что такое сигма в технической механике
iSopromat.ru
Пределом текучести называют механическую характеристику материала, характеризующую напряжение, при котором деформации продолжают расти без увеличения нагрузки.
Обозначение σ т
Единица измерения – Паскаль [Па] либо кратные [МПа].
На диаграмме напряжений (рис. 1) предел текучести стали обозначается точкой, в которой начинается практически горизонтальный участок диаграммы, называемый площадкой текучести.
Рис. 1. Предел текучести
Это важный параметр, с помощью которого рассчитываются допустимые напряжения для пластичных материалов.
После прохождения предела текучести в металле образца начинают происходить необратимые изменения, перестраивается кристаллическая решетка металла, появляются значительные пластические деформации. При этом металл самоупрочняется, об этом говорит то, что после площадки текучести деформации растут при возрастающем значении растягивающей силы.
Условный предел текучести
В случаях, когда на диаграмме напряжений нет выраженной площадки текучести, определяют так называемый условный предел текучести σ 0,2. Это величина напряжений, при которых относительные остаточные деформации равны 0,2%.
Рис. 2. Условный предел текучести
Для его определения (рис. 2) вдоль оси ε откладывается значение равное 0,2%, откуда проводится луч параллельный начальному участку диаграммы напряжений.
Точка пересечения луча с линией диаграммы есть условный предел текучести для данного материала.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Многочисленные учебники «Cопромат для чайников» создают для развенчания мифа о непостижимой сложности дисциплины. Этой наукой пугают на первых курсах вузов. Для начала расшифруем грозный термин «сопротивление материалов».
На деле – проста и решение почти не выходит за рамки школьной задачи о растяжении и сжатии пружины. Другое дело – найти слабое звено конструкции и свести расчет к несложной постановке. Так что не стоит зевать на лекциях по основам механики. При подготовке к урокам можно пользоваться решениями онлайн, но на экзаменах помогут только свои знания.
Что такое сопромат
Это методика расчета деталей, конструкций на способность выдерживать нагрузки в требуемой степени. Или хотя бы для предсказания последствий. Не более, хотя почему-то относят руководство к наукам.
Этой «наукой» прекрасно владели древнегреческие и древнеримские инженеры, сооружавшие сложнейшие механизмы. Понятия не имея о структуре, уравнении состояния вещества и прочих теориях, египтяне строили исполинские плотины и пирамиды.
Основные задачи по сопротивлению материалов
Задача следует напрямую из определения. А вот каковы критерии упомянутого слова «выдерживать»? Неясно, что скрывается под «материалом» и как реальные вещи схематизировать.
Требования
Перечислены далеко не все, но для статики и базовой программы хватит:
Прочность – способность образца воспринимать внешние силы без разрушения. Слегка мнущаяся под весом оборудования подставка никого не интересует. Основную-то функцию она выполняет.
Жесткость – свойство воспринимать нагрузку без существенного нарушения геометрии. Гнущийся под силой резания инструмент даст дополнительную погрешность обработки. К ошибке приведет деформация станины агрегата.
Устойчивость – способность конструкции сохранять стабильность равновесия. Поясним на примере: стержень находится под грузом, будучи прямым – выдерживает, а чуть изогнется – характер напряжения изменится, груз рухнет.
Материал и силы
Как всякая методика, сопромат принимает массу упрощений и прямо неверных допущений:
материал однороден, среда сплошная. Внутренние особенности в расчет не берутся;
свойства не зависят от направления;
образец восстанавливает начальные параметры при снятии нагрузки;
поперечные сечения не меняются при деформации;
в удаленных от места нагрузки местах усилие распределяется равно по сечению;
результат воздействия нагрузок равен сумме последствий от каждой;
деформации не влияют на точки приложения сил;
отсутствуют изначальные внутренние напряжения.
Схемы
Служат для создания возможности расчета реальных конструкций:
тело – объект с практически одинаковыми «длина х ширина х высота»;
брус (балка, стержень, вал) – характеризуется значительной длиной.
На рисунке показаны опоры с воспринимаемыми реакциями (обозначены красным цветом):
Рис. 1. Опоры с воспринимаемыми реакциями:
в) жесткая заделка (защемление).
Силы в сопромате
Приложенные извне, уравновешиваются возникающими изнутри. Напомним, рассматривается статическая ситуация. Материал «сопротивляется».
Разделим нагруженное тело виртуальным сечением P (см. рис. 2).
Заменим хаос равнодействующей R и моментом M (см. рис. 3):
Распределив по осям, получим картину нагрузки сечения (см. рис. 4):
Нагрузки и деформации, изучаемые в сопромате
Изучим несколько принятых терминов.
Напряжения
В теле приложенные силы распределяются по сечению. Нагружен каждый элементарный «кусочек». Разложим силы:
Элементарные усилия таковы:
σ – «сигма», нормальное напряжение. Перпендикулярно сечению. Характерно для сжатия / растяжения;
τ – «тау», касательное напряжение. Параллельно сечению. Появляется при кручении;
p – полное напряжение.
Просуммировав элементы, получим:
N – нормальная сила;
A – площадь сечения.
В принятой в России системе СИ сила измеряется в ньютонах (Н). Напряжения – в паскалях (Па). Длины в метрах (м).
Деформации
Различают деформацию упругую (с индексом «e») и пластическую (с индексом «p»). Первая исчезает по снятии растягивающей / сжимающей силы, вторая – нет.
Полная деформация будет равна:
Деформация относительная обозначается «ε» и рассчитывается так:
Под «сдвигом» понимается смещение параллельных слоев. Рассмотрим рисунок:
Здесь γ – относительный сдвиг.
Виды нагрузки
Растяжение и сжатие – нагрузка нормальной силой (по оси стержня).
Кручение – действует момент. Обычно рассчитываются передающие усилия валы.
Изгиб – воздействие направлено на искривление.
Основные формулы
Базовый принцип сопромата единственный. В упомянутой задаче о пружине применим закон Гука:
E – модуль упругости (Юнга). Величина зависит от используемого материала. Для стали полагают равным 200 х 10 6 Па.
Сопротивление материала прямо пропорционально деформации:
Закон верен не всегда и не для всех материалов. Как уже упоминалось, принимается как одно из допущений.
Реальная диаграмма
Растяжение стержня из низкоуглеродистой стали выглядит следующим образом:
График (б) относится к большей части конструкционных материалов: подкаленные стали, сплавы цветных металлов, пластики.
Расчеты обычно ведут по σт (а) и σ0.2 (б). С незначительными пластическими деформациями конструкции или без таковых.
Пример решения задачи
Какой груз допустимо подвесить на пруток из стали 45 Ø10 мм?
σ0,2 для стали 45 равна 245 МПа (из ГОСТ).
Площадь сечения прутка:
Допустимая сила тяжести:
Для получения веса следует разделить на ускорение свободного падения g:
Ответ: необходимо подвесить груз массой 1950 кг.
Как найти опасное сечение
Наиболее простой способ – построение эпюры. На закрепленную балку действуют точечные и распределенные силы. Считаем на характерных участках, начиная с незакрепленного конца.
Усилие положительно, если направлено на растяжение.
На схеме показано, что:
Зачем и кому нужен сопромат
Даже не имеющий отношения к прочностным расчетам инженер-универсал должен иметь понятие о приблизительных (на 10-20%) значениях. Знать конструкционные материалы, представлять свойства. Чувствовать заранее слабые места агрегатов.
Совершенно необходим разработчикам различных конструкций, машиностроительных изделий. Будущим архитекторам в вузах преподается в виде предмета «Строительная механика».
Методика помогает на стадии проектирования обеспечивать необходимый запас прочности изделий. Стойкость к постоянным и динамичным нагрузкам. Это сберегает массу времени и затрат в дальнейших изготовлении, испытании и эксплуатации изделия. Обеспечивает надежность и долговечность.
Что такое «сигма»?
Сигмой (σ) в статистическом анализе обозначают стандартное отклонение. Опуская тонкости, которые будут обсуждены ниже, можно сказать, что стандартное отклонение — это та погрешность, то «± сколько-то», которым обязательно сопровождают измерение величины. Если вы измерили массу предмета и получили результат 100 ± 5 грамм, то величина «110 грамм» отличается от измеренного результата на два стандартных отклонения (то есть на 2 сигмы), величина «50 грамм» отличается на 10 стандартных отклонений (на 10 сигм).
Зачем всё это нужно: сигмы и вероятности
При обсуждении погрешностей мы уже говорили, что фраза «измеренная масса равна 100 ± 5 грамм» вовсе не означает, что истинная масса гарантированно лежит в интервале от 95 до 105 грамм. Она может оказаться и за пределами этого интервала «± 1σ», но, как правило, недалеко. В небольшом проценте случаев может даже случиться, что она выходит за пределы интервала «± 2σ», и уж совсем редко она оказывается за пределами «± 3σ». В общем, тенденция ясна: количество сигм связано с вероятностью того, что истинное значение будет настолько отличаться от измеренного.
Вероятность того, что истинное значение попадет в определенный интервал около измеренного среднего значения при нормальном распределении ошибок. Изображение с сайта en.wikipedia.org
Пропустим все математические подробности и покажем результат для самого простого и распространенного случая, который называется «нормальное распределение» (см. рисунок). Вероятность попасть в интервал ± 1σ — примерно 68%, в интервал ± 2σ — примерно 95%, в интервал ± 3σ — примерно 99,8%, и т. д. Итак, можно сформулировать некую договоренность:
Договоренность: выражение какого-то отличия в количестве сигм — это сообщение о том, какова вероятность, что такое или еще более сильное отличие могло произойти за счет случайного стечения обстоятельств при измерении.
Использовать эту договоренность можно разными способами. Если вы просто сообщаете результат измерения (100 ± 5 грамм) и уверены в том, что нормальное распределение применимо, то вы можете сказать, что истинное значение массы с вероятностью 68% лежит в этом интервале, с вероятностью 95% лежит в интервале от 90 до 110 грамм, и т. д.
Эти выражения особенно стандартны, когда речь идет о поиске новой частицы. Вы сравниваете экспериментальные данные с теоретическим предсказанием, сделанным без новой частицы, и, если видите отличие от 3 до 5 сигм, вы говорите: получено указание на существование новой частицы (по-английски, evidence). Если же отличие превышает 5 сигм, вы говорите: мы открыли новую частицу (discovery).
Пример 1
Предположим, что вы изучаете какой-то редкий распад мезона и сравниваете его с теоретическим предсказанием в рамках Стандартной модели. Для удобства записи вы выразили результат измерения в виде такой величины:
μ = (измеренная вероятность распада) / (теоретически предсказанная вероятность распада)
и получили ответ: μ = 1,25 ± 0,25. Что вы можете сказать про этот результат?
Во-первых, он отличается от нуля на пять сигм. Значит, он уже классифицируется как открытие, и поэтому вы можете смело заявлять: мы открыли искомый распад мезона (если, конечно, это уже не сделал кто-то до вас; тогда вам придется довольствоваться скромным «подтверждением открытия»). Во-вторых, он отличается от единицы на одну сигму. Такое отклонение «неинтересно», оно не позволяет вам сказать, что вы обнаружили какое-то статистически значимое отличие от теоретических расчетов. Поэтому вы добавляете: измеренное значение согласуется с предсказаниями Стандартной модели.
Предположим далее, что вы набрали в 25 раз больше статистики, перемеряли эту вероятность и получили уточненное значение: μ = 1,20 ± 0,05. Отличие от нуля составляет уже 24 сигмы, так что сомнений в реальности эффекта больше не остается. Отличие от единицы составляет теперь 4 сигмы. Этого еще недостаточно для того, чтобы заявить, что вы открыли Новую физику. Но вы можете четко сказать, что ваши данные расходятся с теоретическими предсказаниями на уровне 4 сигм и указывают на существование эффекта вне Стандартной модели.
Пример 2
Вы изучаете рождение мюонов и антимюонов в каком-то процессе и хотите узнать, можно ли сделать вывод о том, что они рождаются с разной вероятностью. Для мюонов (μ – ) вы получили вероятность рождения x– = 0,18 ± 0,03, а для антимюонов (μ + ) – x+ = 0,30 ± 0,04. Разница получается 0,12, но насколько значимым является это различие?
Если для обеих погрешностей справедливы нормальные распределения, а также если эти погрешности полностью независимы (между ними нет корреляций), то общая погрешность величины x+ – x– вычисляется по формуле суммирования квадратов. Поэтому результат измерения x+ – x– = 0,12 ± 0,05. Отличие составляет 2,4 сигмы, и этого еще недостаточно для каких-либо серьезных выводов.
«Уверенность» против «статистической значимости»
Заметьте, что в приведенных выше примерах нас интересовали вопросы, на которые можно ответить «да» или «нет». Проступает ли в полученных данных какая-то новая частица? Согласуется ли распределение по импульсу с теоретическими расчетами? Зависит ли сечение процесса от энергии столкновений? Совпадает ли масса у частицы и ее античастицы? Попытка ответить на эти вопросы с помощью данных называется на научном языке проверкой гипотез. Вопросы, которые требуют развернутого ответа (подсчитать что-то, объяснить что-то и т. п.), гипотезами не называются.
В простейшем приближении результат экспериментальной проверки гипотезы выглядит так: ответ «да» с вероятностью p и ответ «нет» с вероятностью 1 – p. Эти вероятности очень важны для сообщения результата; физики обычно избегают абсолютных утверждений («мы открыли» или «мы опровергли») без указания вероятностей.
Но тут сразу же надо сделать важное уточнение. Если его четко осознать, то станет понятным, почему такие стандартные для научно-популярных новостей фразы, как «Ученые на 99% уверены, что открыли что-то новое», — обманчивы.
Точная формулировка, которую обычно используют ученые, такова:
При проверке гипотезы получен ответ «да» на уровне статистической значимости p.
При этом величина p часто выражается в виде количества сигм. В англоязычной литературе используется словосочетание confidence level, CL (доверительный уровень). В русскоязычной еще иногда говорят «статистическая достоверность», но такое выражение может привести к путанице в понимании.
Отличие «популярной» фразы от истинного утверждения вот в чём. Во всяком измерении есть не только статистические, но и систематические погрешности. Описанные выше правила связи вероятностей и количества сигм работают только для статистических погрешностей — и то если к ним применимо нормальное распределение. Если статистические погрешности всегда можно обсчитать аккуратно, то систематические погрешности — это немножко искусство. Более того, из многолетнего опыта известно, что сильные систематические отклонения уж точно не описываются нормальным распределением, и потому для них эти правила пересчета не справедливы. Так что даже если экспериментаторы всё перепроверили много раз и указали систематическую погрешность, всегда остается риск, что они что-то упустили из виду. Корректно оценить этот риск невозможно, поэтому вы на самом деле не знаете, с какой истинной вероятностью ваш ответ верен.
Конечно, по умолчанию систематическим погрешностям стоит доверять, особенно если они исходят от опытных экспериментальных групп. Но вековой опыт изучения элементарных частиц показывает, что несмотря на все предосторожности регулярно случаются проколы. Бывает, что коллаборация получает результат, сильно противоречащий какой-то гипотезе, перепроверяет анализ много раз и никаких ошибок у себя не находит. Однако этот результат затем не подтверждается другими — порой намного более точными! — экспериментами. Почему первый эксперимент дал такой странный результат, что в нём было не то, где там ошибка или неучтенная погрешность — всё это зачастую так и остается непонятым (впрочем, иногда источник ошибки быстро вскрывается, как это случилось со «сверхсветовыми» нейтрино в эксперименте OPERA).
Физики к таким оборотам событий уже привыкли, поэтому каждый экспериментальный результат, сильно отличающийся от всей сложившейся к тому времени картины, вызывает оправданный скепсис. Физики так консервативны в своем отношении вовсе не потому, что они ретрограды и намертво уверовали в какую-то одну теорию, как это хотят представить опровергатели физики. Они просто научены всем предыдущим опытом в физике частиц и знают, чем это обычно кончается. Поэтому без независимого подтверждения другими экспериментами подобные сенсации они не поддерживают.
ФЭЧ в сравнении с другими науками
Надо сказать, что сформулированные выше жесткие критерии статистической достоверности характерны именно для физики элементарных частиц и некоторых смежных разделов. Во многих других разделах физики, а тем более в других дисциплинах (в особенности, в биомедицинских науках) критерии намного слабее.
Предположим, вы измерили некие данные и хотите узнать, какова вероятность того, что они «вписываются в норму». Вы проводите статистический тест, который дает вам вероятность того, что «нормальная ситуация» без какого-либо реального отклонения только за счет статистической флуктуации даст вот такое или еще более сильное отклонение. Эта вероятность называется p-значение. В биологии пороговое p-значение, ниже которого уже уверенно говорят про реальное отличие, составляет один или даже несколько процентов. В физике элементарных частиц такое отличие вообще не считают значимым, тут нет даже «указания на существование» какого-то отличия! Ответственное заявление об отличии звучит в ФЭЧ только для p-значений меньше одной двухмиллионной (то есть отклонение больше 5σ). Такой жесткий подход к достоверности утверждений выработался в ФЭЧ примерно полвека назад, в эпоху, когда экспериментаторы видели много отклонений со значимостью в районе 3σ и смело заявляли об открытии новых частиц, хотя потом эти «открытия» не подтверждались. Подробный рассказ об истоках этого критерия см. в постах Tommaso Dorigo (часть 1, часть 2).
Что такое сигма в технической механике. Основы сопромата, расчетные формулы
Сопротивление материалов – раздел механики деформируемого твердого тела, в котором рассматриваются методы расчета элементов машин и сооружений на прочность, жесткость и устойчивость.
Прочностью называется способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций. Расчеты на прочность дают возможность определить размеры и форму деталей, выдерживающих заданную нагрузку, при наименьшей затрате материала.
Жесткостью называется способность тела сопротивляться образованию деформаций. Расчеты на жесткость гарантируют, что изменения формы и размеров тела не превзойдут допустимых норм.
Устойчивостью называется способность конструкций сопротивляться усилиям, стремящимся вывести их из состояния равновесия. Расчеты на устойчивость предотвращают внезапную потерю равновесия и искривление элементов конструкции.
Долговечность состоит в способности конструкции сохранять необходимые для эксплуатации служебные свойства в течение заранее предусмотренного срока времени.
Оболочка (рис.1, г) это тело, один из размеров которого (толщина) намного меньше остальных. Если поверхность оболочки представляет собой плоскость, то объект называют пластиной (рис.1, д). Массивами называются тела, у которых все размеры одного порядка (рис.1, е). К ним относятся фундаменты сооружений, подпорные стены и др.
Эти элементы в сопротивлении материалов используются для составления расчетной схемы реального объекта и проведения ее инженерного анализа. Под расчетной схемой понимается некоторая идеализированная модель реальной конструкции, в которой отброшены все малосущественные факторы, влияющие на ее поведение под нагрузкой
Допущения о свойствах материала
Материал считается сплошным, однородным, изотропным и идеально упругим.
Сплошность – материал считается непрерывным. Однородность –физические свойства материала одинаковы во всех его точках.
Изотропность – свойства материала одинаковы по всем направлениям.
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Допущения о деформациях
1. Гипотеза об отсутствии первоначальных внутренних усилий.
2. Принцип неизменности начальных размеров – деформации малы по сравнению с первоначальными размерами тела.
3. Гипотеза о линейной деформируемости тел – деформации прямо пропорциональны приложенным силам (закон Гука).
4. Принцип независимости действия сил.
5. Гипотеза плоских сечений Бернулли – плоские поперечные сечения бруса до деформации остаются плоскими и нормальными к оси бруса после деформации.
6. Принцип Сен-Венана – напряженное состояние тела на достаточном удалении от области действия локальных нагрузок очень мало зависит от детального способа их приложения
Внешние силы
Внутренние силы. Метод сечений.
Действие на тело внешних сил приводит к его деформации (меняется взаимное расположение частиц тела). Вследствие этого между частицами возникают дополнительные силы взаимодействия. Это силы сопротивления изменению формы и размеров тела под действием нагрузки, называют внутренними силами (усилиями). С увеличением нагрузки внутренние усилия возрастают. Выход из строя элемента конструкции наступает при превышении внешних сил некоторого предельного для данной конструкции уровня внутренних усилий. Поэтому оценка прочности нагруженной конструкции требует знания величины и направления возникающих внутренних усилий. Значения и направления внутренних сил в нагруженном теле определяют при заданных внешних нагрузках методом сечений.
Метод сечений (см. рис. 2) состоит в том, что брус, находящийся в равновесии под действием системы внешних сил, мысленно рассекают на две части (рис. 2, а), и рассматривают равновесие одной из них, заменяя действие отброшенной части бруса системой внутренних сил, распределенных по сечению (рис. 2, б). Заметим, что внутренние силы для бруса в целом, становятся внешними для одной из его частей. Причем во всех случаях внутренние усилия уравновешивают внешние силы, действующие на отсеченную часть бруса.
8.2. Основные законы, используемые в сопротивлении материалов
Соотношения статики. Их записывают в виде следующих уравнений равновесия.
С учетом формул для напряжений и деформаций, закон Гука записывают следующим образом: .
Аналогичная связь наблюдается в экспериментах и между касательными напряжениями и углом сдвига:
.
G называют модулем сдвига , реже – модулем упругости второго рода. Как и любой закон, имеет предел применимости и закон Гука. Напряжение, до которого справедлив закон Гука, называетсяпределом пропорциональности (это важнейшая характеристика в сопромате).
Изобразим зависимость от графически (рис.8.1). Эта картина называется диаграммой растяжения . После точки В (т.е. при ) эта зависимость перестает быть прямолинейной.
При после разгрузки в теле появляются остаточные деформации, поэтому
называетсяпределом упругости .
=R b
Аналогичная зависимость наблюдается в экспериментах между касательными напряжениями и сдвигами.
3) Закон Дюгамеля – Неймана (линейного температурного расширения):
При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.
Пусть имеется перепад температур. Тогда этот закон имеет вид:
Исследования показали, что все материалы сильно неоднородны в малом. Схематическое строение стали изображено на рис.8.2.
Некоторые из составляющих обладают свойствами жидкости, поэтому многие материалы под нагрузкой с течением времени получает дополнительное удлинение (рис.8.3.) (металлы при высоких температурах, бетон, дерево, пластики – при обычных температурах). Это явление называетсяползучестью материала.
Если перейти к относительным силам и относительным удлинениям, то получим
Здесь индекс « cr » означает, что рассматривается та часть удлинения, которая вызвана ползучестью материала. Механическая характеристика называется коэффициентом вязкости.
Закон сохранения энергии.
Рассмотрим нагруженный брус
Введем понятие перемещения точки, например,
— вертикальное перемещение точки В;
— горизонтальное смещение точки С.
Силы при этом совершают некоторую работуU . Учитывая, что силы
начинают возрастать постепенно и предполагая, что возрастают они пропорционально перемещениям, получим:
.
Согласно закону сохранения: никакая работа не исчезает, она тратится на совершение другой работы или переходит в другую энергию (энергия – это работа, которую может совершить тело.).
Работа сил , тратится на преодоление сопротивления упругих сил, возникающих в нашем теле. Чтобы подсчитать эту работу учтем, что тело можно считать состоящим из малых упругих частиц. Рассмотрим одну из них:
Со стороны соседних частиц на него действует напряжение . Равнодействующая напряжений будет
Под действием частица удлинится. Согласно определению относительное удлинение это удлинение на единицу длины. Тогда:
Для всего тела получим:
.
Согласно закону сохранения энергии:
Это один из вариантов записизакона сохранения энергии.
Вычислим работу внешних сил на дополнительных возможных малых перемещениях:
Рассмотрим снова малый элемент с поперечным сечением dA и длиной dz (см. рис.8.5. и 8.6.). Согласно определению дополнительное удлинение dz этого элемента вычисляется по формуле:
Сила растяжения элемента будет:
Работа внутренних сил на дополнительных перемещениях вычисляется для малого элемента следующим образом:
Суммируя энергию деформации всех малых элементов получим полную энергию деформации:
Закон сохранения энергии W = U дает:
.
Это соотношение и называется принципом возможных перемещений (его называют также принципом виртуальных перемещений). Аналогично можно рассмотреть случай, когда действуют еще и касательные напряжения. Тогда можно получить, что к энергии деформации W добавится следующее слагаемое:
В отличие от предыдущей формы записи закона сохранения энергии здесь нет предположения о том, что силы начинают возрастать постепенно, и возрастают они пропорционально перемещениям
Рассмотрим картину удлинения образца:
Найдем продольную относительную деформацию.
Поперечная относительная деформация будет:
Коэффициентом Пуассона называется величина:
Для изотропных материалов (сталь, чугун, бетон) коэффициент Пуассона
Это означает, что в поперечном направлении деформация меньше продольной.
Здравствуйте. Будьте добры Приведите пример (задачу) с размерностью Q q L,M в разделе. Рисунок №1.2. Графическое отображение изменения реакций опор в зависимости от расстояния приложения нагрузки.
20-05-2013: Доктор Лом
Здравствуйте! Помогите, пожалуйста. У меня консольная балка, на нее по всей длине действует распределенная нагрузка, на крайнюю точку «снизу вверх» действует сосредоточенная сила. На расстоянии 1м от края балки крутящий момент М. Мне нужно построить эпюры поперечной силы и моментов. Не знаю как определить распределенную нагрузку в точке приложения момента. Или ее не нужно считать в этой точке?
22-05-2013: Доктор Лом
Распределенная нагрузка потому и распределенная, что распределена по всей длине и для некоторой точки можно определить только значение поперечных сил в сечении. Это означает, что на эпюре сил никакого скачка не будет. А вот на эпюре моментов, если момент изгибающий, а не вращающий, скачок будет. Как будут выглядеть эпюры от каждой из указанных вами нагрузок вы можете посмотреть в статье «Расчетные схемы для балок» (ссылка есть в тексте статьи перед п.3)
А как же приложенная к крайней точке балки сила F? Из-за нее не будет скачка на эпюре поперечных сил?
22-05-2013: Доктор Лом
Будет. В крайней точке (точке приложения силы) правильно построенная эпюра поперечных сил изменит свое значение с F на 0. Да это и так должно быть понятно, если вы внимательно прочитали статью.
Спасибо Вам, Доктор Лом. Врубился, как делать, все получилось. У вас очень полезные познавательные статьи! Пишите больше, премного Вам благодарен!
18-06-2013: Доктор Лом
У вас задача обратного порядка, когда уже известны реакции опор, а по ним нужно определить нагрузку и тогда вопрос более правильно сформулировать так:» при какой равномерно распределенной нагрузке на перекрытие опорные реакции будут составлять 36 000 кг при шаге между опорами 6 м по оси х и по оси z?»
Ответ: «4 тонны на м^2»
Решение: сумма опорных реакций 36х4=144 т, площадь перекрытия 6х6=36 м^2, тогда равномерно распределенная нагрузка 144/36 =4 т/м^2. Это следует из уравнения (1.1), настолько простого, понять, как можно его не понять, очень трудно. И это действительно, очень простая задача.
Две (три, десять) одинаковых балок (стопка) свободно сложенные друг на друга (концы не заделаны) выдержат большую нагрузку, чем одна?
24-07-2013: Доктор Лом
Спасибо.
Доказываю это конструкторам на примере десантников и стопки кирпичей, тетрадь/одинокий лист.
Не сдаются бабушки.
Армированный бетон у них подчиняется другим законам, нежели дерево.
24-07-2013: Доктор Лом
27-07-2013: Доктор Лом
Посмотрите статью «Многопролетные неразрезные балки.»
Всё это очень неплохо и довольно доходчиво. НО. у меня вопрос к линеечкам. А вы не забыли при определении момента сопротивления линейки поделить на 6? Чево-то арифметика не сходится.
04-08-2013: санитар Петрович
А энто в какой же хвормуле не сходится? в 4.6, в 4.7, али в другой какой? Поточнее надобно мыслю выражать.
14-10-2013: Доктор Лом
Я оформил нашу переписку в отдельную статью «Определение нагрузки на конструкции», все ответы там.
17-10-2013: Доктор Лом
Потребовалось узнать, во сколько увеличится изгибающий момент, если случайно выбить одну из промежуточных балок. Увидел квадратичную зависимость от расстояния, следовательно в 4 раза. Не пришлось лопатить учебник. Большое спасибо.
24-10-2013: Доктор Лом
Для неразрезных балок со множеством опор, все намного сложнее, так как момент будет не только в пролете но и на промежуточных опорах (смотрите статьи по неразрезным балкам). Но для предварительной оценки несущей способности можно использовать указанную квадратичную зависимость.
Не могу понять. Как правильно рассчитать нагрузку для опалубки. Грунт ползет при копки,нужно выкопать яму под септик Д=4.5м,Ш=1.5м, В=2м. Хочу саму опалубку выполнить так: контур по периметру балка 100х100(верх, низ, середина(1м), далее доска сосна 2-сорт 2х0.15х0.05. делаем короб. Боюсь что не выдержит. т.к по моим расчетам доска выдержит 96 кг/м2. Развертка стен опалубки (4.5х2 +1.5х2)х2 = 24 м2. Обьем вынутого грунта 13500кг. 13500/24=562.5 кг/м2. Прав или нет. И какой выход
15-11-2013: Доктор Лом
15-11-2013: Доктор Лом
Ага. Вы все-таки хотите сделать подпорную стенку на время монтажа септика и, судя из вашего описания, собираетесь это сделать после того, как котлован будет выкопан. В этом случае нагрузка на доски будет создаваться осыпавшимся во время монтажа грунтом и потому будет минимальна и никаких особых расчетов не требуется.
Если же вы собираетесь засыпать и утрамбовать грунт обратно до монтажа септика, то расчет действительно нужен. Вот только расчетную схему вы приняли не правильную. В вашем случае доску, крепящуюся к 3 балкам 100х100, следует рассматривать как двухпролетную неразрезную балку, пролеты у такой балки будут около 90 см, а значит и максимальная нагрузка, которую сможет выдержать 1 доска, будет значительно больше, чем определенная вами, хотя при этом следует еще учесть и неравномерность распределения нагрузки от грунта в зависимости от высоты. А заодно и проверить несущую способность балок работающих по длинной стороне 4.5 м.
В принципе на сайте есть расчетные схемы, подходящие для вашего случая, а вот информации по расчету свойств грунта пока нет, впрочем это уже далеко не основы сопромата, да и по моему мнению вам такой точный расчет не нужен. Но в целом ваше стремление к пониманию сути процессов весьма похвально.
Спасибо доктор! Мысль вашу понял, надо будет еще почитать ваш материал. Да септик нужно впихнуть так чтобы не произошло обрушения. Опалубка при этом должна выдержать, т.к. рядом на расстоянии 4м еще и фундамент и можно все это запросто обрушить. Поэтому я так беспокоюсь. Еще раз спасибо, вы меня обнадежили.
18-12-2013: Адольф Сталин
Док, в конце статьи, где вы приводите пример определения момента сопротивления, в обоих случаях забыли разделить на 6. Разница все равно получится в 7,5 раз, но цифры будут другие (0,08 и 0,6) а не 0,48 и 3,6
18-12-2013: Доктор Лом
Верно, была такая ошибка, исправил. Спасибо за внимательность.
добрый день. У меня такой вопрос, как можно посчитать нагрузку на балку. если с одной стороны закрепление жесткое с другой нет закрепленя. длина балки 6 метров. Вот надо посчитать какая должна быть балка, лучше монорельса. макс нагрузка на не закрепленной стороне 2 тонны. заранее спасибо.
13-01-2014: Доктор Лом
Посчитайте, как консольную. Больше подробностей в статье «Расчетные схемы для балок».
Если бы я не изучал сопрамат, то я бы, честно говоря ничего не понял. Если вы пишите популярно, то вы и расписывайте популярно. А то у вас вдруг что-то появляется непонятно откуда, что за х? почему х? почему вдруг x/2 и чем он отличается от l/2 и l? Вдруг появилась q. откуда? Может опечатка и нужно было обозначить Q. Неужели нельзя потробно описать. И момент про производные. Вы понимаете, что вы описываете то, что только вы понимаете. И тот кто читает это впервые он этого не поймет. Поэтому стоило либо расписать подробно, либо вообще удалить этот абзац. Я сам со второго раза понял о чем речь.
20-01-2014: Доктор Лом
Тут, к сожалению, ничем помочь не могу. Популярнее сущность неизвестных величин излагается только в начальных классах средней школы, и я полагаю, что хотя бы этот уровень образования читатели имеют.
Внешняя сосредоточенная нагрузка Q так же отличается от равномерно распределенной нагрузки q, как и внутренние усилия Р от внутренних напряжений р. Более того, в данном случае рассматривается внешняя линейная равномерно распределенная нагрузка, а между тем внешняя нагрузка может быть распределенной и по плоскости и по объему, при этом распределение нагрузки далеко не всегда бывает равномерным. Тем не менее любую распределенную нагрузку обозначаемую маленькой литерой, всегда можно привести к равнодействующей силе Q.
Впрочем, изложить все особенности строительной механики и теории сопротивления материалов в одной статье физически невозможно, для этого есть другие статьи. Почитайте, возможно, что-то прояснится.
Доктор! Не могли бы вы сделать пример расчета монолитного железобетонного участка как балку на 2х шарнирных опорах, при отношении сторон участка больше 2х
09-04-2014: Доктор Лом
В разделе «Расчет железобетонных конструкций» всяких примеров хватает. К тому же постичь глубокую суть вашей формулировки вопроса я так и не смог, особенно вот это: «при отношении сторон участка больше 2х»
добрый. я первый раз встретил сапромат на вашем сайте заинтерисовался. пытаюсь разобраться в основах но понять эпюры Q не получается с М все понятно и ясно и их отличие тоже. Для распределенной Q я на веревку положил например танковый трак или каму что удобно. а на сосредоточенную Q я подвесил яблоко все логично. как на пальцах посмотреть эпюруQ. прошу не цетировать пословицу мне она не подходит я уже женат. спасибо
17-05-2014: Доктор Лом
18-07-2015: Доктор Лом
Работаю инженером развертки сетей ИТ(не по профессии). Одна из причин моего ухода с проектирования были расчеты по формулам из области сопромата и термеха(приходилось искать подходящее по рук-вам Мельникова, Муханова итд.. :)) В институте, к лекциям по относился несерьезно. В результате получил пробелы. К моим пробелам в расчетах Гл. спецы относились безразлично, так как сильным всегда удобно когда выполняют их указания. В результате, моя мечта быть профессионалом в области проектирования не сбылась. Всегда беспокоила неуверенность в расчетах(хотя интерес был всегда), соответственно платили копейки.
Спустя годы, мне уже 30, но в душе остается осадок. Лет 5 назад, такого открытого ресурса в интернете не существовало. Когда я вижу что все понятно изложено, хочется вернуться и учиться заново!)) Сам материал просто бесценный вклад в развитие таких как я))), а их возможно и тысячи. Думаю что они как и я будут Вам сильно признательно. СПАСИБО за проделанную работу!
06-08-2015: Доктор Лом
Не отчаивайтесь, учиться никогда не поздно. Часто в 30 лет жизнь только начинается. Рад, что смог помочь.
Не очень понял как решение уравнения 1.5 дает нам ноль. Если подставить l=x, то нулю равно только третье слагаемое В(x-l), а два других нет. Как же тогда М равно 0?
09-09-2015: Доктор Лом
30-03-2016: Владимир я
Если x расстояние приложения Q то, что такое а, от начала до. Н.: l=25см x=5см в цифрах на примере что будет а
30-03-2016: Доктор Лом
30-03-2016: Владимир я
Понял. Я почему-то рассматриваю сечение именно в точке приложения силы. Невижу необходимости рассматривать сечение между точками нагрузок так как оно испытывает меньшее воздействие чем последующая точка сосредоточенной нагрузки. Я неспорю просто мне нужно пересмотреть тему занова
30-03-2016: Доктор Лом
Иногда есть необходимость определить значение момента, поперечной силы других параметров не только в точке приложения сосредоточенной силы, но и для других поперечных сечений. Например при расчете балок переменного сечения.
Огромное Вам спасибо за работу. Вы очень сильно помогаете многим, в том числе и мне, людям.Всё изложено просто и доходчиво
04-01-2017: Доктор Лом
Здравствуйте! Спасибо за статью, всё намного понятнее и интереснее, чем в учебнике, я остановился на построении эпюры «Q» отображения изменения сил, ни как не могу понять почему эпюра слева устремляется к верху, а с права к низу, как я понял силы что на левой и на правой опоре действую зеркально, то есть сила балки (синяя) и реакции опоры (красная) должны отображаться с обеих сторон, можете объяснить?
11-05-2017: Доктор Лом
День добрый! Проконсультируйте см картинка https://yadi.sk/i/CCBLk3Nl3TCAP2. Железобетонная монолитная опора с консолями. Если я консоль делаю не обрезанную, а прямоугольную то по калькулятору сосредоточенная нагрузка на краю консоли 4т при прогибе 4мм, а какая нагрузка будет на эту обрезанную консоль на картинке. Как в таком случае рассчитывается сосредоточенная и распределенная нагрузка при моем варианте. С Уважением.
09-03-2018: Доктор Лом
Сергей, посмотрите статью «Расчет балок равного сопротивления изгибающему моменту», это конечно не ваш случай, но общие принципы расчета балок переменного сечения там изложены достаточно наглядно.