что такое резонансный случай
Резонанс: польза и вред
В нашей жизни происходит много удивительных и порой непонятных явлений. Однако объяснение многих из них может быть достаточно простым, но сразу не бросающимся в глаза. Например, одна из любимейших детских забав – качание на качелях. Казалось бы, что тут сложного – все ясно и понятно. Но задумывались ли вы, почему, если правильно действовать на качели, то размах качаний будет становиться все больше и больше? Все дело в том, что действовать нужно строго в определенные моменты времени и в определенном направлении, иначе результатом действия может быть не раскачивание, а полная остановка качелей. Чтобы этого не произошло, нужно, чтобы частота внешнего воздействия совпадала с частотой колебаний самих качелей, в этом случае размах качания будет увеличиваться. Это явление называется резонансом. Давайте попробуем разобраться, что такое резонанс, где он встречается в нашей жизни и что об этом явлении нужно знать.
С точки зрения физики «резонанс» – это резкое увеличение амплитуды вынужденных колебаний при совпадении собственной частоты колебательной системы с частотой внешней вынуждающей силы. Это только внешнее проявление резонанса. Внутренняя причина заключается в том, что увеличение амплитуды колебаний свидетельствует об увеличении энергии колебательной системы. Это может происходить только в том случае, если физической системе сообщается энергия извне согласно закону сохранения и изменения энергии. Следовательно, внешняя сила должна совершать положительную работу, увеличивая энергию системы. Это возможно только, когда внешняя сила является периодически изменяющейся с частотой, равной собственной частоте колебательной системы. Самый простой вариант – вариант с качелями, который мы уже описали, и который возникает во всех маятниковых системах и устройствах. Но это далеко не единственный случай применения человеком эффекта резонанса.
Резонанс, как и любое другое физическое явление, имеет как положительные, так и отрицательные последствия. Среди положительных можно выделить использование резонанса в музыкальных инструментах. Особенная форма скрипки, виолончели, контрабаса, гитары способствует резонансу стоячих звуковых волн внутри корпуса инструмента, составляющих гармонику, и музыкальный инструмент дарит любителям музыки необыкновенное звучание. Известнейшие мастера музыкальных инструментов, такие как Николо Амати, Антонио Страдивари и Андреа Гварнери, совершенствовали форму, подбирали редкие породы древесины и изготавливали специальный лак, чтобы усилить резонирующий эффект, сохранив при этом мягкость и нежность тембра. Именно поэтому каждый такой инструмент имеет свой особенный, неповторимый звук.
Помимо этого, известен способ резонансного разрушения при дроблении и измельчении горных пород и материалов. Это происходит так. При движении дробимого материала с ускорением силы инерции будут вызывать напряжения и деформации, периодически меняющие свой знак, – так называемые вынужденные колебания. Совпадение соответствующих частот вызовет резонанс, а силы трения и сопротивления воздуха будет сдерживать рост амплитуды колебаний, однако все равно она может достичь величины, значительно превышающей деформации при ускорениях, не меняющих знак. Резонанс сделает дробление и измельчение горных пород и материалов существенно эффективнее. Такую же роль резонанс играет при сверлении отверстий в бетонных стенах при помощи электрической дрели с перфоратором.
Явление резонанса мы также используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Радио- или телесигнал, транслируемый передающей станцией, имеет очень маленькую амплитуду. Поэтому, чтобы увидеть изображение или услышать звук, необходимо их усилить и, вместе с тем, понизить уровень шума. Это и достигается при помощи явления резонанса. Для этого нужно настроить собственную частоту приемника, в основе представляющего собой электромагнитный колебательный контур, на частоту передающей станции. При совпадении частот наступит резонанс, и амплитуда радио- или телесигнала существенно вырастет, а сопутствующие ему шумы останутся практически без изменений. Это обеспечит достаточно качественную трансляцию.
Один из видов магнитного резонанса, электронный парамагнитный резонанс, открытый в 1944 году русским физиком Е.К. Завойским, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т. д. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Этот метод представляет собой один из видов спектроскопии.
Несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать разрушения части зданий или даже зданий целиком. Кроме того, землетрясения могут привести к образованию огромных резонансных волн – цунами с очень большой разрушительной силой.
Также резонанс может стать причиной разрушения мостов. Существует версия, что один из деревянных мостов Санкт-Петербурга (сейчас он каменный) действительно был разрушен воинским соединением. Как сообщали газеты того времени, подразделение двигалось на лошадях, которых пришлось впоследствии извлекать из воды. Естественно, что лошади гвардейцев двигались строем, а не как попало. Еще один мост – Такомский – висячий мост через пролив Такома-Нэрроуз в США был разрушен 7 ноября 1940 года. Причиной обрушения центрального пролета стал ветер со скоростью около 65 км/ч.
В наше время резонансные колебания, вызванные ветром, чуть не стали причиной обрушения волгоградского моста, теперь неофициально называемого «Танцующим мостом». 20 мая 2010 года ветер и волны раскачали его до такой степени, что его пришлось закрыть. При этом был слышен оглушающий скрежет многотонных металлических конструкций. Дорожное покрытие моста через Волгу в течение часа было похоже на развивающееся на ветру полотнище. Бетонные волны, по словам очевидцев, были высотой около метра. Когда мост «затанцевал», по нему ехало несколько десятков автомашин. К счастью, мост устоял, и никто не пострадал.
Таким образом, резонанс – это очень эффективный инструмент для решения многих практических задач, но и одновременно может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.
Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы
Резонанс
Содержание
Механика
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:
,
где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
Резонансные явления могут вызвать необратимые разрушения в различных механических системах.
В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.
Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.
Струна
Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости v, с которой волна распространяется по струне:
где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:
Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:
,
где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.
Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f, и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.
Электроника
В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.
Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.
Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.
Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения
,
где ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.
В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи.
Оптика
В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри-Перо, образованный парой зеркал, между которыми в резонансе устанавливается стоячая волна. Применяются также кольцевые резонаторы с бегущей волной и оптические микрорезонаторы с модами шепчущей галереи.
Акустика
Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.
Астрофизика
Орбитальный резонанс в небесной механике — это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.
Резонансный метод разрушения льда
Что такое резонанс напряжений?
Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.
Описание явления
Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.
Рис. 1. Резонанс в электрической цепи
Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.
Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.
Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.
Формула
На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).
Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивления
Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).
Рис. 3. Последовательный колебательный контур
Рис. 4. Параллельный колебательный контур
В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:
Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:
Формулировка
На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений». Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.
Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса. Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].
Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):
где R – общее активное сопротивление.
Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.
Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.
Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.
Условия наступления
Резонансные явления наступают только при наличии следующих условий:
При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.
Примеры применения на практике
Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.
В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.
Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.
Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.
Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.
Катушки индуктивности
Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.
Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.
Особенности резонанса токов
Что это такое
Резонанс токов — разновидность состояния электрической цепи, когда общий вид токовых показателей совпадает по фазам уровню напряжения, а мощность реактивного вида равна нулю или же она представлена в активном виде.
. Резонанс токов
Этот вариант развития событий характерен для переменного тока и имеет не только положительные свойства, но и некоторые нежелательные последствия. Так, благодаря резонансу работает радиотехника, автоматика и проволочная телефония, но в то же время возникают перенапряжения и сбои в работе электрической системы.
Определение из учебного пособия
При каких условиях возникает
Условием того, чтобы возникло это явление, является равные показатели проводниковой частоты, где BL=BC. То есть емкостная с индуктивной проводимостью должна быть равна. Только тогда подобное явление резонанса токов наблюдается в электрической цепи. Он при этом может быть как положительным, так и отрицательным. В любом радиоприемнике есть колебательный контур, который из-за индуктивного или емкостного изменения, настраивается на нужный сигнал радиоволны. В другом случае, это ведет к тому, что появляются скачки напряжения или ток в цепи и появляется аварийная ситуация.
В условиях лаборатории, он возникает во время, когда изменяется емкость и не изменяется индуктивность катушки L. В таком случае формула выглядит как Bc=C
При каких условиях возникает
Что такое резонанс?
Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.
Соединение двух ветвей при резонансе
Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:
Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.
Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.
Применение
Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.
Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.
Принцип резонанса токов
Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:
Схема для питания конденсатора
Переключатель будет отвечать за направление колебаний.
Схема: переключатель резонансной схемы
Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.
Схема: ток в резонансной схеме равен нулю
Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.
Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.
Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.
В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.
Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.
Условия возникновения резонанса
Так же как и резонанс напряжений, резонанс токов возникает, когда частота источника энергии равна резонансной частоте ωр, а
Режим электрической цепи при параллельном соединении участков с индуктивностью и емкостью, характеризующийся равенством индуктивной и емкостной проводимостей, называют резонансом токов.
Сначала рассмотрим этот режим для схемы идеализированной цепи В этой схеме параллельно резистору R включены идеальные катушки L и конденсатор С, потери энергии в которых не учитываются.
К вопросу о резонансе токов
Реактивные проводимости зависят от частоты вынужденных колебаний. Для рассматриваемой схемы:
активная проводимость
реактивные проводимости
При резонансе токов
Отсюда определяют резонансную частоту:
Выражение для резонансной частоты в данном случае такое же, какое было получено при рассмотрении резонанса напряжений и для частоты собственных колебаний в контуре без потерь.
Резонанс токов, так же как и резонанс напряжений, можно получить изменением параметров L и С или изменением частоты источника энергии.
Резонанс токов в цепи с переменным током
Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.
Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.
В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.
Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.
В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.
Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.
Расчет резонансного контура
Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура. Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети. Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.
В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:
С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:
Резонанс колебательной частоты аппроксимируется по следующей формуле:
Резонанс колебательного контура
Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению. Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин. В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.
Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Принцип действия резонансных токов
Наглядное представление о резонансе токов дает колебательный контур, применяемый в электронных схемах. В его состав входит конденсатор с емкостью С и катушка с индуктивностью L, включенные параллельно. В процессе передачи энергии из электрического поля емкости в магнитное поле индуктивности возникают самозатухающие колебания с определенной частотой. Возникновение колебаний происходит благодаря активному сопротивлению R, препятствующему свободному прохождению тока.
Явление резонанса токов появляется в цепи, куда параллельно включены конденсатор и катушка. Их номиналы подобраны с таким расчетом, чтобы токи, протекающие по С и L, были равны. Поэтому в контуре С-L ток будет выше, чем его значение на остальных участках цепи.
Принцип работы такого контура заключается в следующем. При подаче питания конденсатор накапливает определенную величину заряда, равную номинальному напряжению источника тока. После этого источник отключается, а конденсатор замыкается в цепь контура, чтобы на катушку пошел разряд. Ток проходит по ней, тем самым вызывает генерацию магнитного поля. В результате создается электродвижущая сила самоиндукции, направленная навстречу току.
Максимальное значение магнитного поля достигается при полном разряде конденсатора. Таким образом, вся энергия, накопленная конденсатором, преображается в магнитное поле индуктивности. Заряженные частицы продолжают двигаться, благодаря самоиндукции катушки.
Поскольку противоток от разряженного конденсатора уже отсутствует, он подвергается повторной зарядке, но уже с изменившейся полярностью. Это приводит к преобразованию поля катушки в заряд конденсатора и повторению всего процесса. Активная составляющая R приводит к постепенному угасанию колебаний. В этом и заключается основная суть резонанса.
Понятие о резонанс токов. Условия его возникновения и способы осуществления
Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
В1 – реактивная проводимость первой ветви,
В2 – реактивная проводимость второй ветви.
Способ возбуждения колебаний в электрическом контуре, заключающийся в генерации колебаний, за счет регулирования сигнала, управляющего возбуждением колебаний.
Резонанс токов и его признаки
Режим, при котором в цепи, содержащей параллельные ветви с индуктивными и емкостными элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (φ=0), называют резонансом токов.
Признаки резонанса токов:
Реактивные составляющие токов ветвей равны IPC = IPL и находятся в противофазе в случае, когда напряжение на входе чисто активное;
Токи ветвей превышают общий ток цепи, который имеет минимальное значение и совпадают по фазе.
Читайте также: Векторные диаграммы. Построение векторных диаграмм
Мгновенная мощь цепи синусоидального тока
Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.
Пусть мгновенные напряжение и ток определяются по формулам:
Среднее значение мгновенной мощности за период
Получим еще одну формулу:
Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P.
Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию.
Происходит обратимый процесс в виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.
Преобразуем выражение (6.23):
где — мгновенная мощность в активном сопротивлении;
— мгновенная мощность в реактивном элементе (в индуктивности или в емкости).
Максимальное или амплитудное значение мощности p2 называется реактивной мощностью
Читайте также: Безопасное расстояние от ЛЭП до жилого дома: минимальные допустимые нормы
где x — реактивное сопротивление (индуктивное или емкостное).
Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания.
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Резонансное явление напряжения – вещь достаточно интересная и заслуживает внимания. Резонанс возможен только в индуктивных ёмкостных цепях. В линиях, где активное сопротивление велико, это явление невозможно.
Подведём итог, коротко дав ответы по данной теме:
Ответ: в индуктивных ёмкостных схемах.
Ответ: реактивные сопротивления должны быть равны.
Ответ: Поменять частоту, добавить активное сопротивление.
Надеемся, теперь вам понятно, что это за явление, условия для его появления и практическое использование.