что такое процессор на айфоне
? Почему iPhone X в два раза быстрее любого смартфона Android
Вряд ли до конца 2017 года на рынке появится хотя бы одно устройство, которое сумеет обойти iPhone 8, iPhone 8 Plus и iPhone X по скорости работы.
Мы решили разобраться, каким это образом у Apple получается делать настолько производительные процессоры, хотя собственных мощностей у нее для этого попросту нет.
A11 — самый производительный чип на мобильном рынке
Процессор A11 построен на двух крупных производительных ядрах и четырех малых энергоэффективных. Его основное отличие от A10 — наличие специального чипа для работы с нейронными сетями.
Именно этот процессор установлен в iPhone 8, iPhone 8 Plus и iPhone X, трех самых быстрых смартфонах на сегодняшний день. Его производительность выше конкурентов-флагманов почти в 2 раза.
Самые быстрые в многоядерном тесте Geekbench 4:
Каждый процессор A11 изготавливается по 10-нанометровому техпроцессу, который гарантирует не только максимальную скорость работы, но и предельную энергоэффективность.
За производство чипов A11 отвечает тайваньская компания TSMC, которая работает по контракту. И у самой Apple нет необходимых мощностей для массового продакшена процессоров.
iPhone X оказался мощнее даже некоторых MacBook Pro
iPhone 8, iPhone 8 Plus, а также iPhone X — первые мобильные устройства, которые преодолели отметку в 10 тыс. баллов в многоядерном тесте Geekbench 4.
И чтобы эти цифры оказались еще более грандиозными, отметим, что 13-дюймовый MacBook Pro 2017 года с двухъядерным процессором Intel Core i5 Kaby Lake набирает около 9 тыс. баллов.
Теоретически A11 быстрее Intel Core i5 Kaby Lake на 10%
Конечно, на практике мобильный процессор, устанавливающийся в смартфоны, вряд ли сможет обскакать полноценный, ведь у них первоначально абсолютно разные задачи.
A11 заточен не только под скорость, но и под энергоэффективность. А решение Intel наоборот — в первую очередь под производительность. Но результаты теста все же показательны.
Почему ни один из соперников не может догнать Apple
Так как тайваньская компания TSMC — контрактный производитель, она не занимается непосредственной разработкой процессоров для Apple. Она отвечает только за массовый выпуск.
Получается, что Apple фактически приносит своему партнеру что-то вроде готовых «клише», на основании которых он и включает в работу свои станки. Времени слить технологию просто нет.
Аналогичная ситуация была и с компанией Samsung, которая выпускала процессоры для смартфонов Apple еще год тому назад. Получалось для конкурента она делала чипы лучше, чем для себя.
Конечно, кроме возможности быстро скопировать технологию для себя или на продажу очень важна работа инженеров, которые получают деньги в Apple не зря.
Но работа инженеров не имела бы никакого смысла без программного обеспечения, поэтому хочется пожать руку разработчикам, которые работают в компании Apple.
В сети уже сегодня есть мысли, что Apple превратила программное обеспечение в аппаратное. Ее устройства работают быстро благодаря не только железу, но и софту.
Да, iOS 11 работает не так хорошо, да и при Джобсе такого точно не было. Но в остальном совместное производство программного и аппаратного обеспечения однозначно дают о себе знать.
А еще очень важно, что Apple разрабатывает процессоры сама, а не покупает их у гигантов рынка вроде Qualcomm. Конкуренты пытаются делать и что-то свое, но от Snapdragon уйти считайте не могут.
Почему же большинство конкурентов не выпускает процессоры самостоятельно или не идет по контрактному пути производства Apple? Здесь нет ничего странного.
И в данном случае мы возвращаемся к пресловутой фрагментации Android-устройств. Их слишком много, и если бы почти у каждого флагмана был не Snapdragon 835, было бы совсем туго.
iPad Pro 2018 окажутся монстрами производительности
В сети уже начали появляться первые данные по поводу процессоров, которые Apple будет использовать в iPad Pro в 2018 году. И это чума, товарищи. Похоже, компанию понесло по ядрам.
Скорее всего, в iPad Pro новых поколений будет установлен процессор A11x Bionic. Он получит целых восемь ядер вместо шести. А еще 7 нм техпроцесса и «водное охлаждение».
Главный вопрос 2018 — как угомонить всю мощь новых iPad Pro
Источники, близкие к TSMC, который останется ответственным за массовое производство процессоров по контрактной схеме, уточняют, что три ядра будут скоростными, а пять экономными.
Скорее всего, вместе с ультраскоростными чипами, iPad Pro 2018 получат также модуль фронтальной камеры TrueDepth, чтобы быть более трендовыми и вообще узнаваемыми.
Какие перспективы у новых мобильных устройств Apple
Конечно, чем выше производительность установленного в современное мобильное устройство процессора, тем вроде как и лучше — особенно учитывая ориентир на энергоэффективность.
Тем не менее, сегодня мне кажется, что новые мощности не заставляют разработчиков делать более качественный софт — даже наоборот.
Новый нонсенс — чем быстрее процессоры, тем меньше внимания к оптимизации
И самый яркий пример в данном случае — дополненная реальность на специальном движке Apple, который появился с выходом iOS 11. Он работает на iPhone 6s и выше. Но тупит на iPhone 7.
Создается ощущение, что разработчикам уже просто влом работать над оптимизацией. Чипы самых последних iPhone тянут, ну и норм. Все еще надеюсь на позитивные сдвиги в iOS-софте в будущем. Все.
Процессоры в мобильных гаджетах — какие бывают и что лучше
Содержание
Содержание
На рынке десктопных процессоров все достаточно понятно — здесь лидер ство делят компании Intel и AMD. Если же говорить о мобильных процессорах, то тут все несколько сложнее. Каждый из брендов предлагает свои модели, причем некоторые из них эксклюзивно стоят только в конкретных гаджетах. Мы расскажем о ведущих производителях мобильных процессоров и рассмотрим их ассортимент.
В чем разница между мобильными и десктопными процессорами?
Если не вдаваться в многочисленные технические особенности, то главным отличием можно назвать архитектуру.
Архитектура — это совокупность принципов построения, общая схема расположения элементов на кристалле и схема взаимодействия ПО с чипом.
В десктопных моделях используется архитектура x86/x64, однако инженерам так и не удалось добиться требуемой энергоэффективности, несмотря на все попытки. Процессоры потребляли слишком много энергии из-за необходимости дополнительных преобразований, поэтому не подходили для мобильной техники. В итоге разработчики предложили использовать новую архитектуру RISC (reduced instruction set computer) вместо существующей CISC (complex instruction set computing).
В CISC-архитектуре каждая команда имеет свой формат и длину, из-за чего процессору требуется больше времени и ресурсов на обработку. В RISC-архитектуре команды имеют не только общую длину, но и формат. Благодаря этому процессоры на RISC более энергоэффективны, быстрее обрабатывают команды и требуют меньшего объема ОЗУ, что делает их практически идеальным кандидатом для мобильной электроники.
Развитием RISC занялась компания ARM Limited, которая представила усовершенствованную архитектуру под названием ARM. Стоит отметить, что эта компания не только создает собственные вариации процессоров, но и предоставляет лицензии на свои разработки. В итоге на базе предоставленных ARM ядер крупные бренды создают авторские топологии и фирменные процессоры, о которых мы и поговорим далее.
Apple
Разрабатывать процессоры с собственной топологией компания Apple начала лишь в 2010 году, презентовав свой первый iPad. Модель процессора A4 построена на ядре ARM Cortex-A8 и стала началом всей линейки, которая продолжается до сегодняшнего дня. Кстати, в смартфонах первого поколения до iPhone 4 в Apple использовали микропроцессоры от Samsung.
С 2010 года Apple выпустили более 15 моделей в линейке, каждая последующая была усовершенствованием предыдущей и, как правило, устанавливалась в новой модели iPhone или iPad.
Модель | Число транзисторов | Число ядер | Техпроцесс | Устройства |
A4 | ? | 1 | 45 нм | iPadi, Phone 4, iPod touch 4G |
A5 | ? | 2 | 45 и 32 нм | iPad 2, iPhone 4S, iPod Touch 5G, iPad Mini. |
A5X | ? | 2 | 45 нм | iPad 3 |
A6 | ? | 2 | 32 нм | iPhone 5, iPhone 5c |
A6X | ? | 2 | 32 нм | iPad 4-generation |
A7 | ≈ 1 млрд | 2 | 28 нм | iPhone 5S, iPad Air, iPad mini, iPad mini 3 |
A8 | ≈ 2 млрд | 2 | 20 нм | iPhone 6 и 6 Plus, iPod touch 6G, iPad mini 4, HomePod |
A8X | ≈ 3 млрд | 3 | 20 нм | iPad Air 2 |
A9 | ≈ 2 млрд | 2 | 14 и 16 нм | iPhone 6S и 6S Plus, iPhone SE, iPad 5 |
A9X | ? | 2 | 16 нм | iPad Pro |
A10 | 3,28 млрд | 4 | 16 нм | iPhone 7 (Plus), iPad 6, iPad 7, iPod Touch 7 |
A10X | ≈ 4 млрд | 6 | 10 нм | iPad Pro (10,5; 12,9) |
A11 | 4,3 млрд | 6 | 10 нм | iPhone 8 (Plus), iPhone X |
A12 | 6,9 млрд | 6 | 7 нм | iPhone XS, iPhone XS Max, iPhone XR |
A12X | ≈ 10 млрд | 8 | 7 нм | iPad Pro (2018) |
A12Z | ≈ 10 млрд | 8 | 7 нм | iPad Pro (2020) |
A13 | 8,5 млрд | 6 | 7 нм | iPhone 11 (все), iPhone SE 2, iPad 9th Gen. |
A14 | 11,8 млрд | 6 | 5 нм | iPad Air (4th Gen), iPhone 12 (все) |
A15 | 13 млрд | 6 | 5 нм | iPad mini (6th Gen). iPhone 13 (все) |
Компания Apple была одной из первых, кто понял все преимущества RISC-архитектуры в мобильном сегменте. В паре с ОС собственной разработки инженерам удавалось выпускать одни из самых мощных моделей, которые на 50–100 % обгоняли по производительности топовые продукты других брендов.
В среднем с каждым новым поколением процессоров Apple удавалось наращивать производительность от 1,3 вплоть до 2 раз.
Более того, в определенных тестах процессоры серии A не уступают в производительности десктопным моделям, показывая схожие или даже лучшие результаты. Мощнейшим прорывом можно назвать Apple M1 — это система на кристалле ARM-архитектуры, которая используется уже не только в iPad Pro, но и в последних MacBook.
За графику в мобильных процессорах до A11 отвечали ускорители от PowerVR, а, начиная с A11, инженеры Apple ставили собственное GPU, но используя лицензированное ПО.
Компанию Apple без преувеличения можно назвать одним из лидер ов в области мобильных процессоров. Многолетний опыт и подгонка «железа» под операционную систему позволяют получать высочайшие результаты. Однако процессоры от Apple устанавливаются исключительно в технику этого бренда.
Qualcomm
Конкуренцию «купертиновцам» составляют инженеры из компании Qualcomm — одной из крупнейших фирм по разработке и исследованию беспроводных средств связи и систем на кристалле. В частности, компания известна процессорами линейки Snapdragon. Производство первых SoC фирма начала в 2007 году, предоставляя процессоры для HTC, Acer, Asus, LG, Huawei и других брендов. В период с 2007 по 2012 годы были созданы четыре поколения моделей S1–S4 по техпроцессу 28 нм и больше.
В поколениях до S4 архитектуру разрабатывали на базе собственных ядер, которые являются модифицированными версиями ARM-Cortex.
С 2013 года компания представила пять основных линеек своих процессоров, нацеленных на разные классы устройств:
Мобильные процессоры Apple лучшие в мире
Было опубликовано 23 октября 2019 года
Обновлено 5 апреля 2020 года
Процессоры Apple являются одни из лучших. Компания уже давно разрабатывает чипы и оставляет большой с задел на будущее. В этом году ситуация с Apple A13 Bionic аналогичная.
Где установлен
Самый новый процессор Apple A13 Bionic, представленный в сентябре пока установлен в свежие iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max.
Что из себя представляет
Apple A13 Bionic как и ранее имеет два высокопроизводительных ядра, которые на 20% быстрее и на 30% менее энергозатратные, чем в Apple A12 и четыре энергоэффективных ядра, а также графический ускоритель, которые используют на 40% меньше энергии и мощнее на 20%, чем в A12.
Новый процессор Apple A13 Bionic также оснащен 6-ю ядрами, два высокопроизводительных ядра, работающие на частоте 2,66 ГГц под названием Lightning и четыре энергоэффективных ядра под названием Thunder.
Snapdragon 855 — главный конкурент чипов Apple A-серии ещё не превзошёл A12 Bionic, а купертиновцы представили A13 Bionic, который тем более самый мощный в мире.
Apple A12 vs Apple A13
Как Apple это удаётся
Процессор включает оптимальный режим
При разработке процессора были изучены самые используемые приложения в App Store. Большинству из них мощные ядра не нужны и процессор сам подбирает режим.
Отключаемые ядра
Любой блок SoC который не используется, может быть обесточен. И практически моментально возвращен к жизни при необходимости.
Улучшенные ядра
Ну и конечно и сами ядра радикально доработаны и улучшены.
Apple A13 Bionic
Почему новый iPhone всегда быстрее прошлогоднего?
Чуть ли не на каждой презентации iPhone (да что там, на каждой!) мы слышим от представителей Apple о том, что новый телефон стал в n-раз мощнее и энергоэффективней, чем айфон прошлого поколения. То же самое можно сказать про iPad. Нам говорят «в iPhone 11 установлен процессор A13 Bionic» или «новый процессор A12Z Bionic расширяет возможности iPad Pro», а мы с умным видом киваем, потому что понимаем, что за этими хитрыми обозначениями скрывается что-то крутое. Настоящая мощь. Но эта самая «мощь» зависит вовсе не от названий, можно назвать чип хоть «A18X Power», а по производительности он будет как в пятом айфоне. Нет, все гораздо сложнее, и имя ему — нанометровый техпроцесс.
Нам показывают эти графики, но задумывались ли вы, почему все именно так?
Что такое нанометровый техпроцесс?
Если говорить очень упрощенно, то процессор, будь то чип в iPhone, iPad или Mac, представляет собой миллиарды крошечных транзисторов и электрических затворов, которые включаются и выключаются при выполнении операций. Эти транзисторы настолько маленькие, что их размер вычисляется не в миллиметрах, и даже не в сотых миллиметра, а в нанометрах.
Зачем их делают такими маленькими? Чем меньше размер транзистора, тем меньше энергии он потребляет. При этом эффективность их работы не падает, поэтому производители процессоров (да и смартфонов) так гонятся за уменьшением размера транзисторов.
В 1987 году ведущие полупроводниковые компании производили чипы по 800-нм техпроцессу. К 2001 году это число значительно сократилось — до 130-нм. Сегодня вы, скорее всего, чаще всего слышите о 7-нм и 10-нм чипах. Первый тип обычно относится к процессорам TSMC, а по второму производит свои чипы Intel. Через два года мы, возможно, увидим первый 3-нм чип, над ним уже работают. Лучшая производительность — не единственное преимущество меньших транзисторов. Также они способны обеспечить более длительное время автономной работы и существенный прирост скорости.
В этом процессоре миллиарды транзисторов
Процессоры iPhone
Разработанные Apple процессоры для iPhone, разумеется, значительно улучшились за несколько лет, поскольку размер транзисторов в чипах сократился. Например, в первом iPhone (2007) и iPhone 3G использовался 90-нм техпроцесс от Samsung. К 2009 году и появлению iPhone 3GS Samsung использовала 65-нм техпроцесс.
Вот как менялись процессоры iPhone, начиная с 2010 года.
2010, iPhone 4, A4, 45 нм (Samsung)
Первый мобильный процессор Apple
Это была первая система на чипе (или как его еще называют, кристалле — SoC), которую разработала сама Apple для своих мобильных устройств.
2011, iPhone 4S, A5, 45 нм (Samsung)
На презентации iPhone 4s Apple заявила, что A5 способен выполнить вдвое больше задач, чем A4, и показал в девять раз более высокую производительность графики.
2012, iPhone 5, 5C, A6, 32 нм (Samsung)
В два раза быстрее своего предшественника с удвоенной графической мощностью.
2013, iPhone 5S, A7, 28 нм (Samsung)
Процессор A7, стоявший в iPhone 5s, производился по 28-нанометровому техпроцессу
Опять же, Apple заявила, что этот чип был в два раза быстрее и обладал вдвое большей графической мощностью по сравнению с Apple A6.
2014, iPhone 6, A8, 20 нм (TSMC)
Первый чип не от Samsung, который произвела для Apple компания TSMC. Apple A8 предлагал на 25% больше производительности процессора и на 50% больше графической производительности, чем предыдущая модель. Он также потреблял на 50% меньше энергии.
2015, iPhone 6s, A9, 14 нм (Samsung), 16 нм (TSMC)
Процессор Apple A9, созданный сразу двумя компаниями, обеспечивал на 70% большую производительность и на 90% большую графическую производительность.
2016, iPhone 7, A10 Fusion, 16 нм (TSMC)
С этих пор iPhone ушел от процессоров Samsung полностью. Apple сообщила, что на этом чипе производительность графики стала на 50% выше.
2017, iPhone X, 8, A11 Bionic, 10 нм (TSMC)
На 25% быстрее, чем A10 Fusion, и на 30% быстрее графика.
2018, iPhone XS, XR, A12 Bionic, 7 нм (TSMC)
Производительность в одноядерном режиме на 35% выше, а в многоядерном — на 90% выше, чем у предшественника.
2019, iPhone 11, A13 Bionic, 7 нм (TSMC)
Внутри процессора Apple A13 Bionic
Apple утверждает, что два высокопроизводительных ядра работают на 20% быстрее при снижении энергопотребления на 30%, а четыре высокопроизводительных ядра — на 20% быстрее при уменьшении энергопотребления на 40% по сравнению с A12.
От чего зависит мощность iPhone?
Как видите, мощность iPhone прямо зависит от используемого в процессоре техпроцесса. В iPhone 11 он почти в 7 раз меньше, чем в iPhone 4. Отсюда и такая мощность и возможность запускать ресурсоемкие приложения и iOS 13, которая в сравнении с iOS 4 сильно изменилась.
Если сравнить схематично одинаковые процессоры, но изготовленные по 14-нанометровому и 7-нанометровому техпроцессу, то второй будет на 25% производительней при той же затраченной энергии. Или вы можете получить одинаковую производительность, но второй будет в два раза энергоэффективнее, что позволит еще дольше читать и писать сообщения в нашем Telegram-чате.
В первой половине 2019 года все та же компания TSMC начала опытное производство чипов по 5-нм техпроцессу. Переход на эту технологию позволяет повысить плотность упаковки электронных компонентов по сравнению с 7-нанометровым техпроцессом на 80% и повысить быстродействие на 15%. Ожидается, что iPhone 2020 года получит процессор, созданный по новому техпроцессу.
Процессор iPhone 11 оказался самым мощным чипом, установленном в смартфоне
Эксперты часто говорят, что мобильные процессоры Apple — одни из лучших на рынке. Компания разрабатывает чипы с большим заделом на будущее, нередко опережая по чистой производительности решения конкурентов на год-два. В этом году Apple представила iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max с процессором Apple A13, и многих интересует, так ли производителен новый чип в сравнении с конкурентами.
Процессор A13 Bionic устанавливается в iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max
Что нового в процессоре Apple A13
На самом деле Apple A13 основан на 7-нанометровом технологическом процессе, как и его предшественник. Apple решила отложить переход на улучшенный техпроцесс из-за некоторых трудностей в производстве. Тем не менее и здесь есть отличия: у A12 использовался техпроцесс N7+, а у A13 — N7 Pro. Правда, реальных железобетонных фактов о том чем они отличаются – нет. Может быть, это всего-лишь новая этикетка на том же самом.
В Apple A13 центральный процессор состоит из двух “силовых” ядер Lightning, с тактовой частотой в 2,65 ГГц и четырех энергосберегающих ядер Thunder. Lightning – это “молния”, Thunder это “гром”. Все это звучит красиво и поэтично, но есть ли практический толк?
Структура процессора Apple A13 Bionic
Как оказалось, есть, и еще какой. Издание AnandTech протестировало производительность процессора A13 и Snapdragon 855 и вынесло вердикт: чипы, установленные в iPhone — самые мощные на рынке мобильных устройств.
Предлагаем подписаться на наш канал в «Яндекс.Дзен». Там вы сможете найти эксклюзивные материалы об айфонах, которых нет на сайте.
Какие процессоры мощнее — у Apple или Samsung
Как уже было сказано, A13 работает за счет двух “силовых” ядер Lightning, с тактовой частотой в 2,65 ГГц и четырех энергосберегающих ядер Thunder. В сравнении с Cortex-A55, которые используются в Snapdragon 855, эти ядра показали впечатляющие результаты: производительность выше почти в 3 раза, а энергосбережение — на 50 % меньше.
Сравнение процессора Apple A13 и Apple A12. Уделывает по всем пунктам
Но каким образом Apple удалось этого добиться? Во-первых, при проектировании процессора были изучены самые используемые приложения в App Store. И знаете, оказалось что подавляющему их большинству, большую часть времени, мощь “силовых ядер” не требуется! Так что процессор вычисляет оптимальный режим и включает его.
Да и сами ядра радикально доработаны и улучшены. Центральный процессор стал производительнее, на 20-30%, и экономичнее на 30-40%. И тут есть хитрость — новый трюк, которому обучили SoC в Apple. Любой блок SoC который не используется, может быть обесточен. И быстро (почти моментально) возвращен к жизни как только в нем возникнет необходимость.
И хотя Apple A13 Bionic, по мнению некоторых экспертов, всего лишь незначительный апгрейд A12, по факту это совершенно новый процессор, который можно назвать самым мощным в индустрии. И пусть вас не смущает тот факт, что основатель ресурса AnandTech сейчас работает в Apple, в том самом микро-электронном подразделении компании о котором, кстати сказать, почти ничего не известно.