Тема: «Вспомогательные аппараты. Базисные принципы работы холодильного оборудования»
Цель:Изучить устройство и принцип работы вспомогательных аппаратов холодильных машин, освоить базисные принципы работы холодильного оборудования.
Рекомендуемая литература:
1. Холодильные машины и установки конддиционированяе воздуха. Пигарев В.Е., Архипов П.Е. М., Маршрут, 2003.
2. Обучающая контролирующая программа «Кондиционирование воздуха в пассажирском вагоне».
План лекции:
Назначение и принцип действия
7. Три ступени защиты кондиционера МАБ.
8. Регулировка холодопроизводительности: байпасирование, изменение оборотов коленвала компрессора, отключение цилиндров.
Холодильные установки снабжены вспомогательными аппаратами и арматурой. К вспомогательным аппаратам относятся: ресиверы, фильтры, переохладители, обратные клапаны, вентиляторы и др.
Ресиверы
Ресивер предназначен для сбора жидкого хладагента, поступающего из конденсатора, и накопления его для непрерывной и равно-
мерной подачи в испаритель. Ресивер — это цилиндрический сосуд, на нем установлены выходной патрубок с вентилями. Ресивер снабжен смотровыми стеклами для наблюдения за количеством хладагента. Емкость ресивера выбирается из расчета заполнения его хладагентом при работе установки на 3/4 объема. Располагается ресивер обычно вблизи конденсатора, большей частью горизонтально с небольшим наклоном в сторону выпускного патрубка. На FAL-056/7 ресивер вместимостью 16 кг выполнен из алюминиевого сплава. Этот запас хладагента обеспечивает надежную работу холодильного агрегата. Два смотровых стекла на ресивере служат для проверки уровня жидкого хладагента. Масса порожнего ресивера около 10 кг, габаритные размеры 210 478 мм. Рабочее давление 1,6 МПа. Ресивер испытывают водой под давлением 2,1 МПа и азотно-хладоновой смесью давлением 1,6 МПа.
Ресивер хладоновой установки ВР (рис.1) выполнен в виде горизонтального цилиндрического сосуда с приваренными плоским и сферическим днищами. Стальной корпус 1 диаметром 273 мм имеет четыре лапы 7 для крепления к раме холодильной машины и кронштейн 6, на котором устанавливается электродвигатель вентилятора конденсатора.
В бобышки корпуса ввернуты входной и выходной угловые запорные вентили 5; к входному вентилю подведена труба от конденсатора, к выходному — от фильтра-осушителя. Воздух из внутренней полости ресивера удаляют через пробку 4. Уровень хладагента контролируют по смотровому рифленому стеклу 3, прижатому болтами к корпусу крышкой 2 с резиновой и паронитовой прокладками. Вместимость ресивера 30 л.
Для защиты от недопустимого повышения давления при высокой наружной температуре служит предохранительная плавкая пробка 8, ввернутая в бобышку нижней части корпуса. После изготовления или ремонта ресивер испытывают на прочность водой давлением 1,9 МПа и на герметичность — воздухом давлением 1,5 МПа.
Ресивер установки МАВ-II (рис. 2) представляет собой металлический сосуд сварной конструкции, работающий под большим давлением 1,8 МПа. Он может вместить 34 л жидкого агента.
Трубопровод 1 соединяет ресивер с терморегулирующим вентилем, а трубопровод 2 — с разгрузочным устройством компрессора.
Мерные стекла 3 на корпусе 6 ресивера предназначены для контроля уровня хладона 7 в системе. Учитывая бесцветность хладона R12 и связанные с этим затруднения, которые могут возникнуть при определении его уровня, за стеклом 3 помещён шарик 4 из легкого материала. Чтобы шарик не «уплывал» в ресивер, установлена сетка 5.
В нижней части ресивера находится предохранительный клапан 11 мембранного типа. Он защищает холодильную установку от аварийного давления. Если оно превысит 2,5 МПа, мембрана 10 лопается и хладон R12 выходит в атмосферу через отверстие 8 в крышке 9. Чтобы восстановить предохранительный клапан, мембрану заменяют.
Качественная и бесперебойная работа холодильного оборудования зависит от того, что именно используется для его комплектации. В промышленных установках немаловажную роль играют жидкостные ресиверы. Ресивер – резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель.
В малых хладоновых машинах ресивер применяется для сбора хладагента во время ремонта машины, а также для охлаждения газа и отделения капель масла и влаги.
Эти установки предназначены для минимизации рисков сбоя работы холодильного комплекса как во время штатной ситуации, так и в случае изменений параметров окружающей среды.
Различают защитные, линейные, дренажные и циркуляционные ресиверы; по конструкции — вертикальные и горизонтальные:
Данные типы ресиверов используются в основном в аммиачных холодильных установках большой производительности. Во фреоновых холодильных установках используется линейный холодильный ресивер, выполняющий роль дренажного при консервации системы.
Ресиверы должны быть обязательно подстроены под тип используемого в холодильном оборудовании хладагента, расчет необходимого ресивера, а так же расчет оставшегося на момент установки ресивера хладагента, нельзя производить отдельно друг от друга. Удобные и простые крепления, а так же его компактность, позволяют использовать ресиверы в самых различных холодильных системах.
Оптимальный вариант – это ресиверы с полной комплектацией (вентили, предохранительные клапаны, смотровые стекла, а так же с резьбой под аксессуары).
Основные функции ресиверов для холодильных установок
Как показывает практика, подобное оборудование используется для существенного увеличения объема жидкого хладагента в охлаждающей системе.
Ресиверы необходимы для выполнения следующих функций:
Чтобы не тратить лишнее количество хладагента для заправки системы холодильной установки, необходимо грамотно подойти к выбору ресивера. Произвести оценку целей приобретения данного оборудования, осуществить определенные расчеты, исходя из особенностей охлаждаемого помещения и предложить наилучший вариант всегда готовы специалисты нашей компании.
Не принимая во внимание потери давления во всасывающей магистрали компрессора, можно считать, что полный температурный напор на испарителе:
Допустим, температура в термобаллоне ТРВ составляет 13 С, это означает, что установка работает на перегрев 7 К. Когда термостат начинает запускать компрессор, воздух на входе в испаритель слишком горячий. Из этого следует, что процесс кипения в испарителе проходит интенсивно и для поддержания перегрева на уровне 7 К необходимо сильно открыть ТРВ.
Если ТРВ сильно открыт, то массовый расход хладагента и давление кипения высокие. Полагается, что холодопроизводительность хорошая, в том случае, когда в испарителе находится много жидкого хладагента. Рассмотрим эту же установку, но спустя некоторое время, когда температура на входе в испаритель снизится до 21 С, и проследим за тем, как изменились значения ее основных параметров.
Так как температура воздуха на входе в испаритель снизилась на 4 С, то для поддержания постоянного перегрева газа потребуется более длинный участок трубопровода. Это значит, что ТРВ должен обязательно закрываться.
Для поддержания постоянного перегрева 7 К, ТРВ должен быть открытым меньше, чем при температуре воздуха 25 С (рис.16.2).
В данном случае терморегулирующий вентиль закрыт сильнее, что по сравнению с предыдущим примером означает уменьшение давления кипения и массового расхода хладагента. Поскольку в испарителе находится меньше жидкости, холодопроизводительность снижается. Уменьшение жидкости в испарителе приводит к ее увеличению в ресивере и конденсаторе.
При относительно стабильном давлении конденсации, полный температурный напор на испарителе остается на уровне 19 К, в то время как температура кипения составляет 21-19=2 С. Поскольку регулировка ТРВ произведена таким образом, чтобы поддерживать перегрев на уровне 7 К, а кипение происходит при 2 С, то температура термобаллона ТРВ будет равна 2+7=9 С.
Итак, мы видим, что в установке с ТРВ, чем сильнее падает температура на входе в испаритель, тем больше перекрывается сам ТРВ, уменьшая массовый расход и холодопроизводительность. Вместе с этим в испарителе становится все меньше жидкости, а в ресивере ее уровень увеличивается.
Основное назначение ресивера это компенсировать колебания массового расхода жидкости, которые вызваны реакцией ТРВ на перемены в тепловой нагрузке.
Недостаточная емкость жидкостного ресивера
С этого периода объем жидкости внутри конденсатора начнет увеличиваться, снижая поверхность теплообмена и увеличивая давление конденсации. Все это сопровождается признаками чрезмерной заправки контура.
Если емкость жидкостного ресивера слишком мала и заправку хладагента производят при низкой температуре окружающей среды, то наблюдаются признаки нехватки хладагента в контуре при повышении температуры окружающей среды.
Перед разработчиками холодильного оборудования всегда стоит задача выбора подходящего ресивера. Необходимо чтобы его объем позволял вместить весь хладагент, который заправляется в установку, что существенно упростит обслуживание ресивера. Таким образом, ремонтник, предварительно перекрыв вентиль на жидкостном ресивере, может произвести вакуумирование с помощью компрессора жидкостной и всасывающей магистрали, а также испарителя, собрав всю жидкость в жидкостном ресивере и конденсаторе.
Вы никогда не задумывались, почему в холодильнике — холодно, и что общего у морозильного шкафа и кондиционера? В этом материале разбираемся, как работает холодильное оборудование.
Замечали, что, когда вы выходите из душа, вам всегда прохладно? Дело в том, что влага при испарении поглощает тепло. А при конденсации, наоборот, тепло выделяется. На этих явлениях и основан принцип действия паровых компрессорных холодильных машин– в них по замкнутому кругу двигается специальная жидкость (хладагент). Хладагент испаряется в испарителе и конденсируется в конденсаторе. При этом испаритель охлаждается, а конденсатор греется.
Чтобы хладагент испарялся и конденсировался в нужных местах, в холодильном контуре должны присутствовать еще два элемента – компрессор и дросселирующее устройство.
Компрессор сжимает газообразный хладагент в конденсаторе, где он под действием высокого давления переходит в жидкую форму, выделяя тепло. А дросселирующее устройство (капиллярная трубка или терморегулирующий вентиль) затрудняет движение хладагента и поддерживает высокое давление в конденсаторе. После дросселя давление в контуре намного ниже, и попавший туда хладагент начинает испаряться внутри испарителя, поглощая тепло. Далее он, уже в газообразном виде, снова попадает в компрессор, и цикл повторяется.
Многие холодильные установки комплектуются дополнительными элементами.
Фильтр-осушитель устанавливается перед дросселирующим устройством. Его задачей является извлечение из хладагента воды и механических частиц. При его отсутствии капилляр может засориться или замерзнуть.
Терморегулятор (термостат) выключает компрессор при достижении необходимой температуры.
Ресивер повышает эффективность холодильной установки. Без терморегулирущего вентиля (с капиллярной трубкой) скорость выработки холода является постоянной. И, если она будет слишком большой, компрессор будет часто включаться–выключаться, а если слишком маленькой — охлаждение будет идти слишком долго. Использование ТРВ позволяет изменять скорость охлаждения в больших пределах, но требует наличия ресивера для компенсирования колебаний расхода хладагента.
Различные датчики температуры и давления, управляемые электроникой регуляторы давления и клапаны используются для повышения эффективности устройства и поддержания специфических режимов работы.
Из холода в жар
Чаще всего холодильная машина используется именно для охлаждения — испаритель расположен в охлаждаемом объеме, а конденсатор вынесен в окружающую среду. Так работают кондиционеры, холодильники и морозильники. Но холодильный контур не только поглощает тепло на испарителе, но и выделяет его на конденсаторе. Нельзя ли использовать холодильную машину «наоборот» — для обогрева, расположив конденсатор в обогреваемом помещении, а испаритель вынеся наружу?
Еще как можно. Холодильная машина использует электроэнергию не для непосредственного нагрева (как ТЭН), а для переноса тепла, поэтому эффективность ее выше, чем у обычного электронагревателя. Многие современные кондиционеры могут работать «наоборот», используя теплообменник внутреннего блока как конденсатор, а теплообменник внешнего блока – как испаритель. В таком режиме на 1 кВт потребленной мощности кондиционер может произвести 2–6 кВт тепла. Греть комнату кондиционером может быть значительно выгоднее, чем электрообогревателем!
В местах с более холодным климатом в последнее время все большую популярность получают тепловые насосы – паровые компрессорные холодильные машины, у которых испаритель помещен под землю на глубину, большую глубины промерзания. Поскольку там всегда сохраняется положительная температура, эффективность теплового насоса не зависит от времени года. Такие устройства намного экономичнее электрических обогревателей и могут использоваться для отопления жилища круглый год при любой температуре. К сожалению, высокая стоимость тепловых насосов пока препятствует их популярности.
Виды компрессоров
Поршневые компрессоры устанавливаются в основном в холодильниках и морозильниках. В большинстве моделей поршень приводится в движение обычным электродвигателем, двигающим поршень через шатунно-кривошипный, кулачковый или кулисный механизм.
Существуют также электромагнитные (линейные) поршневые компрессоры. В них цилиндр расположен внутри катушки, создающей электромагнитное поле, которое приводит в движение поршень.
Поршневые компрессоры способны создавать высокое давление, обеспечивая большой перепад температур на испарителе и конденсаторе. Кроме того, обычный поршневой компрессор имеет достаточно простую конструкцию, не требующую высокой точности изготовления деталей, соответственно стоят они недорого. Однако недостатков у поршневых компрессоров тоже хватает:
Поэтому поршневой компрессор можно повторно запускать только через несколько минут после остановки, когда давление в системе выровняется. Защитой от повторного пуска снабжены далеко не все модели, поэтому холодильное оборудование рекомендуется подключать через реле времени с задержкой включения в 5–10 минут.
Ротационные компрессоры (иногда называемые роторными) создают давление за счет изменяющегося зазора между вращающимся ротором и корпусом компрессора.
Существуют различные модификации этого вида компрессоров — с эксцентричным ротором, с подвижными лепестками, с качающимся ротором, спиральный и т. п.
Все они обладают небольшими габаритами, низким уровнем шума и увеличенным ресурсом за счет снижения количества подвижных деталей. К недостаткам этого вида можно отнести сложность изготовления (ротор и корпус должны быть изготовлены с высокой точностью) и низкое максимальное давление. Такие компрессоры чаще используются в климатической технике, для которой не требуется создавать очень низкую температуру.
Ротационными и поршневыми список компрессоров не исчерпывается — существуют еще центробежные, винтовые, кулачковые и другие. Но в бытовой технике они используются реже.
Вне зависимости от вида компрессор может быть неинверторным (стандартным) или инверторным. У обычных компрессоров скорость вращения двигателя постоянна, для поддержания заданной температуры он периодически включается и выключается. В инверторных компрессорах двигатель подключен через частотный преобразователь (инвертор), с помощью изменения частоты напряжения меняющий скорость вращения электродвигателя. Такой компрессор поддерживает заданную температуру выставлением нужной скорости вращения. Инверторные компрессоры дороже, но экономичнее, эффективнее и имеют больший ресурс.
Типы хладагентов
Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.
В бытовых устройствах чаще всего используются следующие хладагенты:
Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.
R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.
Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.
Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.