что такое рекурсия в информатике

Простыми словами о рекурсии

Dec 19, 2020 · 4 min read

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя.

Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней идёт точно такая же кукла, но поменьше. Суть матрёшки состоит в том, что вы можете открывать её и доставать из неё точно такую же куклу, только немного меньше. Такой продолжительный процесс длится до тех пор, пока вы не дойдёте до последней куклы, которая и прервёт цикл. Так выглядит визуальная репрезентация рекурсии.

Не приведёт ли рекурсивная функция к бесконечному циклу?

Вот пример кода того, как можно реализовать функцию обратного отсчёта с использованием рекурсии:

Как прервать рекурсию:

Проще говоря, рекурсия делает то же, что и код ниже:

Плюсы и минусы рекурсивных функций

Чтобы правильно описать плюсы и минусы, давайте взглянем на производительность рекурсии.

Плюсы:

Под этим подразумевается, что рекурсии, в сравнении с циклами, тратят меньше времени до завершения функции. Чем меньше строк кода у нас будет, тем быстрее функция будет обрабатывать вызовы внутри себя. Особенно хорошо это проявляется при буферизации данных, что позволяет оптимизировать и ускорить код.

В программировании мемоизация — это метод сохранения результатов выполнения функций для предотвращения повторных вычислений. Это один из способов оптимизации, применяемый для увеличения скорости выполнения программ. — Википедия

И всё же стоит отметить, что рекурсия не всегда выигрывает по скорости по сравнению с циклами.

Многие согласятся, что эта причина очень важна. Рекурсия проста в отладке из-за того, что она не содержит сложных и длинных конструкций.

Минусы:

Рекурсивные функции занимают значительный объём памяти во время своего выполнения. Это означает, что при каждом вызове функции в стек будет добавляться новый элемент, который будет занимать место до тех пор, пока функция не завершит работу, найдя ответ, либо пока не дойдёт до выполнения базового условия функции.

Что такое «стек»?

Стек — это такая структура данных, которая работает по принципу «Last In, First Out» (последним пришёл — первым ушёл). Таким образом, элемент «проталкивается» в стек и добавляется в его конец, а затем «выталкивается» из стека при удалении.

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Стоит ли использовать рекурсии вместо обычных циклов?

Оба этих метода одинаково эффективны для решения задач, однако выбор одного из них зависит от типа проблемы, поставленной перед вами.

Рекурсии эффективны тогда, когда вы работаете с данными, которые слишком сложны, чтобы пройтись по ним с помощью обычных циклов. Стоит также не забывать о ценности памяти и уменьшении времени, идущем вкупе с рекурсивной функцией, в которой накопилось слишком много элементов.

Циклы так же эффективны в плане скорости и оптимизации, они занимают меньше памяти в стеке и их легче понять, потому что в теле цикла содержится больше информации о том, что происходит внутри.

Источник

Функциональное программирование с точки зрения EcmaScript. Рекурсия и её виды

Сегодня мы продолжим наши изыскания на тему функционального программирования в разрезе EcmaScript, на спецификации которого основан JavaScript. В предыдущих статьях цикла были рассмотрены следующие темы:

Рекурсия

Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее применение находит в математике и информатике.

Применительно к программированию под рекурсией подразумевают процессы, которые вызывают сами себя в своём теле. Рекурсивная функция имеет несколько обязательных составляющих:

Выделим характерные составляющие рекурсивной функции. Терминальное условие

и правило движения по рекурсии

Важно осознавать, что рекурсия это не какая-то специфическая фича JS, а техника очень распространённая в программировании.

Рекурсивный и итеративный процессы

Рекурсию можно организовать двумя способами: через рекурсивный процесс или через итеративный.

Рекурсивный процесс мы с вами уже видели:

Итеративное решение задачи о факториале выглядело бы так:

Оба этих варианта это рекурсия. В обоих решениях есть характерные для рекурсии черты: терминальное условие и правило движения по рекурсии. Давайте разберём их отличия.

Рекурсивный процесс на каждом шаге запоминает действие. которое надо сделать. Дойдя до термального условия, он выполняет все запомненные действия в обратном порядке. Поясним на примере. Когда рекурсивный процесс считает факториал 6, то ему нужно запомнить 5 чисел чтобы посчитать их в самом конце, когда уже никуда не деться и рекурсивно двигаться вглубь больше нельзя. Когда мы находимся в очередном вызове функции, то где-то снаружи этого вызова в памяти хранятся эти запомненные числа.

Выглядит это примерно так:

Как видите, основная идея рекурсивного процесса — откладывание вычисления до конца.
Такой процесс порождает изменяемое во времени состояние, которое хранится «где-то» снаружи текущего вызова функции.

Думаю, вы помните, что в первой статье из цикла о Функциональном программировании мы говорили о важности имутабельности и отсутствия состояния. Наличие состояния порождает много проблем, с которыми не всегда легко справится.

Итеративный процесс отличается от рекурсивного фиксированным количеством состояний. На каждом своём шаге итеративный процесс считает всё, что может посчитать, поэтому каждый шаг рекурсии существует независимо от предыдущего.

Думаю, очевидно, что итеративный процесс потребляет меньше памяти. Следовательно, всегда при создании рекурсии следует использовать его. Единственное исключение: если мы не можем посчитать значение до достижения термального условия.

Древовидная рекурсия

Многие считают, что деревья и работа с ними это что-то очень заумное, сложное и не понятное простым смертным. На самом деле это не так. Любая иерархическая структура может быть представлена в виде дерева. Даже человеческое мышление подобно дереву.

Чтобы лучше понять древовидную рекурсию разберём простой и популярный пример — числа Фибоначчи.

Чи́сла Фибона́ччи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, … (последовательность A000045 в OEIS), в которой первые два числа равны либо 1 и 1, либо 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел. Названы в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи).

Математически довольно просто сформулировать описание (а ведь декларативное программирование и есть описание) данной последовательности:

Теперь давайте перейдём от математики к логическим рассуждениям(нам ведь нужно программную логику написать). Для вычисления fib(5) нам придётся вычислить fib(4) и fib(3). Для вычисления fib(4) нам придётся вычислить fib(3) и fib(2). Для вычисления fib(3) нам придётся вычислить fib(2) и так до тех пор пока мы не дойдём до известных значений (1) и (2) в нашей математической модели.

На какие мысли нас должны навести наши рассуждения? Очевидно, мы должны использовать рекурсию. Термальное условие можно сформулировать как n

Источник

Рекурсия. Занимательные задачки

В этой статье речь пойдет о задачах на рекурсию и о том как их решать.
что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Кратко о рекурсии

Рекурсия достаточно распространённое явление, которое встречается не только в областях науки, но и в повседневной жизни. Например, эффект Дросте, треугольник Серпинского и т. д. Один из вариантов увидеть рекурсию – это навести Web-камеру на экран монитора компьютера, естественно, предварительно её включив. Таким образом, камера будет записывать изображение экрана компьютера, и выводить его же на этот экран, получится что-то вроде замкнутого цикла. В итоге мы будем наблюдать нечто похожее на тоннель.

В программировании рекурсия тесно связана с функциями, точнее именно благодаря функциям в программировании существует такое понятие как рекурсия или рекурсивная функция. Простыми словами, рекурсия – определение части функции (метода) через саму себя, то есть это функция, которая вызывает саму себя, непосредственно (в своём теле) или косвенно (через другую функцию).

Задачи

При изучении рекурсии наиболее эффективным для понимания рекурсии является решение задач.

Любой алгоритм, реализованный в рекурсивной форме, может быть переписан в итерационном виде и наоборот. Останется вопрос, надо ли это, и насколько это будет это эффективно.

Для обоснования можно привести такие доводы.

Для начала можно вспомнить определение рекурсии и итерации. Рекурсия — это такой способ организации обработки данных, при котором программа вызывает сама себя непосредственно, либо с помощью других программ. Итерация — это способ организации обработки данных, при котором определенные действия повторяются многократно, не приводя при этом к рекурсивным вызовам программ.

После чего можно сделать вывод, что они взаимно заменимы, но не всегда с одинаковыми затратами по ресурсам и скорости. Для обоснования можно привести такой пример: имеется функция, в которой для организации некого алгоритма имеется цикл, выполняющий последовательность действий в зависимости от текущего значения счетчика (может от него и не зависеть). Раз имеется цикл, значит, в теле повторяется последовательность действий — итерации цикла. Можно вынести операции в отдельную подпрограмму и передавать ей значение счетчика, если таковое есть. По завершению выполнения подпрограммы мы проверяем условия выполнения цикла, и если оно верно, переходим к новому вызову подпрограммы, если ложно — завершаем выполнение. Т.к. все содержание цикла мы поместили в подпрограмму, значит, условие на выполнение цикла помещено также в подпрограмму, и получить его можно через возвращающее значение функции, параметры передающееся по ссылке или указателю в подпрограмму, а также глобальные переменные. Далее легко показать, что вызов данной подпрограммы из цикла легко переделать на вызов, или не вызов (возврата значения или просто завершения работы) подпрограммы из нее самой, руководствуясь какими-либо условиями (теми, что раньше были в условии цикла). Теперь, если посмотреть на нашу абстрактную программу, она примерно выглядит как передача значений подпрограмме и их использование, которые изменит подпрограмма по завершению, т.е. мы заменили итеративный цикл на рекурсивный вызов подпрограммы для решения данного алгоритма.

Задача по приведению рекурсии к итеративному подходу симметрична.

Подводя итог, можно выразить такие мысли: для каждого подхода существует свой класс задач, который определяется по конкретным требованиям к конкретной задаче.

Более подробно с этим можно познакомиться тут

Так же как и у перебора (цикла) у рекурсии должно быть условие остановки — Базовый случай (иначе также как и цикл рекурсия будет работать вечно — infinite). Это условие и является тем случаем к которому рекурсия идет (шаг рекурсии). При каждом шаге вызывается рекурсивная функция до тех пор пока при следующем вызове не сработает базовое условие и произойдет остановка рекурсии(а точнее возврат к последнему вызову функции). Всё решение сводится к решению базового случая. В случае, когда рекурсивная функция вызывается для решения сложной задачи (не базового случая) выполняется некоторое количество рекурсивных вызовов или шагов, с целью сведения задачи к более простой. И так до тех пор пока не получим базовое решение.

Тут Базовым условием является условие когда n=1. Так как мы знаем что 1!=1 и для вычисления 1! нам ни чего не нужно. Чтобы вычислить 2! мы можем использовать 1!, т.е. 2!=1!*2. Чтобы вычислить 3! нам нужно 2!*3… Чтобы вычислить n! нам нужно (n-1)!*n. Это и является шагом рекурсии. Иными словами, чтобы получить значение факториала от числа n, достаточно умножить на n значение факториала от предыдущего числа.

В сети при обьяснении рекурсии также даются задачи нахождения чисел Фибоначчи и Ханойская башня

Рассмотрим же теперь задачи с различным уровнем сложности.
Попробуйте их решить самостоятельно используя метод описанный выше. При решении попробуйте думать рекурсивно. Какой базовый случай в задаче? Какой Шаг рекурсии или рекурсивное условие?

Поехали! Решения задач предоставлены на языке Java.

A: От 1 до n
Дано натуральное число n. Выведите все числа от 1 до n.

Источник

Как работает рекурсия – объяснение в блок-схемах и видео

Представляю вашему вниманию перевод статьи Beau Carnes How Recursion Works — explained with flowcharts and a video.

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

«Для того чтобы понять рекурсию, надо сначала понять рекурсию»

Рекурсию порой сложно понять, особенно новичкам в программировании. Если говорить просто, то рекурсия – это функция, которая сама вызывает себя. Но давайте попробую объяснить на примере.

Представьте, что вы пытаетесь открыть дверь в спальню, а она закрыта. Ваш трехлетний сынок появляется из-за угла и говорит, что единственный ключ спрятан в коробке. Вы опаздываете на работу и Вам действительно нужно попасть в комнату и взять вашу рубашку.

Вы открываете коробку только чтобы найти… еще больше коробок. Коробки внутри коробок и вы не знаете, в какой из них Ваш ключ. Вам срочно нужна рубашка, так что вам надо придумать хороший алгоритм и найти ключ.

Есть два основных подхода в создании алгоритма для решения данной проблемы: итеративный и рекурсивный. Вот блок-схемы этих подходов:

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Какой подход для Вас проще?

В первом подходе используется цикл while. Т.е. пока стопка коробок полная, хватай следующую коробку и смотри внутрь нее. Ниже немного псевдокода на Javascript, который отражает то, что происходит (Псевдокод написан как код, но больше похожий на человеческий язык).

В другом подходе используется рекурсия. Помните, рекурсия – это когда функция вызывает саму себя. Вот второй вариант в псевдокоде:

Оба подхода выполняют одно и тоже. Основный смысл в использовании рекурсивного подхода в том, что однажды поняв, вы сможете легко его читать. В действительности нет никакого выигрыша в производительности от использования рекурсии. Порой итеративный подход с циклами будет работать быстрее, но простота рекурсии иногда предпочтительнее.

Поскольку рекурсия используется во многих алгоритмах, очень важно понять как она работает. Если рекурсия до сих пор не кажется Вам простой, не беспокойтесь: Я собираюсь пройтись еще по нескольким примерам.

Граничный и рекурсивный случай

То, что Вам необходимо принять во внимание при написании рекурсивной функции – это бесконечный цикл, т.е. когда функция вызывает саму себя… и никогда не может остановиться.
Допустим, Вы хотите написать функцию подсчета. Вы можете написать ее рекурсивно на Javascript, к примеру:

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Эта функция будет считать до бесконечности. Так что, если Вы вдруг запустили код с бесконечным циклом, остановите его сочетанием клавиш «Ctrl-C». (Или, работая к примеру в CodePen, это можно сделать, добавив “?turn_off_js=true” в конце URL.)

Рекурсивная функция всегда должна знать, когда ей нужно остановиться. В рекурсивной функции всегда есть два случая: рекурсивный и граничный случаи. Рекурсивный случай – когда функция вызывает саму себя, а граничный – когда функция перестает себя вызывать. Наличие граничного случая и предотвращает зацикливание.

И снова функция подсчета, только уже с граничным случаем:

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

То, что происходит в этой функции может и не быть абсолютно очевидным. Я поясню, что произойдет, когда вы вызовете функцию и передадите в нее цифру 5.

Сначала мы выведем цифру 5, используя команду Console.Log. Т.к. 5 не меньше или равно 1, то мы перейдем в блок else. Здесь мы снова вызовем функцию и передадим в нее цифру 4 (т.к. 5 – 1 = 4).

Мы выведем цифру 4. И снова i не меньше или равно 1, так что мы переходим в блок else и передаем цифру 3. Это продолжается, пока i не станет равным 1. И когда это случится мы выведем в консоль 1 и i станет меньше или равно 1. Наконец мы зайдем в блок с ключевым словом return и выйдем из функции.

Стек вызовов

Рекурсивные функции используют так называемый «Стек вызовов». Когда программа вызывает функцию, функция отправляется на верх стека вызовов. Это похоже на стопку книг, вы добавляете одну вещь за одни раз. Затем, когда вы готовы снять что-то обратно, вы всегда снимаете верхний элемент.

Я продемонстрирую Вам стек вызовов в действии, используя функцию подсчета факториала. Factorial(5) пишется как 5! и рассчитывается как 5! = 5*4*3*2*1. Вот рекурсивная функция для подсчета факториала числа:

Теперь, давайте посмотрим что же происходит, когда вы вызываете fact(3). Ниже приведена иллюстрация в которой шаг за шагом показано, что происходит в стеке. Самая верхняя коробка в стеке говорит Вам, что вызывать функции fact, на которой вы остановились в данный момент:

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Заметили, как каждое обращение к функции fact содержит свою собственную копию x. Это очень важное условие для работы рекурсии. Вы не можете получить доступ к другой копии функции от x.

Нашли уже ключ?

Давайте кратенько вернемся к первоначальному примеру поиска ключа в коробках. Помните, что первым был итеративный подход с использованием циклов? Согласно этому подходу Вы создаете стопку коробок для поиска, поэтому всегда знаете в каких коробках вы еще не искали.

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Но в рекурсивном подходе нет стопки. Так как тогда алгоритм понимает в какой коробке следует искать? Ответ: «Стопка коробок» сохраняется в стеке. Формируется стек из наполовину выполненных обращений к функции, каждое из которых содержит свой наполовину выполненный список из коробок для просмотра. Стек следит за стопкой коробок для Вас!

И так, спасибо рекурсии, Вы наконец смогли найти свой ключ и взять рубашку!

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Вы также можете посмотреть мое пятиминутное видео про рекурсию. Оно должно усилить понимание, приведенных здесь концепций.

Заключение от автора

Надеюсь, что статья внесла немного больше ясности в Ваше понимание рекурсии в программировании. Основой для статьи послужил урок в моем новом видео курсе от Manning Publications под названием «Algorithms in Motion». И курс и статься написаны по замечательной книге «Grokking Algorithms», автором которой является Adit Bhargava, кем и были нарисованы все эти замечательные иллюстрации.

И наконец, чтобы действительно закрепить свои знания о рекурсии, Вы должны прочитать эту статью, как минимум, еще раз.

От себя хочу добавить, что с интересом наблюдаю за статьями и видеоуроками Beau Carnes, и надеюсь что Вам тоже понравилась статья и в особенности эти действительно замечательные иллюстрации из книги A. Bhargav «Grokking Algorithms».

Источник

Что такое рекурсия в информатике

Рекурсия — это способ определения множества объектов через само это множество на основе заданных простых базовых случаев.

Рекурсивная процедура (функция) — это процедура (функция), которая вызывает сама себя напрямую или через другие процедуры и функции.

Рекурсия — это широко распространённый метод, понятный и без математической формализации, интуитивно близкий любому «человеку с улицы».

Для рекурсии в её наиболее общей, неитеративной форме типична необходимость отсрочки некоторых действий; см., в частности, пример (4). По этой причине она вряд ли показана для забывчивых людей, но вполне пригодна для подходящим образом оборудованных машин. Повторение же — это в значительной степени наш повседневный опыт. см. 3, 4, 6. Бауэр Гооз

3.2. Примеры

Пример 1. Вспомним определение натуральных чисел. Оно состоит из двух частей:

1. 1 — натуральное число;

2. если n — натуральное число, то n + 1 — тоже натуральное число.

Вторая часть этого определения в математике называется индуктивной: натуральное число определяется через другое натуральное число, и таким образом определяется всё множество натуральных чисел. В программировании этот приём называют рекурсией.

Первая часть в определении натуральных чисел — это и есть тот самый базовый случай. Если убрать первую часть из определения, оно будет неполно: вторая часть даёт только метод перехода к следующему значению, но не даёт никакой «зацепки», не отвечает на вопрос «откуда начать».

Пример 3. Популярные примеры рекурсивных объектов — фракталы. Так в математике называют геометрические фигуры, обладающие самоподобием. Это значит, что они составлены из фигур меньшего размера, каждая из которых подобна целой фигуре. На рисунке 8.2 показан треугольник Серпинского — один из первых фракталов, который предложил в 1915 г. польский математик В. Серпинский. Рис. 8.2

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Равносторонний треугольник делится на 4 равных треугольника меньшего размера (см. рис. 8.2, слева), затем каждый из полученных треугольников, кроме центрального, снова делится на 4 еще более мелких треугольника и т. д. На рисунке 8.2 справа показан треугольник Серпинского с тремя уровнями деления.

Пример 4. Ханойские башни.

Согласно легенде, конец света наступит тогда, когда монахи Великого храма города Бенарас смогут переложить 64 диска разного диаметра с одного стержня на другой. Вначале все диски нанизаны на первый стержень. За один раз можно перекладывать только один диск, причём разрешается класть только меньший диск на больший. Есть также и третий стержень, который можно использовать в качестве вспомогательного (рис. 8.3).

что такое рекурсия в информатике. Смотреть фото что такое рекурсия в информатике. Смотреть картинку что такое рекурсия в информатике. Картинка про что такое рекурсия в информатике. Фото что такое рекурсия в информатике

Решить задачу для 2, 3 и даже 4 дисков довольно просто. Проблема в том, чтобы составить алгоритм для любого числа дисков.

Пусть нужно перенести n дисков со стержня 1 на стержень 3. Представим себе, что мы как-то смогли переместить n – 1 дисков на вспомогательный стержень 2. Тогда остается перенести самый большой диск на стержень 3, а затем n — 1 меньших дисков со вспомогательного стержня 2 на стержень 3, и задача будет решена. Получается такой псевдокод:

Процедура перенести (которую нам предстоит написать) принимает три параметра: число дисков, начальный и конечный стержни. Таким образом, мы свели задачу переноса n дисков к двум задача переноса n – 1 дисков и одному элементарному действию — переносу 1 диска. Заметим, что при известных номерах начального и конечного стержней легко рассчитать номер вспомогательного, так как сумма номеров равна 1 + 2 + 3 = 6. Получается такая (пока не совсем верная) процедура:

алг Hanoi (цел п, к, m )

Эта процедура вызывает сама себя, но с другими значениями параметров. Такая процедура называется рекурсивной.

Рекурсивная процедура (функция) — это процедура (функция), которая вызывает сама себя напрямую или через другие процедуры и функции.

Основная программа для решения задачи, например, с четырьмя дисками будет содержать всего одну строку (перенести 4 диска со стержня 1 на стержень 3):

Если вы попробуете запустить эту программу, она зациклится, т. е. будет работать бесконечно долго. В чём же дело? Вспомните, что определение рекурсивного объекта состоит из двух частей. В первой части определяются базовые объекты (например, первое натуральное число), именно эта часть «отвечает» за остановку рекурсии в программе. Пока мы не определили такое условие останова, процедура будет бесконечно вызывать саму себя (это можно проверить, выполняя программу по шагам). Когда же остановить рекурсию?

Очевидно, что если нужно переложить 0 дисков, задача уже решена, ничего перекладывать не надо. Это и есть условие окончания рекурсии: если значение параметра п, переданное процедуре, равно 0, нужно выйти из процедуры без каких-либо действий. Для этого в школьном алгоритмическом языке используется оператор выход (в Паскале — оператор exit ). Правильная версия процедуры выглядит так:

procedure Hanoi (n,k,m:integer);

Чтобы переложить N дисков, нужно выполнить 2 N — 1 перекладываний. Для N = 64 это число равно 18 446 744 073 709 551 615. Если бы монахи, работая день и ночь, каждую секунду перемещали один диск, им бы потребовалось 580 миллиардов лет.

Пример 5. Составим процедуру, которая переводит натуральное число в двоичную систему. Мы уже занимались вариантом этой задачи, где требовалось вывести 8-битную запись числа из диапазона 0..255, сохранив лидирующие нули. Теперь усложним задачу: лидирующие нули выводить не нужно, а натуральное число может быть любым (в пределах допустимого диапазона для выбранного типа данных).

Стандартный алгоритм перевода числа в двоичную систему можно записать, например, так:

Проблема в том, что двоичное число выводится «задом наперёд», т. е. первым будет выведен последний разряд. Как «перевернуть» число?

Есть разные способы решения этой задачи, которые сводятся к тому, чтобы запоминать остатки от деления (например, в символьной строке) и затем, когда результат будет полностью получен, вывести его на экран.

Такой алгоритм очень просто программируется:

Конечно, решить эту задачу можно было и с помощью цикла. Поэтому можно сделать важный вывод: рекурсия заменяет цикл. При этом программа, как правило, становится более понятной.

алг цел sumDig( цел n)

sum:=sum+sumDig (n div 10);

Алгоритм Евклида. Чтобы найти НОД двух натуральных чисел, нужно вычитать из большего числа меньшее до тех пор, пока меньшее не станет равно нулю. Тогда второе число и есть НОД исходных чисел.

алг цел NOD( цел a, b)

если а=0 или b =0 то

иначе знач :=N0D(a, b-a)

function NOD(a, b:integer):integer

if (a=0) or (b=0) then begin

Существует и более быстрый вариант алгоритма Евклида (модифицированный алгоритм), в котором большее число заменяется на остаток от деления большего числа на меньшее.

Рассмотрим ещё несколько алгоритмов, которые можно реализовать с помощью рекурсии:

1. Алгоритм сложения двух положительных десятичных чисел.

Этот алгоритм запёчатлён в наших мозгах с начальной школы; обычно мы исполняем его наполовину бессознательно. Сложность алгоритма мы замечаем только тогда, когда пытаемся явно описать эту хорошо знакомую нам процедуру.

В данном случае количество элементарных тактов обработки зависит от разрядности большего слагаемого.

2. Алгоритмы разложения натурального числа на простые множители.

Если же таблицы простых чисел в распоряжении нет, то можно также последовательно пытаться делить заданное число на натуральные числа 2, 3, 4, 5, 6, 7. до тех пор, пока не останется 1; при этом для каждого составного числа как делителя выполняемая попытка деления будет бесполезной.

Последовательность получающихся в конечном счёте делителей даст требуемое разложение на простые множители.

В данном случае количество элементарных тактов обработки зависит от величины разлагаемого числа.

3. Алгоритм вставки карточки в (упорядоченную) картотеку (предполагается, что в картотеке нет рейтера – зажима для удобства отыскания картотечных карточек).

В случае пустой картотеки (пустой ящик картотеки) вставка карточки тривиальна. В противном случае раскроем картотеку в произвольном месте и сравним открывшуюся карточку с вставляемой по рассматриваемому признаку («сортировка»), В соответствии с результатом этого сравнения будем действовать тем же самым способом, вставляя карточку соответственно в переднюю или заднюю часть картотеки. Процесс заканчивается, когда карточку нужно вставлять в пустое множество карт.

В данном случае количество элементарных тактов обработки зависит от размера картотеки

4. Алгоритм сортировки (несортированной) картотеки.

Сортировка пустой или одноэлементной картотеки тривиальна. В противном случае стопка карт произвольным образом разбивается на две непустые части, каждая из частей независимо сортируется, а затем обе сортированные стопки «смешиваются» в одну сортированную картотеку.

Разумеется, для такого смешивания нужно в свою очередь задать алгоритм. А именно, если одна из двух стопок пуста, то нужно взять вторую. В противном случае сравнивают первые карточки стопок по признаку сортировки. Ту из карточек, которая должна идти перед другой или одного с ней ранга, вынимают, остаток стопки смешивают с другой стопкой и перед получившейся в результате смешивания стопкой кладется вынутая карточка.

Этот пример демонстрирует иерархическую структуру: алгоритм сортировки основан на алгоритме смешивания.

В данном случае количество элементарных тактов обработки зависит от размера картотеки.

5. Алгоритм вычисления значения дроби (а + b )/(а — b ).

Сначала вычисляем (используя алгоритмы сложения и вычитания) значения выражений а + b и а — b (все равно, последовательно или одновременно, поскольку ситуация здесь совместная), а потом образуем частное от деления полученных результатов (используя алгоритм деления).

В случае общих формул обнаруживается как иерархическое строение, так и совместность.

В данном случае количество элементарных тактов обработки бесконечно.

6. Алгоритм, распознающий, можно ли получить последовательность знаков а из последовательности знаков b посредством вычёркивания некоторых знаков.

7. Алгоритм вычисления числа е (т. е. вычисления последовательности дробей — приближений для е).

Основание натуральных логарифмов е иррационально, поэтому его можно определить только с помощью бесконечной последовательности рациональных чисел, всё лучше приближающих е. По Ламберту (1766 г.) такую последовательность можно получить следующим образом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *