что такое вертикальная скорость у самолета
вертикальная скорость
вертика́льная ско́рость изменение высоты полёта за единицу времени. В. с. равна вертикальной составляющей скорости летательного аппарата.
Смотреть что такое «вертикальная скорость» в других словарях:
Вертикальная скорость — изменение высоты полёта за единицу времени. В. с. равна вертикальной составляющей скорости летательного аппарата. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники
ВЕРТИКАЛЬНАЯ СКОРОСТЬ — см. Скороподъемность. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
вертикальная скорость — вертикальная скорость изменение высоты полёта за единицу времени. В. с. равна вертикальной составляющей скорости летательного аппарата … Энциклопедия «Авиация»
Скорость летательного аппарата — Применительно к решаемым задачам, областям применения и т. п. в авиации введен ряд различных определений С. Непосредственно под термином «С.» летательного аппарата понимают скорость движения летательного аппарата (его центра масс) относительно… … Энциклопедия техники
скорость — летательного аппарата. Применительно к решаемым задачам, областям применения и т. п. в авиации введен ряд различных определений С. Непосредственно под термином «С.» летательного аппарата понимают скорость движения летательного аппарата (его… … Энциклопедия «Авиация»
скорость — летательного аппарата. Применительно к решаемым задачам, областям применения и т. п. в авиации введен ряд различных определений С. Непосредственно под термином «С.» летательного аппарата понимают скорость движения летательного аппарата (его… … Энциклопедия «Авиация»
Скорость полета — одна из основных данных, характеризующих боевые качества самолета. Наличие большой С. п. способствует внезапному появлению самолета над целью, овладению инициативой в воздухе, сокращению времени пребывания над территорией противника,… … Краткий словарь оперативно-тактических и общевоенных терминов
Вертикальная аэродинамическая труба — Вертикальная аэродинамическая труба аэродинамическая труба, в которой воздух движется вертикально вверх. Это позволяет имитировать свободное падение при парашютном прыжке. Трубы используются в развлекательных целях, для тренировки… … Википедия
скорость снижения парашюта — скорость снижения Vсн Вертикальная составляющая скорости установившегося движения парашюта с объектом относительно невозмущенной среды. [ГОСТ 21452—88] Тематики парашютные системы Синонимы скорость снижения … Справочник технического переводчика
Вертикальная железная дорога — Вариант пиктограммы лифта Современный лифт Лифт (от глагола англ. lift поднимать) вид транспорта, используемый для вертикального перемещения. Содержание 1 … Википедия
На какой скорости взлетает самолет
Роль крыльев
Подъемная сила летательного аппарата напрямую зависит от формы его крыла. Если посмотреть на контур крыльев в разрезе, мы увидим, что снизу они плоские, а сверху – выпуклые, изогнутые по дуге. Разная форма поверхностей создаёт разницу давлений в тот момент, когда машина разгоняется. Благодаря разнице давлений вся конструкция получает возможность взлететь. А по ссылке вы узнаете, почему вообще и как летают самолёты.
А теперь – подробнее о взаимодействии подъёмной силы и крыла самолёта.
Крыло и его подъёмная сила
Крыло разрезает воздух на два рукава. Верхний «рукав» движется быстрее, поскольку он должен «успеть» обогнуть более длинную изогнутую поверхность. Нижний – движется медленнее верхнего.
Быстро движущийся воздух становится разреженным, его давление – снижается. Таким образом, создаётся разница давлений сверху и снизу крыла. Когда давление сверху становится заметно меньше, а происходит это как раз по достижении необходимого ускорения, пилот увеличивает угол атаки, отклоняя штурвал на себя, нос машины приподнимается и происходит отрыв от взлётно-посадочной полосы.
Разница давлений снизу и сверху крыла получила название подъёмной силы. Именно благодаря ей тяжёлые машины могут подниматься на высоту и перемещаться по воздуху на тысячи километров.
Подъёмную силу создают двигатели, давая достаточный для подъёма в воздух разгон. Дальше они поддерживают движение. Важно понимать, что только быстро движущийся аппарат может лететь.
Управление движением также осуществляется за счёт формы крыльев и хвоста. Для того чтобы повернуть массивную конструкцию, необходимо изменить направление движения воздушных потоков. Для этого устанавливаются специальные закрылки. Они располагаются под углом к хвосту или крылу и создают препятствие для движения воздуха. При повороте закрылков меняется направление воздушных потоков. Самолёт получает возможность повернуться.
Взлётная скорость: что на неё влияет
В первую очередь, этот показатель зависит веса (массы) конкретной модели.
Небольшой кукурузник взлетит на сравнительно коротком разгоне. Для отрыва от полосы ему достаточно 100 и даже менее км/час. Тяжёлый же лайнер должен набрать около 280 км/час. Кроме массы важное влияние оказывает ряд других факторов. Перечислим их:
Пассажирскому самолёту обычно не требуется набирать более 300 км/ч.
Скорость максимальная и крейсерская
Существуют несколько показателей, которые определяют движение/полёт летательного средства. Это скорости:
В техпаспорте обычно приводятся данные о взлётно-посадочных или лётно-технических характеристиках, сокращённая аббревиатура которых ЛТХ. Рассмотрим их.
Технические характеристики популярных моделей авиалайнеров в порядке: 1) Модель. 2) Максимальная масса. 3) Скорость максимальная. 4) Крейсерская. 5) Взлётная. 6) Длина разбега.
Крейсерская немного ниже максимальной – на 5-10%, взлётная же составляет около 30% от неё. Данные показатели приводятся в техническом паспорте вместе с другими характеристиками – массой, количеством топлива, дальностью полёта. Они необходимы пилоту для управления машиной.
Скорость отрыва самолёта от земли
Это величина разгона, при которой корпус может частично приподняться над землёй. Рассчитывается по математическим формулам и не указывается в лётных характеристиках.
Достигнув её, лайнер может взлетать частично. При этом его нос приподнимается вверх, а корпус занимает диагональное положение. В таком положении он продолжает разгоняться, пока не достигнет показателей, необходимых для полного отрыва от земли. Величина, необходимая для отрыва составляет 75-80% от максимальной.
Взлёт гражданских самолётов
Происходит с взлётно-посадочной полосы (ВПП). При этом возможен обычный разгон или с тормозов. В последнем случае пилот отпускает тормоза только когда двигатели достигнут определённого количества оборотов, и машина начинает двигаться по полосе. Такой вид разгона уменьшает необходимую длину ВПС. Он используется на «коротких» взлётных полосах или при большой загрузке аэродрома.
Важна при этом и грузоподъёмность, масса при полной загрузке. Чем больше пассажиров перевозит лайнер, тем быстрее он должен двигаться на взлётно-посадочной полосе. Как мы писали ранее, скорость взлёта наиболее популярных пассажирских самолётов – Боинг 747, 777, Аэробус А380 составляет в среднем 270 км/ч.
Вертикальная скорость самолёта при взлёте
Иначе – скорость набора высоты. Зависит от модели и заданной диспетчером, в зависимости от лётных условий, глиссады (траектории). В среднем реактивный лайнер набирает высоту в километр примерно за минуту (около 15 м/с), а в правилах использования воздушного пространства РФ указано, что данная величина должна составлять “…10 м/с и более”. Если вам интересно, на какую высоту может подняться пассажирский лайнер – предлагаем прочесть эту статью.
Особенности военных самолётов
Истребители, штурмовики, перехватчики не всегда поднимаются с ВПП. Условия их взлёта часто экстремальны. К примеру, он может происходить с палубы корабля, где нет возможности разогнаться до необходимых показателей.
Поэтому военные часто используют дополнительные приспособления, а именно:
На заметку: тот же воздушный поток используется для посадки.
Видео демонстрирует процесс взлёта и посадки глазами пилотов.
Полёт махины весом в несколько десятков или сотен тонн – сложный процесс. Он зависит от многих факторов, определяется скоростью движения летательного средства. Чем больше масса и сложнее условия, тем большая скорость необходима для отрыва и движения. При особо сложных условиях используются вспомогательные механизмы. Поддержание скорости – один из факторов безопасного полёта.
Пилотируем большой реактивный(часть 3)
ПРИНЦИПЫ ВЫПОЛНЕНИЯ ПОСАДКИ
Заход на посадку можно условно разделить на четыре этапа:
подход по схеме аэродрома (до момента входа в глиссаду)
собственно заход на посадку (от входа в глиссаду до пересечения входной кромки ВПП)
приземление, или собственно посадка (от пересечения кромки ВПП до уверенного касания)
пробег (от касания до полной остановки)
Подход по установленной схеме
После снижения с эшелона, самолет встраивается в схему посадки, снижаясь до высоты круга. На карте представлена такая типичная схема подхода для ВПП15 (взлетно-посадочная полоса 15) аэропорта Курумоч (Самара).
Соответственно различают заходы
от третьего (разворота)
Траверз (от лат. traversus — поперечный) — направление перпендикулярное продольной оси воздушного судна. При пролете траверза ДПРМ, он будет точно слева или справа. О том, что такое ДПРМ см ниже.
Глиссада (от фр. glissade — скольжение) — прямолинейная траектория (или точнее плоскость) снижения летательного аппарата на конечном этапе захода на посадку.
РСБН — радиотехническая система ближней навигации. Имеет дальномерный и азимутальный канал, и функционально аналогична комплексу VOR-DME.
Угол наклона глиссады (УНГ)
Нормальный угол залегания глиссады принят равным 2 град 40 мин, т.е. обычно глиссада лежит достаточно полого. УНГ выбирается с учетом расположения препятствий по курсу захода, поэтому для горной местности высота круга, и соответственно УНГ может быть больше — до 4 град.
Вертикальная скорость снижения по глиссаде должна быть практически постоянна. Она зависит только от УНГ, поступательной скорости самолета и определяется по формуле
где a — угол залегания глиссады
Следовательно, при средней поступательной скорости захода реактивного самолета 270 км/ч (150 kts), мы получим
для УНГ= 2,7 град, Vy=3.5 м/c
для УНГ= 4 град, Vy=5.2 м/c
Отсюда следует запомнить, что для стандартной глиссады скорость снижения должна составлять примерно 3-4 м/c и почти никогда не должна превышать 6 м/c
Заход по прямоугольному маршруту
Предположим, что мы вписываемся в круг в районе траверза ВПП. В этом случае при заходе в штурвальном (директорном) режиме действия экипажа Ту-154 будут иметь следующий вид (для других ВС схема будет достаточно сходная, отличаться будет, главным образом, скорость, и углы выпуска механизации):
полет на высоте круга
Самолет перешел в горизонтальный полет на высоте круга. На скорости 400 км/ч КВС (командир воздушного судна) устанавливает задатчик стабилизатора в положение соответствующее центровке (но сам стабилизатор еще не перекладывается). По решению и команде КВС, 2П (второй пилот), подготавливает и включает автомат тяги для автоматического управления двигателями.
полет от траверза ДПРМ
Прохождение траверза ДПРМ можно определить по показаниям автоматического радиокомпаса (АРК, Automatic Direction Finder, ADF), в момент пролета траверза его стрелка показывает 90 град на правом круге, и 270 на левом. На траверзе штурман докладывает «Траверз дальнего, боковое (удаление) (8-12 км) км». КВС подает команду: «Шасси выпустить.» Скорость в этот момент должна составлять 370-380 км/ч. Второй пилот переводит рукоятку шасси в выпущенное положение. Далее по команде КВС, штурман зачитывает карту контрольных проверок (раздел «Перед третьим разворотом»).
полет от третьего до четвертого разворота
Далее, в зависимости от конкретной схемы заходы, например, если высота круга большая приступают к планированию с небольшой вертикальной скоростью (1-3 м/c), либо продолжают выдерживать высоту круга. При подходе к четвертому развороту для поддержания скорости 300-320 км/ч при пилотировании в штурвальном режиме нужно немного увеличить режим двигателей.
Четвертый разворот обычно располагается на расстоянии порядка 12-16 км от ВПП. Начало выполнения разворота определяется по команде диспетчера или по положению стрелки АРК — обычно за 10-15 град до прохождения створа полосы (см по схеме). Чтобы вписаться в створ, разворот должен выполняться очень точно и аккуратно. Угол крена 15-20 град.
на предпосадочной прямой
После выхода из 4-го разворота на скорости не более 300 км/ч КВС дает команду «Закрылки 45», после чего 2П выпускает закрылки полностью, при этом стабилизатор автоматически перекладывается на максимальный угол (=предкрылки уже выпущены полностью на 22 град). По команде КВС, штурман проводит контроль по карте (раздел «Перед входом в глиссаду»). Ночью штурман также выпускает фары.
Самолет теперь находится в горизонтальном полете по предпосадочной прямой пока еще ниже плоскости глиссады на расстоянии 2-3 км от ТВГ. Если до входа в глиссаду средства механизации не выпущены в посадочное положение, то дальнейшее снижение и заход на посадку запрещаются.
Примерно за 7-10 км до ВПП происходит пересечение плоскости глиссады и переход на планирование с вертикальной скоростью обычно 3-5 м/с (зависит от угла наклона глиссады). Штурман докладывает: «Вход в глиссаду, снижение столько-то м/с». На глиссаде должна выдерживаться скорость порядка 260..270 км/ч..
Отметим, что в англоязычных странах круг полетов измеряется не разворотами как у нас, а «ногами», т.е. отрезками между разворотами. Соответственно различаются,
upwind leg — «нога против ветра», отрезок между 4-м и 1-м разворотом
crosswind leg — «нога поперек ветра», между 1-м и 2-м
downwind leg — «нога по ветру», между 2-м и 3-м
base leg — «основание», между 3-м и 4-м
final «файнэл»— предпосадочная прямая
procedure turn «прэсиджэr тёrн»— разворот (по схеме)
При заходе с прямой, например, от ОПРС Кошки, выполняется только относительно небольшой доворот для вписывания в предпосадочную прямую. При этом экипажем выполняются те же операции, но привязка идет не к положению разворотов, а к расстоянию до ВПП:
22-25 км до ВПП — выпуск шасси (в снижении)
18-20 км — выпуск закрылков на 28 (в снижении)
12-16 км — переход в горизонтальный полет и полный выпуск закрылков
Заход на посадку на различных типах ВС
В случае других типов ВС предпосадочное маневрирование и заход выполняются сходным образом, в основном, различаются только массы, скорости и углы выпуска механизации.
В таблице собраны данные для некоторых самолетов отечественного производства. Обратите внимание, что скорости различаются не очень сильно, несмотря на значительное различие в массах.
Данные приведены, в основном, для больших посадочных масс. Для меньших масс, скорости будут соответственно на 5. 15 км/ч меньше.
Кроме прочности шасси, посадочная масса ограничена большой посадочной скоростью и возможностью обеспечения нормального градиента набора высоты с одним отключенным двигателем в случае ухода на второй круг.
Посадка с максимальной взлетной массой (98 т для Ту-154Б, 100 т для Ту-154М) возможна только, если КВС забыл выключить дома самогонный аппарат, поцеловать тещу, покормить аквариумных рыбок, короче в каких-то очень экстренных ситуациях типа пожара на борту. При такой посадке скорость на глиссаде должна быть не менее 315 км/ч при закрылках выпущенных на 28 град. В других случаях посадочная масса уменьшается выработкой топлива.
Настройка частоты ILS
Прожуйте скорее ваш бутерброд, мы приступаем к заходу на посадку.
Перед заходом прежде всего убедитесь, что правильно выставлена радиочастота системы ILS и магнитный курс посадки (МКпос)
Например, мы летим из Франции, садимся в Шереметьево и нам нужна “Шереметьево RNW 06R” (рануэй зироу-сыкс райт), по-русски говоря, “ВПП 06 правая.”
Посадочный курс для нее составляет 67 градусов, частота ILS 108.10. Если заходить с противоположной стороны, то, как нетрудно догадаться, та же полоса будет иметь обратный курс посадки 67 + 180 = 247 град и номер 25L. Частота ILS будет уже другая.
По нормам ICAO номер полосы должен выбираться в соответствии со значением магнитного курса посадки. Например, для курсов 15. 24 град номер должен быть 02 и т.д. Почему же тогда полоса в Шереметьево в реальности обозначается 06, а не 07? Не все полосы пронумерованы точно. Возможно, это связано с постепенным изменением магнитного склонения и первоначальными погрешностями в измерении магнитного курса.
Необходимые частоты пилот узнает из радионавигационных карт (например, Jeppesen), сборников аэронавигационной информации либо из сообщений ATIS.
ATIS — автоматическая типовая (толдычащая. ) информационная система. Запись на магнитофоне с сообщениями текущей погоды, радиочастот, свободных ВПП и т.д. которую передают в эфир на аэродроме посадки, и которую экипаж обязан прослушать на подходе.
Точное расстояние можно определить по указанииям системы DME (Distanсe Measuring Equipment, дальномерное оборудование), индикаторы которой обычно расположены прямо перед глазами пилота, например, в случае Ту-154 на ПНП-1 (планово-навигационный прибор, или проще говоря, указатель курса).
Работа самолетных радиодальномеров основана на радиолокационном методе определения дальности. DME это вражеский стандарат, у нас используются свои дальномерные системы СД-67, СД-75 и пр.
Если ILS настроена правильно, то DME будет показывать расстояние до полосы в километрах или в морских милях (в симе: в зависимости от выбора системы мер в меню, либо от самого прибора).
Отметим, что сокращения типа ILS, VOR, DME на русский не переводятся— в советских изданиях иногда даже пишут русскими буквами ИЛС, ВОР, ДМЕ. Однако у нас существуют функционально аналогичные системы — например, СП (система посадки), РСБН (радиотехническая система ближней навигации, по смыслу соответствует VOR +DME) и т.д. В частности, пилотажно-навигационный комплекс Ту-154 раздельно предусматривает работу как с отечественными, так и западными системами.
Приборная, истинная, путевая скорости на доступном языке
Возможно вы удивитесь, но в авиации все совсем не так как в автомобилестроении. У вас в машине один спидометр который показывает скорость вашего движения. Все просто, чем быстрее вращается колесо, тем выше скорость, у нее всегда одно значение скорость относительно земли.
Но вот какая история, у самолета все иначе, скоростей здесь гораздо больше.
Приборная скорость (Indicated Airspeed)
То что показывает «спидометр» пилота называется приборная скорость или приборная воздушная скорость.
Дело в том, что для измерения скорости движения самолета используется Приемник воздушного давления, то есть скорость измеряется относительно потока воздуха в котором движется самолет с допущением. что за бортом так называемые «нормальные условия» (давление 760 мм ст, температура +15 и влажность 0%). Но они ведь не всегда такие, правда?
Истинная скорость (True Airspeed)
Идем дальше и обнаруживаем истинную воздушную скорость. Это скорость с учетом поправок. Учитывается инструментальная поправка (ведь прибор сам по себе может давать погрешность) аэродинамическая, волновая (возникновение скачков уплотнения на сверхзвуковых и близких к ним скоростях) и методическая.
На высоте уровня моря обе скорости совпадают, а вот с увеличением высоты полета истинная скорость начинает расти и на высоте 12 км истинная может быть в 2 раза выше приборной скорости.
Есть несколько типов указателей скорости (авиационный спидометр): показывающей приборную скорость, показывающий истинную скорость, показывающий приборную скорость и число М и т. д.. В общем, исходя из типа самолета приборы могут быть разными.
Указатель скорости самолета DC-10
Эквивалентная скорость (Equivalent Airspeed)
Скорость применяемая для расчетов инженерами, она учитывает сжимаемость воздуха. Прибора показывающего ее нет.
Скорости выше «воздушные». А вот и:
Путевая скорость (Ground Speed)
Это скорость самолета относительно земли, а не воздуха. В современном мире она измеряется с помощью GPS. Суть в том, что, например, при встречном ветре скорость самолета относительно земли будет меньше, чем при попутном, а относительно воздуха не изменится. Поэтому зная скорость относительно воздуха и скорость ветра можно вычислить свою путевую скорость.
Вертикальная скорость
Это скорость набора высоты или снижения.
Число Маха
Фактически скорость относительно скорости звука
В принципе для пилота самой важной является приборная скорость, она влияет на динамику полета, число М важно для понимания не превысил ли пилот допустимое значения. Истинная и путевая скорости важнее для навигации, эквивалентная для расчетов.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Какая скорость самолета при взлете
Фаза взлета самолета является самым сложным и продолжительным по времени процессом среди всех летательных средств, которые существуют. Процесс взлета начинается непосредственно от момента движения самолета по взлетной полосе, после чего самолет разбегается и производит отрыв от полотна. Все это заканчивается высотой перехода к самому полету.
За счет огромного количества типов самолетов и их летных характеристик скорости самолетов при взлете значительно отличаются. Логично, что легкий прогулочный самолет с одним двигателем произведет взлет значительно быстрее и с меньшей скоростью, чем огромный пассажирский лайнер, кроме того, они требуют разную продолжительность разбега.
Виды взлета самолетов:
Скорость самолета при взлете является очень важным фактором надежного и безопасного полета. Прежде всего, нужно отметить, что при взлете двигатели набирают огромные обороты, чтобы обеспечить необходимую тягу. Именно режим взлета наиболее сложный и тяжелый для силовой установки, и именно поэтому на данных режимах наиболее часто ломаются двигатели. Не странно, что самая большая авиакатастрофа за все время авиации произошла именно при взлете самолета.
За счет всего этого каждое воздушное судно имеет конкретно прописанные рекомендации и правила взлета аппарата. Такие руководства могут быть как общими для всех самолетов, так и более специализированные для каждого отдельного вида лайнера. В них прописана скорость отрыва, максимальная взлетная масса, уровень шума и много других факторов.
При взлете самолета необходимо просчитывать такой показатель, как (V1). Этот показатель показывает, на каком этапе разбега еще можно произвести остановку самолета в пределах ВПП. Его рассчитывает второй пилот или штурман с учетом огромного количества факторов таких, как тип покрытия полосы, ее уклон, климатические условия, нагрузка самолета и т. д. Иногда случается, что при взлете может отказать двигатель после прохождения точки (V1), в этом случае необходимо продолжить взлет на рабочих двигателях, после чего сделать круг и зайти на посадку.
Но все же как ответить на вопрос, какая скорость самолета при взлете, невозможно, поскольку каждая машина даже одного класса отличается скоростью, при которой она может произвести отрыв от взлетной полосы. Каждому понятно, что небольшой спортивный самолет будет производить взлет при значительно меньших показателях скорости, нежели огромный пассажирский авиалайнер.
Скорость взлета пассажирских самолетов:
Указанные показатели отрыва для этих лайнеров являются приблизительными, поскольку на скорость взлета может влиять огромное количество факторов.
Факторы, которые влияют на скорость самолета при взлете:
Все вышесказанное и определяет, какая скорость самолета при взлете будет для разных моделей авиалайнеров.