что такое рекуперация энергии торможения
Система рекуперативного торможения — что это?
Это вид электрического торможения, при котором электрическая энергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.
Устройство системы рекуперативного торможения в электромобиле
Суть в том, что электродвигатель использует динамику автомобиля для восстановления энергии, которая в противном случае терялась бы на тормозных дисках при нагревании. Этот метод торможения отличается от обычного торможения, где избыточная кинетическая энергия преобразуется в нежелательную и приводит к потере тепла за счет трения в тормозах. Помимо улучшения общих характеристик автомобиля,
рекуперативный тормоз может значительно продлить срок службы всей тормозной системы, поскольку ее части не потребляют энергию слишком быстро. При этом режим рекуперативного торможения имеет в работе и свои недостатки.
Volvo про систему рекуперативного торможения:
Применение системы рекуперации кинетической энергии обеспечивает снижение расхода топлива на 20% и сокращение вредных выбросов.
Принцип электрической системы рекуперативного торможения
ТЭД (тяговые электродвигатели) транспортного средства (жд-состава или машины) выключаются и напрямую отсоединяются от электропитания, после чего переходят в генераторный режим. Другими словами они самостоятельно вырабатывают электрическую энергию. Далее создается тормозной момент, который приводит к уменьшению скорости — рекуперация электродвигателя.
В чем причина появления тормозного момента в автомобиле? Она заключается с базовых понятиях электродинамики: во время вращения ротора в его механизме обмотки и в обмотке статора зарождаются токи противоположной направленности — при этом взаимное влияние данных токов приводит к работе остановке ротора, а именно к его торможению. При этом на создание электрической энергии уходит оставленная автомобилем кинетическая энергия, а после того как эта энергия закончилась начинается снижение скорости автомобиля.
Система рекуперативного торможения
Еще один пример — лифт. Это устройство работает путем преобразования электричества в потенциальную энергию, накопленную в поднимаемой нагрузке.
Энергия потребляется двигателем, когда сила тяги лифта преодолевает силу тяжести, действующую на поднимающуюся кабину, которая тяжелее, чем опущенный противовес. Также энергия потребляется, если привод подъема преодолевает силу гравитации, действующую на поднимаемый противовес, который весит больше, чем кабина, опускаемая вниз.
Чтобы сделать реализацию системы рекуперации энергии выгодной, ее стоимость должна быть ниже стоимости энергии, которая может быть возвращена в сеть. Этот метод внедряется в приводах лифтов, кранов, подъемников, шпинделей и станков, которые представляют высокую инерционную нагрузку.
Неэлектрические способы рекуперативного торможения
Режим рекуперации возможен и на простых машинах с мотором внутреннего сгорания. Как говорилось выше по тексту, один из самых простых принципов сводится к запасанию энергии автомобиля во вращающемся маховом колесе, с применением данной энергии для разгона. Такая система довольно трудна в ее реализации на практике, а ее применение не дает почти никаких плюсов.
Рекуперативное торможение: недостатки
В основном недостатки имеет применение рекуперативного торможения на освоенных электровозах (электропоезда, поезда метро). Рекуперация применяется в основном для подтормаживания на спусках, что для таких типов транспорта на сегодняшний день неприемлемо.
Рекуперация или преобразование кинетической энергии торможения
С момента выхода в свет Toyota Prius стукнуло уже за 20 лет, и с тех пор концепция рекуперативного(регенеративного) торможения стала достаточно известной, как метод повышения дальности пробега в гибридных и электрических транспортных средствах. Но знаете ли вы, что применение не ограничивается EV автомобилями? В наши дни вы можете найти ее во всем, в том числе велосипедах, скейтбордах и самокатах.
(демонстрация системы рекуперации энергии в bmw)
Давайте же разберемся, как работает эта технология, насколько она продуктивна в различных средствах передвижения и разумно ли везде ее устанавливать.
Что такое рекуперативное торможение
Движущиеся объекты обладают кинетической энергией, а когда применяется тормоз для замедления, всей этой мощи необходимо куда-то идти.
Вернемся немного в прошлое, давние времена эры неандертальцев или просто машин с ДВС. В таких автомобилях тормоза основаны исключительно на трении, поэтому при замедлении вся энергия превращается в тепло, а значит уходит в никуда, просто теряется в окружающей среде.
Но мы все же эволюционировали и нашли пути получше. Регенеративное торможение использует мотор электромобиля в качестве генератора для преобразования основной доли кинетической энергии, теряемой при замедлении, назад в батарею. В следующий раз, когда машина ускоряется, она расходует часть энергии, ранее сохраненную от рекуперативного торможения.
(Регенеративная система bmw i3)
Важно понять, что регенеративное торможение не является магическим увеличителем диапазона пробега электромобилей. Оно не делает машины более эффективными как таковые, а просто делает их менее неэффективными. В принципе, самым лучшим вариантом езды будет разгон до постоянной скорости, а затем никогда не касаться педали тормоза. Поскольку чтобы замедлиться, а потом снова вернуться к прежней скорости, потребуются лишние затраты сил, то вы получите куда больший диапазон хода, в первую очередь просто не замедляясь.
Насколько хорошо рекуперативное торможение
Чтобы правильно оценить данную технологию, нам нужно посмотреть на два разных параметра: коэффициент полезного действия(КПД) и эффективность. Несмотря на кажущееся сходство, они совершенно разные. КПД говорит о том, с каким успехом захватывается «потерянная» мощность торможения. Все превратилось в тепло или удалось перевести кинетический потенциал в нужное русло? С другой стороны, эффективность относится к тому, как сильно влияет регенеративное торможение на длину пути. Значительно ли увеличится ваш диапазон, или вы даже не заметите большой разницы?
Никакая машина не способна достичь коэффициента полезного действия в 100% (без нарушения законов физики), так как любая передача энергии неизбежно повлечет за собой потерю в форме тепла, света, шума и т. д. КПД процесса зависит от многих факторов, таких как двигатель, батарея и контроллер, но часто значение оценивается в районе 60-70%. По словам Tesla, их технология обычно теряет 10-20% кинетического потенциала при попытке его захватить, а затем еще 10-20% при преобразовании отложенных запасов обратно в ускорение. Это довольно стандартные числа для основной массы электрических транспортных средств, включая машины, грузовики, велосипеды, самокаты и т. д.
Поэтому рассмотрение лишь КПД системы мало что значит. Что должно нас больше заинтересовать, так это эффективность рекуперативного торможения.
Эффективность
Как вы, наверное, уже догадались, показатель значительно варьируется в зависимости от факторов, включая условия движения, местность и размер транспортного средства.
Немалое влияние оказывают условия вождения. Вы увидите значительно лучшую отдачу в городе, где приходится многократно сбрасывать скорость на светофорах или в пробках, чем на шоссе. Ландшафт также играет весомую роль. Подъем в гору не дает вам много шансов на остановку, а вот при спуске для безопасности часто нужно притормаживать, что позволит преобразовать больший объем кинетических запасов. На длинных склонах рекуперативная система может применяться почти без остановок, чтобы регулировать скорость, тем самым заряжая аккумулятор в течении продолжительного промежутка.
Размер транспортного средства может быть самым значительным фактором для данного показателя по той простой причине, что более тяжелые тела содержат в себе гораздо больший импульс и кинетическую энергию. Подобно тому, как большой маховик является более эффективным, четырехколесный автомобиль имеет куда больше кинетической энергии при движении, чем мотоцикл или самокат.
Эффективность системы регенерации в автомобилях
Данные для сравнения могут быть несколько сложными. Машины Tesla выдают мощность рекуперативного торможения в 60 кВт при жесткой остановке, но это не отвечает на более интересный вопрос. Мы хотим знать, сколько энергии мы регенерируем во время поездки, а не насколько сильны наши тормоза каждый раз, когда мы месим педаль.
К счастью, ряд водителей Tesla смогли посчитать возврат энергии, используя различные приложения для отслеживания данных. Владельцы Model S сообщили о возмещении около 32% от общего потребления энергии в момент подъема, а затем спуска на холмистой местности. Таким образом, при таком коэффициенте ход увеличивается со 100 до 132 км. Другой собственник рассказал о регенерации 28% энергии (форум на датском языке). Остальные же пишут, что во время обычных поездок возвращается в среднем 15-20% от общего потребления.
Другие автопроизводители также использую данную систему в своих машинах. Например Audi говорит, что технология рекуперативного торможения, установленная в Audi Q7 позволит сэкономить до 3% топлива. Но если брать только электромобили, то компания обещает увеличение длины пути на 30% в их будущей модели Audi e-Tron.
Эффективность рекуперативного торможения в велосипедах, самокатах, скейтбордах и других персональных EV
Для небольших электрических транспортных средств цифры не столь оптимистичны. На многих велосипедах с функцией рекуперативного торможения средним показателем является 4-5% регенерации, максимум 8% в холмистых районах. Другие персональные электромобили, включая самокаты и скейтборды, имеют схожие результаты.
Как мы писали выше, столь небольшие цифры во многом связаны с меньшим весом данных средств. У них просто нет большого импульса и, следовательно, они имеют меньшую кинетическую энергию для преобразования обратно аккумулятор.
А это вообще важно, насколько хорошо работают рекуперативные тормоза?
В индустрии электрических велосипедов регенеративное торможение иногда может использоваться скорее как маркетинговый инструмент, чем как целесообразное нововведение. Поскольку технология, как правило, возможна только в электрических байках с более крупными безредукторными двигателями, то производители таких велосипедов будут обязательно использовать столь эффективную разработку в своих моделях. В то же время компании, выпускающие байки со среднеразмерными приводами и другими редукторными моторами, которые не приспособлены к регенеративному торможению, относят технологию в разряд неэффективных и просто не ставят.
Истина заключается в том, что для небольших и персональных транспортных средств рекуперация не так эффективна, как в крупных электромобилях, однако эта функция все равно имеет множество преимуществ.
Одним из самых весомых плюсов разработки можно назвать применение в качестве еще одной замедляющей силы для небольших персональных EV. К примеру, электрический самокат Xiaomi M365 для переднего моторного колеса использует только остановку регенерацией, в то время как для заднего колеса применяется традиционный дисковый тормоз. Это означает, что самокат имеет два независимых элемента замедления хода с одним рычагом управления для их активации, что снижает стоимость, вес и сложность сборки.
Еще одним преимуществом регенеративного торможения является продление срока службы обычным тормозным деталям, таким как кабели и тормозные колодки. Постоянное обслуживание и замена данных частей раздражает, а если учесть, что электрические велосипеды и самокаты путешествуют намного дальше и быстрее, чем их не электрические братья, то детали изнашиваются намного раньше.
В конце концов, регенеративное торможение никогда не будет столь полезным в небольших средствах передвижения, как в крупных, просто из-за законов физики. Поэтому отсутствие технологии на электрических велосипедах и других малых EV для личного пользования не есть что-то ужасное. Однако преимущества использования этой разработки, без учета простого перехвата мощностей, нельзя игнорировать. И эй, вы будете получать бесплатный 5%-ный рост диапазона каждый день!
Тормозить и запасать: системы рекуперации в современных машинах
Любое торможение штатной тормозной системой – это растраченная на нагрев воздуха энергия. А объем этих «трат» прекрасно известен всем городским водителям. Разница в расходе топлива при движении по городу и по загородной трассе без остановок составляет в среднем раза полтора, а то и больше. Предотвратить напрасные потери пытались давно, но основная проблема – необратимость ДВС – всячески этому препятствует.
Доказывать необходимость рекуперативного торможения, то есть такого, при котором энергия машины снова аккумулируется, чтобы быть потом использованной для разгона, никому было не нужно. Эффективность схемы еще с 60-х годов проверена на железной дороге. Но там используются электровозы, и энергия сразу возвращается в сеть. Машинам такой способ не очень подходит ввиду отсутствия на большинстве из них электромоторов…
А поскольку машины ездят не по рельсам, то и места торможения и разгона тоже не очень-то поддаются прогнозированию. Поэтому способ, используемый на некоторых станциях метрополитена, – расположение точек остановки на возвышенностях, что позволяет разгоняться за счет запаса потенциальной энергии и замедляться за счет подъема, – тоже не востребован. Разве что места остановок автобусов традиционно стараются располагать на горках.
Маховик в вакууме
Исторически первой системой рекуперации для машин с ДВС стала система с механическим накоплением энергии во вращающемся маховике. Подобные системы применялись в основном на строительной технике, где крупные вращающиеся части использовались как накопитель энергии, а передача мощности шла через гидравлические или электросистемы.
Но область применения такого рода технологий оставалась узкой – в первую очередь это были большие экскаваторы и краны, часто портовые. Сделать систему более компактной и установить на легковой автомобиль просто никому не приходило в голову, любой способ реализации упирался в низкую стоимость энергии и высокую цену устройства.
При цене нефти менее 4 долларов за баррель внедрять нечто подобное на транспорте никому не приходило в голову, и даже после первых нефтяных кризисов запас по модернизации ДВС с лихвой перекрывал потребности в экономии топлива. Компания Volvo даже испытывала систему на модели 260 в 1980 году, но мощность порядка 10 киловатт со стальным маховиком не оправдали ожиданий, и программа была свернута.
Скачок технологий в 80-е годы позволил создать более эффективные системы накопления энергии на маховике, устранив основную проблему – вероятность взрывного разрушения маховика. Решили проблему просто: сделали маховик из нитей, которые при разрушении просто его тормозили. А помещение его в вакуумный контейнер и использование газовых подшипников позволило запасать энергию на весьма приличный срок, до нескольких дней, хотя большинство таких систем рассчитаны на короткий цикл работы, от поступления энергии на маховик до ее расходования проходит несколько минут или даже секунд.
Так работает, например, гоночная система KERS в Формуле-1. Есть и практические примеры ее реализации на условно серийных машинах, например на Porsche и Ferrari. Но на практике, скорее всего, распространения такая система не получит. Наряду с такими достоинствами, как очень высокая емкость и большая мощность накопления, в числе недостатков останутся и гироскопический эффект, и довольно высокие потери как в приводе, так и в самой подвеске маховика. Как итог – область применения этой технологии так и осталась узкоспецифичной, и пока перспектив к изменению ситуации не видно, развитие чисто электрических методов накопления энергии пока идет лучше, а выдающаяся удельная мощность маховиков-накопителей пока не пригодилась.
Потенциальное преимущество в надежности системы тоже вряд ли будет востребовано, надежность и простота сейчас не в почете. Единственным действительно перспективным и массовым направлением для данной технологии остаются автобусы. Например, Optare Solo с маховичным накопителем FlyBus или развозные грузовики и мусоровозы, делающие остановки через каждые несколько сотен метров. Система FlyBus или FlyBrid в версии «для всех» сделана инжиниринговой компанией Rikardo в сотрудничестве с компанией Torotrak, разработчиком тороидальных вариаторов большой мощности.
И тут снова на горизонте появляется шведская компания. В версии, которую использовали на Volvo S60 в 2011 году, мощность системы составила 80 киловатт, масса – 60 килограммов, а обороты маховика – порядка 60 тысяч оборотов в минуту. Судя по этим показателям, вполне возможен рост мощности системы до «спортивных» величин, ведь обороты роторов могут быть даже выше 100 тысяч в минуту, но опять же, судя по отсутствию гибрида в модельной гамме компании, эксперименты с легковыми машинами сочли неудачными.
Жидкость и газ под давлением
Несколько перспективнее выглядит система пневмогидравлической рекуперации, наиболее известной у нас как Peugeot Hybrid Air. Она является хорошо отработанной схемой, хотя реально существующие с ней машины не так уж широко известны. Это в первую очередь… мусоровозы.
Десятки машин с системой Bosch и Eaton уже более десяти лет эксплуатируются в США, и их гибридный привод проявил себя как надежный и недорогой. Суть работы такой установки заключается в возможностях гидромотора, который при торможении закачивает рабочую жидкость в большой гидроаккумулятор – трубу со сжатым газом. При разгоне машины газ вытесняет жидкость, жидкость крутит тот же гидромотор и помогает экономить топливо. В системе нет дорогих аккумуляторов, и ресурс ее очень велик. Мощность гидромоторов тоже велика, а стоимость, наоборот, крайне низкая.
Одна загвоздка: гидроаккумулятор имеет большие габариты и массу, и реально его энергии хватает на один-два цикла разгона и торможения, пробег без включения ДВС составляет всего пару километров для легковой машины и сотни метров для грузовика. При использовании на автобусах или мусоровозах подобная система позволяет полностью отказаться от использования традиционных тормозных механизмов, гидромотор может замедлить машину вплоть до полной остановки. В этом пневмогидравлический рекуператор даже превосходит электрические системы, те при малой скорости вращения колес уже не эффективны.
Дополнительным плюсом является возможность запасти энергию надолго, на часы и дни. В отличие от маховиков, которые уже через десятки минут теряют солидную часть запасенной мощности. К сожалению, масштабные планы компании Peugeot были прохладно восприняты новыми акционерами из китайской Dongfeng, а также партнерами по разработке системы из Ford. Но судя по новостям, именно китайские грузовики Dongfeng могут оказаться следующими массовыми носителями этой технологии.
Электроторможение с рекуперацией
Главным конкурентом этих безусловно интересных, но обладающих множеством ограничений схем выступает уже классическая электрическая схема с электромотором, аккумуляторами или суперконденсаторами.
Обычное электрическое торможение и рекуперация хороши уже тем, что используются на железной дороге около 60 лет и отработаны до мелочей. Все конструктивные схемы с синхронными, асинхронными и коллекторными двигателями давно известны и рассчитаны. Энергия передается обратно в питающую сеть, запасается в аккумуляторы или суперконденсаторы и может быть использована через длительное время.
Основная беда электрических тормозов в том, что они плохо сочетаются с ДВС, и для эффективного использования электроэнергии пришлось совместить обычный двигатель внутреннего сгорания и всю атрибутику электромобиля – аккумуляторы и тяговый электродвигатель – в одном механизме. Получившиеся гибриды обычно так и называют просто «гибридами». И несмотря на сложность и высокую массу такой схемы, в данный момент она является единственной серийно использующейся в легковом автомобилестроении и уже весьма популярной.
Гибриды на данный момент оказываются самым перспективным направлением развития автомобилей с точки зрения снижения расхода топлива, а прогресс в создании аккумуляторных батарей и развитие так называемых «подзаряжаемых гибридов», по сути являющихся промежуточным звеном между чистыми электромобилями и гибридами, делает их важным элементом в эволюции персонального автотранспорта.
В 1997 году вышла первая серийная Toyota Prius, которая остается на данный момент самой популярной гибридной машиной и законодателем мод в своем классе. В ее схеме приняли решение использовать электромоторы малой мощности и недорогую никель-металлгидридную аккумуляторную батарею также малой мощности, а для компенсации этих недостатков наделили машину очень сложной трансмиссией со множеством режимов работы ДВС, электродвигателя и генератора. Успех этой схемы сильно повлиял на развитие подобных технологий у других производителей. Сейчас число моделей машин с гибридным приводом перевалило за два десятка.
Рекуперативное торможение современных автомобилей
Смотрите принцип работы и устройство системы рекуперативного торможения. Наведен принцип работы, характеристики, устройство механизма и другие подробности системы. В конце статьи видео-обзор принцип работы рекуперативного торможения. Смотрите принцип работы и устройство системы рекуперативного торможения. Наведен принцип работы, характеристики, устройство механизма и другие подробности системы. В конце статьи видео-обзор принцип работы рекуперативного торможения.
Система рекуперативного торможения или как чаще называют рекуперативное торможение – с латыни обозначает обратное получение или возращение. Если не усугубляться, то это вид электрического торможение, который вырабатывает электроэнергию за счет двигателей генераторов в момент торможения или произвольного движения транспортного средства. Данные механизм не обязательно устанавливать на автомобили, его можно встретить на электрических скутерах или велосипедах.
Что такое рекуперативная система торможения
С небольшого предыдущего описания становится понятно, что система рекуперативного торможения относится к разряду электрической части и многим связана с кинетической энергией. Простыми словами, в момент торможения транспортного средства или движения, без нагрузки на двигатель происходит трата энергии, которая негде ранее не применялась. Как правило, такая кинетическая энергия перерабатывается в тепловую энергию и в дальнейшем рассеется.
Основой для системы рекуперативного торможения используется электродвигатель, который вмонтирован в трансмиссию транспортного средства. В момент торможения электродвигатель срабатывает в режиме генератора, тем самым начиная вырабатывать электроэнергию. Если объяснить по-простому, система рекуперативного торможения – специальным механизм, который может вырабатывать электроэнергию в момент торможения или передвижения транспорта «накатом». Далее полученная энергия накапливается в батареях или же заряжает аккумулятор и хранится до необходимого момента.
Чаще всего таким моментом может быть момент старта автомобиля на светофоре. В такой ситуации система автоматически включает электродвигателя, тем самым уменьшая нагрузку на основной двигатель внутреннего сгорания. В момент старта, электрические двигателя приводят в движение ось автомобиля. Так же это резервный источник автомобиля для езды на короткие дистанции и на малой скорости. По разным данным, запаса заряда такой батареи хватит на 30-50 км пути.
Как правило, рекуперативное торможение устанавливается на гибридные автомобили или современные электрокары. Таким образом, получается, что энергия, полученная в последствии рекуперативного торможения в электрокарах используется для заряда батареи, в неэлектрических (гибридных) такая энергия предназначена для уменьшения силы в момент старта транспорта.
Устройство рекуперативного торможения
Говорить об определенной смехе устройства рекуперативного торможения смысла нет, так как у каждого производителя она своя. Тем более не меньше зависит от марки и устройства самого автомобиля. Проще всего данный механизм реализован на гибридных автомобилях, поэтому возьмем их за пример устройства и в дальнейшем принципа работы.
В основной перечень деталей системы рекуперативного торможения, гибридного автомобиля входит:
В зависимости от модели и доработок инженеров, в перечень так же могут входить дополнительные механизмы, датчики замера скорости и прочее, что способствует стабильной и качественной работе системы.
Электродвигатель, он же генератор работает двунаправлено. В одном случае механизм может генерировать электричество, перерабатывая кинетическую энергию, в другом случае – использовать накопленную энергию с батареи для режима ускорения. Само строение такого электродвигателя может существенно отличатся, аналогично, как и мощность. Передаточный механизм, устанавливаемый на разные узлы, так же играет немало важную роль. Именно за счет него передается усилие между разными составными механизмами системы рекуперативного торможения.
Что касается двигателя внутреннего сгорания, то особых отличий у него нет. В частности это синхронизированная работа с электродвигателем, а так же особенности конструкции для каждого производителя. Аналогично особых отличий по аккумуляторной батарее не будет, с характеристик важна емкость, скорость зарядки и ток. Минимум разницы будет в инверторе, основная его задача преобразовать один вид электричества в другой (чаще всего переменный в постоянный или с 12V на 45V).
Неотъемлемой деталью системы рекуперативного торможения считается сцепление, благодаря ему, блок управления может подключать или выключать электродвигатель генератор, а так же задавать направление работы механизма (вырабатывать электроэнергию или потреблять из аккумулятора).
Последний и один из самых главных элементов – электронный блок управления. Именно он выполняет основную роль управления всеми элементами механизма, а так же решает когда и в каком направлении включать генератор рекуперативной системы. Помимо основных функций по управлению системой рекуперации тормозов, электронный блок управления ведет контроль:
Как видим, устройство такого механизма не сложное, каждый из элементов выполняет поставленную задачу и несет важность в цепочке системы. Таким образом, не только уменьшается нагрузка на основной двигатель, но и увеличивается экономия топлива.
Как работает рекуперативное торможение
Рассмотрев устройство системы рекуперативного торможения, а так же за что отвечает определенная деталь, можно рассмотреть принцип работы всего механизма. Как уже говорили, принцип работы механизма двунаправленный, то есть он может, как вырабатывать электричество, так и потреблять.Вся работа механизма рекуперативного торможения начинается из оси автомобиля, как правило, это задняя ось. Электродвигатель, он же генератор может быть включен в трансмиссию или подсоединен к трансмиссии за счет передаточных механизмов. В момент торможения или езды накатом, электродвигатель переходит в режим генератора, тем самым вырабатывая электричество и преобразуя кинетическую энергию автомобиля. Полученное электричество подается на инвертор, он же в свою очередь преобразует (в данном случае может понижать или повышать) электроэнергию и подает на аккумуляторную батарею для накопления.
Не исключено, что в данной цепочке могут быть установлены различные контроллеры, дополнительные преобразователи и другие вспомогательные механизмы, которые способствуют работе рекуперативного торможения. Стоит помнить, что в момент работы генератора (выработки электроэнергии) двигатель внутреннего сгорания отключается от трансмиссии, в отдельных моделях автомобилей система вовсе его может заглушить автоматически, тем самым экономить топливо.
Если рассматривать обратный процесс работы, подачу электричества на электродвигатель, то есть небольшие отличия. В таком случае, срабатывает сцепление, которое преобразует генератор в электродвигатель и тем самым подключает в помощь двигатель внутреннего сгорания. Поданное питание с аккумулятора проходит через инвертор и передается на электродвигатель, благодаря чему упрощается старт автомобиля с места. Такой же принцип работы механизма, когда автомобиль двигается на предельно небольшой скорости и только на электротяге.
Какие бывают виды рекуперативного торможения
Несмотря на то, что система рекуперативного торможения чаще всего устанавливается на гибридные автомобили, специалисты выделяют несколько других видов рекуперации кинетической энергии. Выше наведенный способ рекуперации кинетической энергии – это электрический способ, но так же есть пневматический, механический и гидравлический, которые дают аналогичные результаты.
Из трех последних способов рекуперации, самым распространенным считается механический вариант. У разных авто производителей механизм числится под названием KERS (Kinetic Energy Recovery Systems). Основой для такой разновидности считается маховик, который вращаясь в момент торможения, перерабатывает энергию. В таком механизме маховик расположен на трансмиссии, и, как правило, может разгоняться до 60000 оборотов за минуту. Благодаря таким характеристикам обеспечивается передача мощности в дополнительные 80 л.с. (60 кВт). Зачастую такая накопленная электроэнергия используется для краткого разгона с места или же скоростного рывка в момент обгона.
Примером использования можно считать болиды Formula 1, начиная с 2009 года. Если говорить об автомобилях серийного производства, то данный вариант только планируют внедрять. Как показывает статистика, быстрей всего данную технологию внедрят на автомобилях Volvo. Производитель уже тестирует данную технологию в городском цикле на опытных образцах. По словам производителя Volvo, использование любого их видов рекуперативного торможения помогает сэкономить порядка 20% топлива от основного расхода.
Положительные и негативны стороны рекуперативной системы
С положительных моментов такой системы можно выделить несколько деталей, в частности это увеличение запаса хода и уменьшение нагрузки на двигатель внутреннего сгорания в момент старта. Так же в современных автомобилях инженеры стали внедрять вспомогательные системы Start/Stop и адаптивный круиз-контроль с возможностью полной остановки и движения в пробках.
Что касается негативных моментов рекуперативной системы торможения, то без них не обошлось. Если на малой скорости механизм эффективен и от него есть смысл, то на большой скорости рекуперативное торможение становится бесполезным, так как сила торможения мизерная, заряда аккумуляторной батареи практически нет. Так же с минусов небольшой запас заряда, а значит, проехать длинную дистанцию гибридный автомобиль не сможет.
Видео-обзор принцип работы рекуперативного торможения: