что такое вакуум в физике простыми словами

Физический вакуум

Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d >1) вакуум.

Следует различать понятия физического вакуума и технического вакуума.

Содержание

Технический вакуум

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

Источник

Что такое вакуум и с чем его едят?

Рассмотрим для наглядности на примере, что такое вакуум и как его измеряют.

На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погода, от высоты над уровнем моря и так далее, но это мы не будем принимать во внимание, так как оно ни как не будет влиять на понятие вакуум в нашем случае. Итак, мы имеем давление на поверхности земли равное 1 атмосфере, все, что ниже 1 атмосферы и будет техническим вакуумом.

Возьмем какой нибудь сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнем откачивать из сосуда воздух, то в нем возникнет разряжение, которое и будет называться вакуумом.

что такое вакуум в физике простыми словами. Смотреть фото что такое вакуум в физике простыми словами. Смотреть картинку что такое вакуум в физике простыми словами. Картинка про что такое вакуум в физике простыми словами. Фото что такое вакуум в физике простыми словами

Так как в сосуде всего одна атмосфера, то теоритически максимальный вакуум мы можем получить ноль атмосфер. Почему теоритически? Потому, что абсолютно все молекулы из сосуда выловить невозможно.

Поэтому в любом сосуде, в котором откачали воздух (газ) всегда остается какое то минимальное его количество. И это количество называется остаточным давлением, т.е. давление которое осталось в сосуде после откачки из него газов.

Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но все равно не до нуля.

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчета.

За единицу принимается атмосферное давление, т.е. все, что ниже атмосферного давления технический вакуум. Шкала вакууметра от 1,0 атм. до 0 атм.

Так шкалы могут быть в других единицах измерения, к примеру кПа, mBar и так далее, но все это аналогично шкалам в атмосферах. Но мы рекомендуем приобретать вакууметры все атки со шкалой кПа (Па), так как это соответствует международнйо системе измерения СИ.

На картинке показаны вакууметры с различными шкалами, но с одинаковым вакуумом.

что такое вакуум в физике простыми словами. Смотреть фото что такое вакуум в физике простыми словами. Смотреть картинку что такое вакуум в физике простыми словами. Картинка про что такое вакуум в физике простыми словами. Фото что такое вакуум в физике простыми словами

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).

Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Теперь несколько слов о том, как многие клиенты измеряют вакуум:

включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.

После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.

По-простому – это сила, распределённая по площади поверхности.

Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).

Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).

Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).

То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).

Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.

Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?

Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.

Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.

Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.

1 атмосфера равна 1 кг/см2.

Площадь поверхности детали – 100 см2 (10см х10 см).

То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.

Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.

Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.

Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.

Эти устройства показывают остаточное давление в пределах 0,05…1 атм.

То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.

Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?

Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у двухступенчатого насоса 0,2 Па, а у одноступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.

Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.

Значит разница в прижиме плёнки при вакууме 0,2 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Источник

Что такое физический вакуум?

Под физическим вакуумом понимается не тот «технический вакуум», который образуется в результате откачивания воздуха из какого-либо сосуда, а особое состояние материи. Физический вакуум – это среда, которая фактически заполняет мировое пространство и с ней тесно связаны его фундаментальные физические свойства.

В каждой точке пространства каждое мгновение физический вакуум рождает частицы и античастицы, которые тут же аннигилируются, испуская световые кванты, которые в свою очередь мгновенно поглощаются. В частности, было установлено, что родившийся из вакуума электрон может существовать как реальная частица лишь в течение всего 10 в – 22 степени секунд. За это время он никак не может «проявить себя», то есть вступить во взаимодействие с какой-либо другой реальной частицей. Выяснилось также, что электрон в силу некоторых фундаментальных законов микромира никогда, ни при каких обстоятельствах не может находиться в состоянии покоя – отнять у электрона всю энергию невозможно, при любых условиях он будет находиться в движении, дрожать.

Исследование последних лет позволяет считать, что во многих отношениях физический вакуум ведёт себя подобно сверхпроводнику. Сверхпроводимость – это особое состояние некоторых металлов (при низких температурах), при котором полностью исчезает сопротивление. Из теории физиков С. Вайнберга и А. Салама следует, что в физическом вакууме могут возникать коллективы частиц, находящихся на нижнем энергетическом уровне – так называемый конденсат. При этом обнаружилось поразительное обстоятельство: от того сколько «скрытых» частиц в таком коллективе, зависят физические характеристики реальных частиц, например, их масса.

Но самое важное состоит в том, что та скрытая от наших глаз форма материи «физический вакуум» способна при некоторых условиях рождать вещественные частицы без нарушения законов сохранения. Подобные условия могут складываться как под воздействием внешних сил, скажем, мощных полей тяготения или электромагнитных полей, так и «спонтанно», самопроизвольно.

Московский физик и математик Л. В. Лесков высказал предположение о том, что в нашей Вселенной, наряду с миром материальных объектов существует особая разновидность физического вакуума – «меон», обладающая свойствами особого «информационного пространства».

В 1978 известный московский физик Н. И. Кобозев высказал предположение, что в атомно-молекулярных структурах нейронных сетей головного мозга человека существует своеобразный вакуум, состоящий из особых сверхлёгких частиц – «психонов». Именно эти частицы воспринимают информацию, поступающую из внешнего мира, и передают её мозгу. В результате этого процесса и возникают такие удивительные явления, как интуиция, озарения и тому подобные феномены.

Существует несколько теоретических концепций, описывающих явления, происходящие в физическом вакууме. Одна из них разрабатывается российскими физиками А. Е. Акимовым и Г. И. Шиповым. В её основе лежит предположение о существовании «абсолютного вакуума», обладающего свойствами кривизны и кручения. Эти учёные изучают так называемые торсионные взаимодействия и торсионные поля, возникающие при вращении и кручении различных материальных объектов.

Источник информации книга В. Н. Комарова «Тайны пространства и времени»

Источник

ЧТО ЕСТЬ ФИЗИЧЕСКИЙ ВАКУУМ?

что такое вакуум в физике простыми словами. Смотреть фото что такое вакуум в физике простыми словами. Смотреть картинку что такое вакуум в физике простыми словами. Картинка про что такое вакуум в физике простыми словами. Фото что такое вакуум в физике простыми словами

В вакууме, заключённом в объёме обыкновенной
электрической лампочки, энергии такое большое
количество, что её хватило бы, чтобы вскипятить
все океаны на Земле.
Р.Фейнман, Дж. Уилер.

В настоящее время в физике формируется принципиально новое направление научных исследований, связанное с изучением свойств и возможностей физического вакуума. Это научное направление становится доминирующим, и в прикладных аспектах способно привести к прорывным технологиям в области энергетики, электроники, экологии.

Чтобы понять роль и место вакуума в сложившейся картине мира, попытаемся оценить, как соотносятся в нашем мире материя вакуума и вещество.

В этом отношении интересны рассуждения Я.Б.Зельдовича: «Вселенная огромна.

Масса Земли составляет более чем 5,97 Х 10 в 27-й степени грамм. Это такая большая величина, что её трудно даже осознать.

Масса Солнца в 333 тысячи раз больше. Только в наблюдаемой области Вселенной суммарная масса порядка 10 в 22-й степени масс Солнца. Вся безбрежная огромность пространства и баснословное количество вещества в нём поражает воображение».

С другой стороны, атом, входящий в состав твёрдого тела, во много раз меньше любого известного нам предмета, но во много раз больше ядра, находящегося в центре атома. В ядре сконцентрировано почти все вещество атома. Если увеличить атом так, чтобы ядро стало иметь размеры макового зернышка, то размеры атома возрастут до нескольких десятков метров. На расстоянии десятков метров от ядра будут находиться многократно увеличенные электроны, которые все равно трудно разглядеть глазом вследствие их малости. А между электронами и ядром останется огромное пространство, не заполненное веществом. Но это не пустое пространство, а особый вид материи, которую физики назвали физическим вакуумом.

Само понятие «физический вакуум» появилось в науке как следствие осознания того, что вакуум не есть пустота, не есть «ничто». Он представляет собой чрезвычайно существенное «нечто», которое порождает всё в мире и задаёт свойства веществу, из которого построен окружающий мир.

Оказывается, что даже внутри твёрдого и массивного предмета вакуум занимает неизмеримо большее пространство, чем вещество. Таким образом, мы приходим к выводу, что вещество является редчайшим исключением в огромном пространстве, заполненном субстанцией вакуума. В газовой среде такая асимметрия еще больше выражена, не говоря уже о космосе, где наличие вещества является больше исключением, чем правилом. Видно, сколь ошеломляюще огромно количество материи вакуума во Вселенной в сравнении даже с баснословно большим количеством вещества в ней. В настоящее время ученым уже известно, что вещество своим происхождением обязано материальной субстанции вакуума, и все свойства вещества задаются свойствами физического вакуума.

Физика, сделав прорыв в описании сущности вакуума, заложила условия для практического его использования при решении многих проблем, в том числе, проблем энергетики и экологии.

По расчётам Нобелевского лауреата Р.Фейнмана и Дж. Уиллера, энергетический потенциал вакуума настолько огромен, что «в вакууме, заключённом в объёме обыкновенной электрической лампочки, энергии такое количество, что её хватило бы, чтобы вскипятить все океаны на Земле..

Однако, до сих пор традиционная схема получения энергии из вещества остается не только доминирующей, но даже считается единственно возможной. Под окружающей средой по-прежнему упорно продолжают понимать вещество, которого так мало, забывая о вакууме, которого так много. Именно такой старый «вещественный» подход и привел к тому, что человечество, буквально купаясь в энергии, испытывает энергетический голод.

В завершение к сказанному следует добавить, что астрономами подсчитано и теоретически доказано существование энергии в вакууме Вселенной. По их расчётам, только 2-3% этой энергии израсходовано на создание видимого мира (галактик, звёзд и планет), а остальная энергия находится в Физическом вакууме. В одной из книг Дж. Уиллер привёл оценку нижней границы этой бесконечной энергии, которая оказалась равной 1095 г/см3. Поэтому нет ничего удивительного, что вакуум является источником в конечном итоге всех существующих видов энергии, и правильнее всего получать энергию непосредственно из вакуума.

Высшая физика вакуума

В последние годы газеты, радио, журналы и телевидение почти ежедневно сообщают нам сведения о явлениях, которые получили название аномальных. Мы узнаем о различных повторяющихся событиях, связанных с психикой человека (ясновидение, телекинез, телепатия, телепортация, левитации, экстрасенсорика и т.д.) Все эти сведения, вызывающие у естествоиспытателя защитную реакцию в виде «подозрительного скепсиса», скорее всего говорят об ограниченности существующих научных знаний.

Более широкий взгляд на проблему предложен в разработанной авторами программе всеобщей относительности и теории физического вакуума, основной целью которой является объединение на научной основе представлений культур Востока и Запада об окружающей нас реальности. Как оказалось, физическим посредником в явлениях психофизики выступают первичные торсионные поля, обладающие рядом необычных свойств, а именно:

а) Поля не переносят энергии, но переносят информацию;

б) Интенсивность торсионного сигнала одинакова на любом расстоянии от источника;

в) Скорость торсионного сигнала превышает скорость света;

г) Торсионный сигнал обладает высокой проникающей способностью.

Все эти свойства, полученные из теоретического анализа уравнений вакуума, совпадают со свойствами физического посредника, установленными в большом количестве экспериментальных работ.

СЕМЬ УРОВНЕЙ РЕАЛЬНОСТИ

МЕДИТАЦИЯ

ТЕОРИЯ ВАКУУМА И ДРЕВНИЕ УЧЕНИЯ

КОСМИЧЕСКАЯ ЭВОЛЮЦИЯ ЧЕЛОВЕКА

Эволюционная лестница построена в соответствии с семиуровневой схемой реальности, возникающей в теории физического вакуума, поэтому эволюция помощника означает продвижение вверх по лестнице от материального проявленного к тонким вакуумным и сверхвакуумным уровням реальности. Эта цель объединяет всех помощников, хотя они и находятся на разных уровнях эволюционной лестницы. Чем на более высоком уровне находится помощник, тем ближе он к Абсолютному «Ничто» по своим информационным и творческим возможностям. У продвинутых помощников эти творческие возможности столь колоссальны, что они способны создавать в проявленном состоянии звездные системы и разумных существ, подобных нам. Человек нашей планеты был создан, возможно, помощниками – творцами (или творцом) высокого уровня и наше предназначение, как и всего в мире, помогать Абсолютному «Ничто» в его творческой работе. Тот, кто преуспевает в этом, тот и восходит в процессе этой работы вверх по эволюционной лестнице, становясь свободным и получая все больше и больше возможностей для творческой деятельности.

На современном этапе наших исследований полученные знания позволили выйти на беспрецедентный уровень обеспечения качества и продолжительности жизни человека. Изучив природу энергии и полей такого типа, разработчикам данной технологии удалось впервые в мировой практике найти способ их получения и применения с пользой для людей.

Каждый человек хотя бы раз в жизни слышал о различных чудесных исцелениях «живой водой». Отметим, что степень полезного действия на организм человека в вышеуказанной воде определяется объемом энергии и нужной информацией, сконцентрированной в ней. Изучив природу подобных чудес, становится понятной причина такого рода исцелений и «панацейности» такой воды.

Известно, что вода обладает магнетическими свойствами притягивать, накапливать и быть носителем энергии и информации окружающего пространства. Например, изменяя пространство определенными геометрическими формами (постройками), можно увеличивать энергоинформационные свойства воды при помещении ее внутрь формы, и чем длительнее ее пребывание там, тем целебнее свойства она приобретает. Также имеет значение месторасположение таких объектов или водоемов, где биолокационным способом определяется энергоинформационный потенциал данного пространства. На похожем принципе основана святая вода (эффект купола), вода из пирамид, структурированная вода, пограничная вода, крещенская вода, талая вода, вода с отрицательными значениями протонов в толщах озера Байкал.

Известно, что для существования и регенерации клетки организма снабжаются не только энергией, высвобожденной в результате метаболизма, но и всепроникающей энергией физического вакуума, следовательно, взаимодействие клеток между собой обеспечивается через их общее поле. Состояние здоровья человека на 99% определяется достаточным по количеству и качеству обеспечением клеток, тканей и в целом организма адекватной энергией и информационными ресурсами. Новейшими исследованиями установлено, что практически все здоровые (дифференцированные) клетки нынешнего среднестатистического человека испытывают колоссальный дефицит в адекватной энергетике и информации, что обуславливает высокий иммунодефицит и крайне неудовлетворительный обмен. Неудивительно, что подавляющее большинство населения планеты, включая детей, ныне глубоко поражены различными и, к сожалению, уже не излечимыми заболеваниями.

Биоэнергия, или почему йоги живут долго?

что такое вакуум в физике простыми словами. Смотреть фото что такое вакуум в физике простыми словами. Смотреть картинку что такое вакуум в физике простыми словами. Картинка про что такое вакуум в физике простыми словами. Фото что такое вакуум в физике простыми словами

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник

Что такое вакуум в физике простыми словами

что такое вакуум в физике простыми словами. Смотреть фото что такое вакуум в физике простыми словами. Смотреть картинку что такое вакуум в физике простыми словами. Картинка про что такое вакуум в физике простыми словами. Фото что такое вакуум в физике простыми словами

Теперь, когда мы выяснили, что вместо потенциальной энергии работает энергия гравитационного поля, а вместо кинетической энергии существует энергия физического вакуума, настало время разобраться с этими понятиями: вакуумом и полем. А также необходимо понять, как именно вакуум и поле взаимодействуют с веществом. Потому что лишь после выяснения главных особенностей взаимодействия этих трёх субстанций друг с другом можно надеяться, что нам удастся разработать промышленные технологии свободной энергетики. Начнём с вакуума.

В науке под словом «вакуум» понимают две совершенно разные вещи. И чтобы не путаться в понятиях, часто добавляют то или иное прилагательное. Технический вакуум — это отсутствие воздуха или его пониженное давление. Физический вакуум — это своеобразный фундамент, на котором покоится и эволюционирует Вселенная. В настоящей статье под «вакуумом» будет подразумеваться всегда второе понятие, хотя добавление «физический» может часто опускаться. Дать абсолютно точное исчерпывающее понятие физвакууму в принципе невозможно, потому что физвакуум — это некий аналог материи. Но можно постараться определить эту субстанцию через его свойства. Я делаю это следующим образом: физвакуум — это особая среда, формирующая пространство Вселенной, имеющая огромную энергию, участвующая во всех процессах и видимым проявлением которой является наш материальный мир, но она не видима нами по причине отсутствия у нас нужных органов чувств и потому кажется нам пустотой. У тех физиков, кто занимается квантовой механикой и элементарными частицами, никаких сомнений в реальности физвакуума нет, так как его существование подтверждается такими хорошо известными явлениями, как эффект Казимира, эффект Лэмба, уменьшение эффективного заряда быстро движущегося электрона, квантовое испарение чёрных дыр и т.д. Официально считается, что физвакуум обладает минимально возможной энергией, поэтому извлечь из него энергию и преобразовать её в полезную работу невозможно. Однако при этом не учитывается, что в физвакууме всегда имеют место флуктуации, энергия которых оказывается намного выше среднего уровня. Вот за счёт этих флуктуаций мы сможем превратить вакуум в источник неограниченной энергии. Также официально считается, что физвакуум проявляет себя лишь на уровне микромира, а на уровне макромира он себя проявить не может. Однако эффект Казимира и предсказанное Стивеном Хокингом испарение чёрных дыр свидетельствуют об обратном.

Моё мнение по этому поводу следующее: все теоретические споры о формах и возможностях проявления физвакуума следует отложить на будущее, когда мы будем разбираться в этих вопросах намного лучше, а сегодня необходимо исходить только из фактов. Факты же показывают, что энергию извлекать из вакуума можно (см. предыдущую статью «Парадоксы энергии»). Но если продолжать оставаться на официальных позициях о невозможности извлечения энергии, тогда для объяснения приведённых в предыдущей статье энергетических парадоксов придётся идти на нарушение закона сохранения энергии. При этом оказывается, что физвакуум работает на всех мыслимых уровнях: микроуровне (элементарные частицы), макроуровне (наши железки и аппараты) и мегауровне (планеты, звёзды, галактики).

К сожалению, идея физического вакуума используется в основном в квантовой механике и теории элементарных частиц, а также немного в астрофизике, но в других разделах физики она почти не известна. По этой причине многие физические феномены остаются необъяснёнными или объясняются совершенно неправильно. Например, инерция. Что такое инерция — до сих пор не ясно. И ни в одном справочнике или учебнике физики мы не найдём определения данному явлению. Более того, существование инерции вступает в противоречие с третьим законом механики (действие равно противодействию). Согласно этому закону, когда некий объект действует на другой с некоторой силой, всегда возникает новая сила, направленная противоположно от второго объекта к первому: сила тяжести лежащего на основании предмета и противоположно направленная сила реакции основания, сила притяжения электрона к источнику электромагнитного поля и противоположно направленная сила притяжения поля к электрону и т.д. А вот для инерции такой противосилы не существует. Когда автобус резко тормозит, возникает сила инерции и мы под её действием падаем вперёд, но при этом никакой противосилы найти не удаётся. По этой причине иногда инерционные силы пытаются объявить иллюзорными, фиктивными. Однако если сторонник такой точки зрения в резко тормознувшем автобусе набьёт себе большую шишку на голове, насколько эта шишка будет иллюзорна и фиктивна?

Если же предположить, что инерция является сопротивлением физического вакуума, все противоречия и неясности исчезают. Можно предложить хорошую аналогию между инерцией и сопротивлением корабля в воде. Когда корабль рассекает водную среду, он деформирует её и заставляет отдельные объёмы воды двигаться в сторону, то есть прилагает к этим объёмам вполне определённую силу. Как следствие, возникает противосила, которая стремится остановить корабль, чтобы исключить всякую деформацию водной среды. Мы наблюдаем эту противосилу в форме трения. При этом неважно, как именно движется корабль — ускоренно, равномерно, замедленно — но отбрасываемый им в сторону объём воды движется всегда ускоренно, поэтому работа над ним всегда производится и сила сопротивления возникает всегда в полном соответствии с законами механики.

Очень похожая картина возникает при инерции. Когда мы сидим в автомобиле и давим на педаль газа, мы движемся ускоренно и деформируем физвакуум своим неравномерным движением. А он в ответ создаёт силы противодействия в форме инерции, которые тянут нас назад, чтобы нас остановить и тем самым исключить вносимую в вакуум деформацию. Для преодоления сопротивления вакуума приходится выполнять значительную работу, что проявляется в повышенном расходе топлива. Последующее равномерное движение не деформирует физвакуум и он сопротивления не оказывает, поэтому расход топлива оказывается заметно ниже. Торможение автомобиля снова деформирует вакуум и он снова создает силы сопротивления в форме инерции, которые тянут нас вперёд, чтобы оставить в состоянии равномерного прямолинейного движения и тем самым исключить появление новой деформации. Но на этот раз уже не мы совершаем работу над вакуумом, а он над нами и отдаёт нам свою энергию, которая выделяется в форме тепла в тормозных колодках автомобиля.

Однако есть и отличия между сопротивлением корабля в воде и появлением инерции в ускоряющемся автомобиле. Вода не может пройти сквозь корпус корабля и потому она всегда отбрасывается кораблем в сторону. Следовательно, и трение корабля в воде существует также всегда. А вот физвакуум корпусом автомобиля в сторону не отбрасывается, а свободно проходит сквозь него, поэтому взаимодействовать с содержимым автомобиля может лишь при его неравномерном движении.

Такое ускоренно-равномерно-замедленное движение автомобиля является не чем иным, как единичным тактом колебательного движения большой амплитуды и низкой частоты. На стадии ускорения предмета над вакуумом производится работа и ему передаётся некоторая энергия Е1. На стадии замедления уже вакуум производит работу над предметом и отдаёт ему энергию Е2. Одинаковы ли эти энергии? Если вакуум не обладает собственной энергией, то одинаковы. Но так как он обладает собственным громаднейшим потенциалом, отданная энергия Е2 может оказаться больше принятой энергии Е1. Насколько больше — зависит от условий ускорения и торможения. Подбирая правильные условия, мы может добиться того, чтобы вторая энергия оказалась намного больше первой. И тогда мы получаем возможность построить самый настоящий вечный двигатель 2го рода на вакуумной энергии. В статье «Парадоксы энергии» я писал об этом, приводя примеры столкновения болванки с мишенью.

Движение по окружности также является неравномерным. Хотя численное значение скорости при таком движении может не меняться, зато постоянно меняется положение вектора скорости в пространстве. По этой причине вращательное движение предмета также деформирует физвакуум, а он в ответ реагирует на это созданием центробежной силы, которая всегда направлена так, чтобы распрямить траекторию вращения и сделать её прямолинейной, в этом случае всякая деформация исчезает. По третьему закону механики не только физвакуум действует на вращающийся предмет центробежной силой, но и предмет действует на вакуум центростремительной силой. Под действием центростремительных сил вакуум устремляется с периферии предмета к его оси вращения, здесь отдельные потоки сталкиваются друг с другом, разворачиваются на 90 градусов (разворачиваются по той же самой причиной, почему разворачиваются две сталкивающиеся водные струи) и вылетают вдоль оси вращения с обеих сторон. Но если предмет вращается равномерно, не меняя своей скорости, тогда эти вылетающие из него вакуумные потоки также движутся почти равномерно. И потому практически не взаимодействуют с материальными объектами. Хотя из-за наличия окружающей вакуумной среды эти потоки слегка тормозятся и потому некоторое взаимодействие всё же происходит, но оно настолько слабо, что обнаружить его можно лишь сверхчувствительными приборами. Например, с помощью так называемой вертушки Лебедева, представляющей из себя лёгкую турбинку с лопастями, одна сторона которых выполнена зеркальной, а другая окрашена в чёрный цвет.

В прошлом физвакуум называли эфиром. Считалось, что эфир отвечает за распространение световых волн. Однако как ни пытались американские физики Майкельсон и Морли зафиксировать наличие эфира в своих экспериментах, успеха они не добились. На основании отрицательного результата данного эксперимента учёные того времени объявили эфир не существующим, а Альберт Эйнштейн создал свою специальную теорию относительности (СТО). Но когда через десять лет он приступил к созданию общей теории относительности (ОТО), он снова заговорил об эфире. Однако джин уже был выпущен из бутылки и общее мнение об отсутствии эфира осталось непоколебленным.

Тем не менее, нашлись еретики от науки, которые не согласились с общим мнением и продолжали считать эфир реально существующим. Одним из них был знаменитый физик и инженер Никола Тесла. Во всех своих построениях и гипотезах он исходил из идеи эфира. Этим и объясняются его невероятные успехи, многие из которых даже сегодня никто повторить не может. Другим еретиком был английский физик Поль Дирак, который математически обосновал идею некой всепроникающей среды, ответственной за рождение элементарных частиц, и существование которой следовало с железной необходимостью из некоторых эффектов квантовой физики. За что впоследствии он был удостоен Нобелевской премии и перестал считаться еретиком. Но так как старое название «эфир» было скомпрометировано, пришлось искать новое название. Вот так и появилось понятие физического вакуума. Если сегодня спросить об эфире и физвакууме учёного, полностью стоящего на официальных позициях, он ответит, что эфира не бывает, зато физвакуум существует.

Но обратим внимание вот на какую вещь: в самом общем смысле эфир и физвакуум являются одним и тем же. Действительно, что такое эфир? Это некая всепроникающая среда, которая отвечает за распространение световых волн. А что такое физвакуум? Это некая всепроникающая среда, которая отвечает за рождение элементарных частиц. И в том, и в другом случае наиболее общим в данных определениях является постулирование всепроникающей среды. А распространение света и рождение элементарных частиц — это уже свойства данной среды. Маловероятно, что имеются две совершенно разных всепроникающих среды, имеющих разные свойства. Для меня это равносильно заявлению, что существуют две совершенно разных разновидности железа, одна из которых отвечает только за свойства теплопроводности, а другая — только за свойства упругости. Более вероятным кажется ситуация, когда эта всепроникающая среда отвечает и за перенос световых лучей, и за рождение элементарных частиц, и за многое иное.

Но почему же Майкельсон и Морли потерпели неудачу в своих попытках фиксации эфира? Ответ оказывается элементарно прост. Потому что в полном соответствии с законами физики эфир лишь тогда взаимодействует с материальными предметами и потому поддаётся обнаружению (точнее, не с самим предметами, а с создаваемыми ими полями), когда его движение относительно предметов является неравномерным. Но при равномерном движении или его отсутствии взаимодействия не происходит и физвакуум оказывается принципиально не наблюдаем. В эксперименте Майкельсона-Морли измерительная установка покоилась относительно планеты. А эфир или физвакуум, обладая определённой массой и гравитацией, притягивается к Земле и создаёт вокруг неё оболочку повышенной плотности, которая перемещается в пространстве вместе с планетой как единое целое. То есть эта оболочка также оказывается неподвижной относительно планеты. Иными словами, эфир и измерительная установка у американских физиков были неподвижны относительно друг друга. Естественно, что они потерпели неудачу в своих попытках.

Для того чтобы зафиксировать наличие эфира, надо либо сам эфир заставить двигаться неравномерно относительно измерительной установки, либо установку двигать неравномерно относительно неподвижного эфира. И такой опыт проделал французский физик Саньяк в 1912 году. Его установка состояла из четырёх зеркал, установленных в углах правильного квадрата, причём вся эта конструкция вращалась с некоторой скоростью v. Предполагалось, что для луча света, движущегося в направлении вращения, скорость будет составлять c = c0+v, а для луча, летящего в противоположном направлении, она окажется равной c = c0-v. И эти лучи при сложении нарисуют нужную интерференционную картинку. Саньяк всегда получал устойчивый положительный результат. Если бы этот эксперимент был выполнен до того, как Майкельсон и Морли приступили к своим опытам, он мог бы служить блестящим доказательством в пользу существования эфира. Но он был выполнен намного позже, когда физики в массе своей уверовали, будто эфира не бывает. Поэтому Саньяк признания у физиков не нашёл. А через два года разразилась мировая война и внимание общественности переключилось на иные проблемы. В итоге о результатах Саньяка просто забыли.

Какова внутренняя структура эфира-физвакуума, из чего он состоит? Ещё до второй мировой войны физики проделали такой опыт. Они пропускали гамма-кванты через тонкую свинцовую мишень и замеряли рассеяние квантов на атомах свинца. В большинстве случаев гамма-излучение отклонялось атомами в стороны, но иногда физики фиксировали вылет из мишени пары электрон+позитрон. Наличие электрона можно было объяснить его выбиванием из атома свинца. Но откуда брался позитрон, ведь в атомах его нет? Этот эффект тогда объяснили через преобразование гамма-излучения в пару частица-античастица. Сегодня мы можем дать иное более правильное объяснение: из-за высокой плотности свинца (и значит, повышенной напряженности создаваемой мишенью собственного гравитационного поля) физвакуум стягивается внутрь мишени и здесь его плотность становится выше, чем в окружающем пространстве, а потому растёт вероятность взаимодействия гамма-излучения с квантами вакуума. Взаимодействуя с вакуумом, гамма-излучение разбивает его кванты на осколки, которые мы воспринимаем в форме частицы и античастицы. Поэтому можно сказать так: мы не знаем в точности, из чего состоит физвакуум или эфир, но чисто условно можно представлять его структуру, как вложенные друг в друга частицы и античастицы. А от такого представления остаётся всего один шаг до постановки простого эксперимента по обнаружению эфира и постройки генератора, извлекающего из эфира энергию.

Может оказаться, что феномен «тёмной материи», о котором сегодня спорят астрофизики, также обусловлен эфиром-физвакуумом. По крайней мере, чисто теоретически получается, что похожий эффект должен иметь место. Когда эфир-физвакуум стягивается к космическому объекту его гравитацией, здесь он образует оболочку повышенной плотности, а вдали от объекта плотность физвакуума становится несколько меньше. Происходит то, что я называю возникновением мегафлуктуации вакуума. Как следствие, отдаленные предметы (планеты вокруг Солнца или галактические рукава вокруг галактического центра) начинают притягиваться к центральному объекту не только его собственной гравитацией, но также гравитацией созданной мегафлуктуации. Внешне это будет проявляться как возникновение дополнительной невидимой массы. И в Солнечной системе подобный эффект, похоже, действует. Я имею в виду аномально высокое торможение американских космических аппаратов «Пионер» и «Вояджер», которые, начиная с пересечения орбиты Нептуна, вдруг стали тормозиться заметно сильнее, чем это допускалось расчётами. Если такое торможение обусловлено утечками топлива или иной чисто технической причиной, тогда торможение было бы различным для разных аппаратов. Но оно одинаково для всех. Следовательно, оно обусловлено некоторой внешней причиной, не связанной с самим аппаратами. Если эфирная мегафлуктуация Солнца кончается на уровне орбиты Нептуна, тогда выйдя за её пределы, американские аппараты стали притягиваться к Солнцу не только его массой, но также массой данной мегафлуктуации.

Нам осталось совсем немного — выяснить, что же такое гравитационное поле? Моя гипотеза такова: любое поле — это та или иная разновидность деформации физвакуума. Если физвакуум состоит из некоторых квантов (вложенные друг в друга частица+античастица), то вполне вероятно, что эти кванты затем соединяются в нити, составляющие пространство. А любую нить можно деформировать четырьмя различными способами: 1)нить можно растянуть, создав продольную деформацию; 2)нить можно изогнуть, создав поперечную деформацию; 3)нить можно закрутить, создав крутильную деформацию; 4)можно изменить взаимное расположение составляющих квантов, не изменяя положение нити в целом. Поперечной деформации должно соответствовать электромагнитное поле (вспомним, что такое электромагнитное излучение — это волна, которая колеблется в поперечном к вектору скорости направлении). Крутильной деформации должно соответствовать новое, так называемое торсионное поле, вокруг которого в последнее время идут жаркие баталии. И тогда продольной деформации должно соответствовать гравитационное поле. А четвертому виду деформации должны соответствовать резонансные колебания. Если я прав в своих предположениях, тогда существуют четыре основных способа извлечения энергии из физвакуума, соответствующие четырём основным видам деформации через три поля и резонанс. Обо всех этих способах я буду писать по отдельной статье.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *