных бактерий ОАг представляет эндотоксин.
НАг представлен термолабильным белком флагеллином.
КАг большинства бактерий имеют полисахаридную природу. По чувствительности к темпратуре КАг подразделяются на А, В и Lантигены. Наиболее термостабильными являются ААг, выдерживающие кипячение более 2 часов. ВАг выдерживают нагревание при температуре 60°С в течение часа, а LАг разрушаются при нагревании до 60°С.
Для идентификации выделенных микроорганизмов в лаборатории применяют внутривидовую или внутриродовую дифференциацию микроорганизмов, основанную на различиях в антигенной структуре. При этом символически отображают антигенную структуру бактерий в виде антигенной формулы. Например, антигенную формулу одного из сероваров E. coli, вызывающую колиэнтериты у молодняка раннего возраста обозначают как О55:К5:Н21 (серовар, относящийся к серогруппе О55).
Рис. 1. Антигены бактерий: Оантиген (3 клеточная стенка); Нантиген (7 жгутик); Кантиген (2 капсула).
АНТИГЕНЫ ВИРУСОВ
В каждом вирионе любого вируса содержатся различные антигены. Одни из них являются вирусспецифическими. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как Sантигены (solutio раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные Vантигены гемагглютинин и фермент нейраминидазу.
Рис. 2. Антигены вирусов гриппа (поверхностные (Vантигены) и серцевинные (Sантигены)).
Рис. 3. Антигены вирусов гепатита В (поверхностные (Vантигены) и серцевинные (Sантигены)).
АНТИГЕНЫ ОРГАНИЗМА
Все ткани и клетки организма обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи для отдельных групп, их называют изоантигенами (например, антигены групп крови). К антигенам, свойственным только данному организму относятся антигены тканевой совместимости.
Изоантигены или групповые антигены это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.
В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков изоантигенов.
Изоантигены, генетически связаны, объединены в группы, получившие название: система АВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или отсутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (О) антигены отсутствуют, группа II (А) в эритроцитах содержится антиген А, группа III (В) эритроциты обладают антигеном В, группа IV (АВ) эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекреснореагирующими), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента.
У части людей эритроциты содержат еще особый антиген, получивший название резусантигена (Rh). По наличию или отсутствию Rhантигена люди разделяются на две группы резус (Rh)положительных и резус (Rh)отрицательных. При переливании крови Rhотрицательному реципиенту, если эритроциты донора содержат Rhантиген, может развиваться гемолитическая желтуха.
Рис. 4. Рецепторы, встроенные в мембрану эритроцита, являются антигенами организма (изоантигены) в том числе антигены А и В системы АВО и резус фактор.
Антигены главного комплекса тканевой (гисто) совместимости.
Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНСантигены (англ. Major histocompatibility complex). МНСантигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название HLA (Human leucocyte antigens). МНСантигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название трансплантационные антигены. Кроме того, МНСантигены играют обязательную роль в индукции иммунного ответа на любой антиген.
Белки I класса находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.
МНСантигены II класса находятся преимущественно на антигенпредставляющих клетках дендритных, макрофагах, Влимфоцитах. Основная роль в иммуногенезе антигенов II класса участие в представлении чужеродных антигенов Тхелперным лимфоцитам.
© ФГБОУ ВПО «Красноярский государственный аграрный университет»