что такое радиационное облучение
Что такое радиационное облучение
Острое воздействие на здоровье, такое как ожог кожи, может возникнуть, когда доза облучения превышает определенные уровни. Низкие дозы ионизирующего излучения увеличивают риск развития более долгосрочных последствий, таких как рак. Впервые повреждающее действие ионизирующего излучения было описано в 1896, когда у ряда больных, которым делали рентгеновские снимки, а также у врачей, их выполнявших, были обнаружены рентгеновские дерматиты. Такая же картина поражения кожных покровов была выявлена после воздействия радия. Пьер Кюри, желая выяснить действие излучения радия на кожу, облучил собственную руку!
Воздействие ионизирующего излучения на организм человека может быть внутренним (когда радионуклиды попадают во внутренние среды организма) и внешним (когда радиоактивные частицы оседает на коже или одежде). Воздействие может также произойти в результате облучения от внешнего источника (например, от рентгеновского оборудования).
Радиационное повреждение тканей зависит от полученной дозы облучения. Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред и выражается в Зивертах (Зв). 1 Зв это очень существенная величина (пороговая доза острой лучевой болезни), поэтому обычно применяются меньшие ее единицы, такие как миллизиврет (мЗв) и микрозиверт (мкЗв). Соответственно, 1 Зв = 1000 мЗв, а 1 мЗв = 1000 мкЗв. Скажем, 10 мкЗв это средняя доза облучения космической радиации, которую получит пассажир авиалайнера в течение 3 часов полета. А 10 мЗв – доза от одной компьютерной томографии.
Если доза является низкой или воздействует длительный период времени, риск развития различных патологий существенно снижается, поскольку увеличивается вероятность восстановления поврежденных тканей. Тем не менее, долгосрочные эффекты, такие как рак, могут проявиться даже спустя десятилетия. Этот риск выше у детей и подростков, так как они намного более чувствительны к воздействию радиации.
Радиационная безопасность населения достигается путем ограничения воздействия от всех основных видов облучения:
— техногенные источники при их нормальной эксплуатации (различные производственные установки);
— техногенные источники в результате радиационной аварии;
— природные источники;
— медицинские источники (рентгеновские аппараты).
Годовая доза облучения населения не должна превышать основные пределы доз, указанных в Нормах радиационной безопасности (НРБ-99/2009. СанПиН 2.6.1.2523-09). В настоящий момент эта величина равна 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в один год. Здесь учитывается радиологическая нагрузка на организм от потребляемых продуктов, атмосферного воздуха, условий проживания, а так же медицинские диагностические манипуляции с использованием ионизирующего излучения.
В целом, в условиях повседневности радиация не представляет для нас серьезной опасности. В бытовых условиях человек редко может столкнуться с опасными источниками радиации, а если такое происходит, то, как правило, в силу невежества или халатности работников предприятий, где используются источники ионизирующего излучения.
Помните, что, несмотря на легкодоступные диагностические сервисы, следует проводить радиологические исследования (КТ, рентген, флюорография) ТОЛЬКО по назначению врача.
Вопреки распространенному мнению, нет никаких научных доказательств способности алкоголя выводить радиацию из организма. То же самое касается препаратов йода – его применение оправдано только в случае радиационной аварии при нахождении пострадавших в 30 км зоне ЧС для защиты щитовидный железы от попадания радиоактивного йода. Однако йодопротекторы используются строго по инструкции и при вышеуказанных условиях. Вне зоны поражения пить таблетки или раствор йода, мазать шею может быть опасно!
Важным защитным приемом для укрепления организма при неблагоприятном радиологическом фоне (что актуально для некоторых биогеохимических провинций) является организация оптимального питания. Основными принципами построения рационов питания на загрязненной радиоактивными изотопами территории являются увеличение количества белков до 15% калорийности рациона и повышение в рационе на 20-50% по сравнению с рекомендуемыми возрастными нормами содержания витаминов-антиоксидантов: Е, С, А, биофлавоноидов, а пищевых волокон на 30%. Необходимо также обеспечить повышенное поступление минеральных веществ: кальция, калия, йода, магния, железа, селена. Для достижения этих задач необходимо достаточное содержание в рационе нежирных сортов мяса, птицы, рыбы, молочных продуктов, широкое использование свежих овощей, фруктов и зелени, добытых и выращенных в экологически благоприятных районах, так как сами по себе продукты накапливают радионуклиды, если выращиваются на загрязненной территории.
В своей жизни мы постоянно сталкиваемся с влиянием ионизирующего излучения, но волноваться не стоит — вред здоровью от «повседневных» природных источников значительно меньше вреда от беспокойства по этому поводу.
Биологическое действие ионизирующего излучения.
Тема: Биологическое действие ионизирующего излучения.
Ионизирующее излучение было открыто в 1895 году Вильгельмом Конрадом Рентгеном в Германии, который зафиксировал неизвестные ранее лучи, которые проникали сквозь тело человека. Эти лучи, однако, не были связаны с естественной радиоактивностью. Рентген получил их в электронной лампе, разгоняя поток электронов от одного электрода к другому. Это открытие вдохновило других учёных искать таинственные лучи, и в 1896 году было сделано следующее открытие: французский физик Анри Беккерель изучал минеральный образец урана и обнаружил, что он испускал лучи того же самого типа, что и лучи Рентгена. Беккерель обнаружил явление естественной радиоактивности.
Теперь поиск химических элементов, испускающих радиацию, стал более целенаправленным. В 1898 году учёные Мария и Пьер Кюри выделили два радиоактивных элемента: полоний и радий. Радий, который является высоко радиоактивным химическим элементом, скоро оказался полезным в медицине. А в то время об опасности вредного воздействия излучения на организм не было известно.
Многие из первопроходцев в области медицины и научных исследований были облучены, и в течение первых десятилетий прошлого столетия некоторые из них погибли от лучевой болезни.
В 1928 году на Международном Конгрессе по радиологии в Стокгольме была основана международная организация – сегодня известная, как Международная Комиссия по Радиационной Защите (МКРЗ). МКРЗ собирает информацию о воздействии радиации на здоровье и выпускает рекомендации по радиационной защите.
Воздействие ионизирующего излучения на вещество.
Любое вещество, поглощая энергию солнечного излучения, нагревается. Воздействие солнечного излучения на биологическую ткань приводит к биологическим эффектам (например, загар на теле человека). Так же и ионизирующее излучение воздействует различным образом на живую и неживую материю.
Тело человека поглощает энергию и находится под биологическим воздействием ионизирующего излучения. Чтобы понять, как ионизирующее излучение воздействует на нашу биологическую ткань, исследуем процесс на уровне элементов, составляющих ткань, то есть на уровне клетки.
Клетка и молекула ДНК живого организма.
Генетический материал человека состоит из 46 хромосом, составляющих 23 пары. Внутри хромосом находится молекула ДНК, которая является сложнейшей макро-молекулой. Молекула ДНК состоит их двух цепочек в форме двойной спирали, растянув которые можно получить нить длинной около 1,5 метра
Четыре базы, названные А, С, G, Т, связывают обе спирали вместе очень оригинальным способом. А в одной спирали всегда соединяется с Т в другой спирали, С всегда соединяется с G. В случае, если одна спираль повреждена, другая служит моделью для восстановления.
Деление клетки в организме.
Клетки могут разрушиться или быть повреждены вследствие каких-либо причин. Чтобы позволить тканям тела и органам поддерживать свои функции, клетка делится с образованием двух нормальных, здоровых дочерних клеток, идентичной материнской клетке, которые заменяют повреждённую клетку.
Когда клетка делится, обе цепочки каждой молекулы ДНК разделяются, каждая затем становится частью новой спирали ДНК и в результате – мы имеем две новые клетки.
Полный процесс деления занимает от двух минут до двух часов – это очень чувствительный период в жизни клетки. Повреждение ДНК во время этого процесса может привести к различным последствиям. Однако, способность клетки к восстановлению исправит большинство дефектов прежде, чем закончится образование новой клетки.
Повреждение ДНК происходит случайно, или в результате воздействия на неё ядовитых веществ, вирусов, ультрафиолетового или ионизирующего излучения.
Воздействии ионизирующего излучения на ДНК.
Некоторые клетки являются наиболее чувствительными к ионизирующему излучению, но все они чувствительны в период деления. Это означает, что растущая ткань или ткань, которая имеет высокую скорость деления клеток, более чувствительна к ионизирующему излучению, чем другие ткани. Вот почему дети, а особенно плод беременной женщины более чувствительны к излучению, чем взрослые. По той же причине клетки раковой опухоли более чувствительны к излучению, чем здоровая ткань, так как раковая опухоль растёт очень быстро за счёт частого деления раковых клеток. Эта особенность опухоли используется для лечения рака при помощи облучения раковых клеток.
Прямые и косвенные эффекты облучения.
Ионизирующее излучение может воздействовать на ДНК непосредственно или косвенно. Наши клетки состоят на 65-75% из воды. Поэтому, наиболее вероятная молекула, которая подвергается воздействию ионизирующего излучения молекула воды. Излучение ионизирует молекулы воды, приводя к образованию различных химических активных веществ. Эти вещества, которые называются свободными радикалами, могут воздействовать на молекулу ДНК. Прямое воздействие имеет менее важное значение, поскольку оно менее вероятно. Чтобы вызвать прямой эффект, ионизирующее излучение должно разрушить молекулу ДНК.
Бета- и гамма-излучения вызывают низкую плотность ионизации, поэтому вероятность повреждения обеих цепочек спирали ДНК относительно небольшая. Обычно ущерб наносится только одной цепочке или одной базе, и это повреждение может быть восстановлено относительно эффективными функциями восстановления организма. Альфа-излучение вызывает высокую плотность ионизации. При этом возникает большая вероятность разрушения обеих цепочек ДНК. Поскольку генетическая модель клетки, таким образом, разрушается, вероятна ошибка в процессе восстановления клетки, что может даже привести к гибели клетки.
Действие радиации на организм человека.
Существуют различия между последствиями радиационного воздействия, которые возникают вскоре после облучения – острые последствия – и последствиями, которые будут наблюдаться намного позже – хронические последствия.
Острые последствия облучения.
Острые последствия обусловлены большой дозой облучения тела или органа человека за короткий срок, и в большинстве случаев приводят к гибели клеток организма. При превышении порогового значения повреждения неизбежны, и они увеличиваются с увеличением дозы. Индивидуальное пороговое значение может быть разным, и это может изменить степень повреждения каждого индивидуума. Острая лучевая болезнь и повреждение плода у беременных – примеры острых повреждений организма в результате воздействия ионизирующего излучения.
Острая лучевая болезнь.
Клетки, которые являются наиболее чувствительными к воздействию радиации – клетки с высокой частотой деления. Поэтому в первую очередь ионизирующее излучение будет воздействовать на кроветворные органы (красный костный мозг), особенно чувствительные к ионизирующему излучению. Кратковременная доза облучения на всё тело более, чем 1000 мЗв (100 бэр) приведёт к острой лучевой болезни. Множество клеток и, следовательно, большие части живой ткани будут повреждены или погибнут. Функции облучённого органа будут нарушены. Последствия интенсивного облучения организма в дозах, превышающих пороговое значение, иногда проявляются уже через час или два: человек начнёт чувствовать слабость и начнётся рвота. Эти признаки обычно уменьшаются после двух дней, и в течение двух-трёх недель – самочувствие человека улучшается. Однако, за это время число белых кровяных клеток существенно уменьшится, уменьшится и сопротивление организма заразным болезням. Это может привести к воспалительным болезням с высокой температурой, диарее и кровотечениям. Если человек поправляется от острого облучения, то останется риск хронических последствий облучения.
Незамедлительное и целенаправленное квалифицированное лечение увеличивает процент выживания.
Генетические нарушения в организме.
Различают следующие виды воздействия на клетки организма вследствие облучения в зависимости от поглощённой дозы облучения и радиоустойчивости клетки:
— Без изменений – облучение не влияет на клетку
— Клетка восстанавливает молекулу ДНК
Молекула ДНК получает ложную информацию, ведущую к мутации клетки. Мутации не обязательно отрицательные, но они могут также привести к генетическим нарушениям и раковым заболеваниям.
Хронические последствия облучения.
Рак и наследственные болезни расцениваются как хронические последствия действия радиационного облучения.
Пороговое значение дозы облучения для хронических последствий отсутствует. Чем больше доза облучения, тем выше вероятность заболевания.
Клетка, у которой генетический код был изменён, может развиться в раковую клетку. Рак – болезнь, вызванная бесконтрольным делением мутирующих клеток. Примерно 20% всех смертных случаев в мире – от раковых болезней. Признаки лейкемии, вызванной ионизирующим излучением, обнаруживаются через 3-7 лет после облучения. Другие виды раковых болезней развиваются более длительное время.
Наследственные изменения в потомстве.
ДНК в половых клетках, также могут быть повреждены ионизирующим излучением. Эти повреждения могут быть переданы следующему поколению. Но для того, чтобы это случилось, дефект клеток должен быть унаследован от обоих родителей. Необходимые условия передачи генетических изменений следующему поколению:
— Хромосома в половой клетке повреждена.
— Повреждены одинаковые хромосомы в клетках отца и матери.
— Эмбрион должен развиться. Шансы эмбриона выжить уменьшаются, если клетки повреждены.
Эти условия объясняют, почему наследственные последствия нанесения вреда организму настолько трудно оценить. Вероятность каждого условия мала. Вероятность того, что все три условия выполняются одновременно – чрезвычайно мала.
«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».
Настоящий материал – обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.
Опасность РАДИАЦИИ реальная и мнимая
«Один из первых открытых природных радиоактивных элементов был назван «радием»
— в переводе с латинского-испускающий лучи, излучающий».
Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.
Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.
Ионизирующее излучение
Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.
Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.
Источники радиации
Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.
Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.
Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).
ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА
Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.
Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.
Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.
Заряженные частицы.
Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).
Электрические взаимодействия.
За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.
Физико-химические изменения.
И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как «свободные радикалы».
Химические изменения.
В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.
Биологические эффекты.
Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.
ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ
Представляют собой число распадов в единицу времени.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.
Представляют собой дозу полученную организмом за единицу времени.
Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).
Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.
ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ
Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании «Кварта-Рад»
Допустимый радиационный фон для человека
Радиационное излучение постоянно воздействует на людей – на улице в городе, на работе, в квартире и любом другом помещении. Естественный радиационный фон, который создается солнцем и космическими лучами, безопасен для человеческого здоровья. Но есть ли нормальный уровень радиации для человека в быту, с которым он может жить, не подвергая свой организм фатальным изменениям?
Виды радиационного фона
Ионизирующее излучение (ИИ), взаимодействуя с веществом, становится причиной ионизации атомов и молекул (атом возбуждается и открывается от отдельных электронов из атомных оболочек). Основные виды радиации:
Единицы измерения радиации
Допустимый радиационный фон для человека и нормы радиации измеряются с помощью доз излучения. Это величины, которые применяются, чтобы оценить уровень воздействия ионизирующего излучения на различные вещества, организмы, ткани. Единица измерения зависит от типа дозы:
Существует ли вообще безопасная доза?
Норма радиации – размытое понятие. В 1950 г. скандинавский ученый Рольф Зиверт установил, что у облучения нет порогового уровня – определенного значения, при котором у человека гарантированно не будет наблюдаться заметных или незаметных повреждений.
Любая существующая норма радиации способна теоретически вызывать изменения в организме людей соматические и генетические изменения. Многие из которых не проявляются сразу, а остаются скрытыми в течение длительного временного промежутка. Поэтому сложно говорить о нормах радиации – существуют только допустимые ее пределы.
Допустимые дозы радиации
Российские и международные стандарты предусматривают определенные нормы радиации. Считается, что при воздействии на организм человека они не смогут нанести вреда. Норма радиации в микрорентген в час – 50 (0,5 микрозиверт в час).
При этом также отмечается, что не более 0,2 мкЗв в час (20 микрорентген в час) – это максимально безопасный уровень облучения человеческого организма при условии, что радиационный фон входит в диапазон нормальных показателей, поэтому норму радиации даже в этом случае можно назвать условной. При воздействии в течение нескольких часов считается безопасным излучение на уровне не более 10 микрозиверт в час (1 миллирентген). Кратковременно допускается облучение в несколько миллизивертов в час (например, во время рентгена или флюорографии).
Поглощенная доза
Под понятием «поглощенная доза» определяется величина энергии радиации, которая была передана веществу. Выражена в качестве отношения энергии излучения, которая поглощена в данном объеме, к массе вещества в этом объеме.
Является основной дозиметрической величиной. Согласно международной системе единиц, ее измерение происходит в джоулях на кг (Дж/кг). Называется – «грей» (Гр, Gy). Не способна отразить биологический эффект облучения.
Оценка действия радиации на неживые объекты
Для определения нормы радиации при ее воздействии на неживые объекты используются показатели поглощенной дозы (количество поглощенной энергии веществом). При этом более информативной величиной считается экспозиционная доза, с помощью которой возможно определение степени воздействия на вещество разных типов радиации. Сложно говорить о нормах радиации на неживые объекты.
Оценка действия радиации на живые организмы
Если биологические ткани облучать различными типами радиации, обладающими одной и той же энергией, то последствия для организма будут отличаться. Иными словами, если при поглощении одной нормы радиации последствия будут серьезно разниться при альфа-излучении и гамма-излучении. Поэтому, чтобы оценить воздействие ионизирующего излучения на живые организмы, не хватает понятий экспозиционной и поглощенной дозы, также используется эквивалентная.
Это доза радиации, которая была поглощена живым организмом, помноженная на коэффициент k, который учитывает уровень опасности разных типов радиации. Измерение происходит с использованием Зиверт (Зв).
Нормы радиации согласно СанПин
В соответствии с СанПиНом 2.6.1.2523-09, эффективная доза облучения естественными источниками излучения любых работников, в т. ч. медперсонала, не должна составлять более 5 мЗв в год в производственных условиях (любые типы профессий и производств).
Если говорить о конкретных нормах радиации, то усредненные показатели радиационных факторов в течение 12 месяцев, которые соответствуют при монофактором воздействии дозе в 5 мЗв при длительности рабочего процесса 2000 часов/год, примерной скорости дыхания 1,2 кубометра/час, условии радиоактивного равновесия радионуклидов ториевого и уранового рядов в пыли, составляют:
Данные нормы радиации весьма условны, потому что многое будет зависеть от конкретных производственных условий, специфики сферы деятельности и других факторов.
Смертельная доза
В любых нормах радиации обычно всегда прописывается доза, которая быстро приводит к летальному исходу. Опасность ее получения чаще всего наблюдается при возникновении техногенных аварий, несоблюдении условий хранения радиоактивных отходов (вне зависимости от того, какой тип облучения воздействует на человека).