что такое проценты и как их решать
Проценты
Процент это один из интересных и часто применяемых на практике инструментов. Проценты частично или полностью применяются в любой науке, на любой работе и даже в повседневном общении. Человек, хорошо разбирающийся в процентах, создаёт впечатление умного и образованного. В данном уроке мы узнаем, что такое процент и какие действия можно с ним выполнять.
Что такое процент?
В повседневной жизни дроби встречаются наиболее часто. Они даже получили свои названия: половина, треть и четверть соответственно.
Но есть ещё одна дробь, которая тоже встречается часто. Это дробь (одна сотая). Данная дробь получила название процент.
Дробь означает, что нечто разделено на сто частей и от этих ста частей взята одна часть. Значит процентом является одна сотая часть.
Процентом является одна сотая часть
Например, от одного метра составляет 1 см. Один метр разделили на сто частей, и взяли одну часть (вспоминаем, что 1 метр это 100 см). А одна часть из этих ста частей составляет 1 см. Значит один процент от одного метра составляет 1 см.
от одного метра уже составляет 2 сантиметра. В этот раз один метр разделили на сто частей и взяли оттуда не одну, а две части. А две части из ста составляют два сантиметра. Значит два процента от одного метра составляет 2 сантиметра.
Еще пример, от одного рубля составляет одну копейку. Рубль разделили на сто частей, и взяли оттуда одну часть. А одна часть из этих ста частей составляет одну копейку. Значит один процент от одного рубля составляет одну копейку.
Проценты встречались настолько часто, что люди заменили дробь на специальный значок, который выглядит следующим образом:
Эта запись читается как «один процент». Она заменяет собой дробь . Также она заменяет собой десятичную дробь 0,01 потому что если перевести обычную дробь
в десятичную дробь, то мы получим 0,01. Стало быть между этими тремя выражениями можно поставить знак равенства:
1% = = 0,01
Как найти процент?
Принцип нахождения процента такой же, как и обычное нахождение дроби от числа. Чтобы найти процент от чего-либо, нужно это чего-либо разделить на 100 частей и полученное число умножить на нужный процент.
Например, найти 2% от 10 см.
А как решать подобные задания мы уже знаем. Это обычное нахождение дроби от числа. Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.
Итак, делим число 10 на знаменатель дроби
Получили 0,1. Теперь 0,1 умножаем на числитель дроби
Получили ответ 0,2. Значит 2% от 10 см составляет 0,2 см. А если перевести 0,2 сантиметра в миллиметры, то получим 2 миллиметра:
Значит 2% от 10 см составляют 2 мм.
Пример 2. Найти 50% от 300 рублей.
Чтобы найти 50% от 300 рублей, нужно эти 300 рублей разделить на 100, и полученный результат умножить на 50.
Итак, делим 300 рублей на 100
Теперь полученный результат умножаем на 50
Значит 50% от 300 рублей составляет 150 рублей.
Если на первых порах сложно привыкнуть к записи со значком %, можно заменять эту запись на обычную дробную запись.
В принципе, ничего сложного здесь нет. Если возникают сложности, советуем остановиться и заново изучить дроби и как их можно применять.
Пример 3. Швейная фабрика выпустила 1200 костюмов. Из них 32% составляют костюмы нового фасона. Сколько костюмов нового фасона выпустила фабрика?
Здесь нужно найти 32% от 1200. Найденное число будет ответом к задаче. Воспользуемся правилом нахождения процента. Разделим 1200 на 100 и полученный результат умножим на искомый процент, т.е. на 32
Ответ: 384 костюмов нового фасона выпустила фабрика.
Второй способ нахождения процента
Второй способ нахождения процента намного проще и удобнее. Он заключается в том, что число от которого ищется процент сразу умножит на нужный процент, выраженный в виде десятичной дроби.
Например, решим предыдущую задачу этим способом. Найти 50% от 300 рублей.
Запись 50% заменяет собой запись , а если перевести эти
в десятичную дробь, то мы получим 0,5
Теперь для нахождения 50% от 300, достаточно будет умножить число 300 на десятичную дробь 0,5
Кстати, по этому же принципу работает механизм нахождения процента на калькуляторах. Чтобы найти процент с помощью калькулятора, нужно ввести в калькулятор число от которого ищется процент, затем нажать клавишу умножения и ввести искомый процент. Затем нажать клавишу процента %
Нахождения числа по его проценту
Зная процент от числа, можно узнать всё число. Например, предприятие выплатило нам 60000 рублей за работу, и это составляет 2% от общей прибыли, полученной предприятием. Зная свою долю, и сколько процентов она составляет, мы можем узнать общую прибыль.
Сначала нужно узнать сколько рублей составляет один процент. Как это сделать? Попробуйте догадаться внимательно изучив следующий рисунок:
Если два процента от общей прибыли составляют 60 тысяч рублей, то нетрудно догадаться, что один процент составляет 30 тысяч рублей. А чтобы получить эти 30 тысяч рублей, нужно 60 тысяч разделить на 2
Мы нашли один процент от общей прибыли, т.е. . Если одна часть это 30 тысяч, то для определения ста частей, нужно 30 тысяч умножить на 100
30 000 × 100 = 3 000 000
Мы нашли общую прибыль. Она составляет три миллиона.
Попробуем сформировать правило нахождения числа по его проценту.
Чтобы найти число по его проценту, нужно известное число разделить на данный процент, и полученный результат умножить на 100.
Пример 2. Число 35 это 7% от какого-то неизвестного числа. Найти это неизвестное число.
Читаем первую часть правила:
Чтобы найти число по его проценту, нужно известное число разделить на данный процент
У нас известное число это 35, а данный процент это 7. Разделим 35 на 7
Читаем вторую часть правила:
и полученный результат умножить на 100
У нас полученный результат это число 5. Умножим 5 на 100
500 это неизвестное число, которое требовалось найти. Можно сделать проверку. Для этого находим 7% от 500. Если мы всё сделали правильно, то должны получить 35
Получили 35. Значит задача была решена правильно.
Принцип нахождения числа по его проценту такой же, как и обычное нахождение целого числа по его дроби. Если проценты на первых порах смущают и сбивают с толку, то запись с процентом можно заменять на дробную запись.
Например, предыдущая задача может быть изложена так: число 35 это от какого-то неизвестного числа. Найти это неизвестное число. Как решать такие задачи мы уже знаем. Это нахождение числа по дроби. Для нахождения числа по дроби, мы это число делим на числитель дроби и полученный результат умножаем на знаменатель дроби. В нашем примере число 35 нужно разделить на 7 и полученный результат умножить на 100
В будущем мы будем решать задачи на проценты, часть из которых будут сложными. Чтобы на первых порах не усложнять обучение, достаточно уметь находить процент от числа, и число по проценту.
Решение задач на проценты
Методички Педсовета
Введение
Слово процент от латинского слова pro centum, что буквально означает «за сотню» или «со ста». Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян. Ряд задач клинописных табличек посвящен исчислению процентов, однако вавилонские ростовщики считали не «со ста», а «с шестидесяти».
Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы. Долгое время под процентами понимались исключительно прибыль или убыток на каждые сто рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике.
Ныне процент — это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу). Знак % происходит, как полагают, от итальянского слова cento (сто), которое в процентных расчетах часто писалось сокращенно cto. Отсюда путем дальнейшего упрощения в скорописи буква t превратилась в наклонную черту (/), возник современный символ для обозначения процента. В школьном учебнике «Математика, 5«,авторов Н.Я. Виленкина и др. дана еще одна любопытная версия возникновения знака %. Там, в частности, говорится, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 г. в Париже была опубликована книга-руководство по коммерческой арифметике, где по ошибке наборщик вместо cto напечатал %.
Современная жизнь делает задачи на проценты актуальными, так как сфера практического приложения процентных расчетов расширяется. Вопросы инфляции, повышение цен, рост стоимости акций, снижение покупательской способности касаются каждого человека в нашем обществе. Планирование семейного бюджета, выгодного вложения денег в банки, невозможны без умения производить несложные процентные вычисления.
Сами проценты не дают экономического развития, но их знание помогает в развитии практических способностей, а также умение решать экономические задачи. Обдуманное изучение процентов может способствовать развитию таких навыков как экономичность, расчетливость.
В вариантах вступительных экзаменов встречаются задачи на проценты, и эти задачи часто вызывают затруднения у школьников. Причина в том, что тема «Проценты» изучается в младших 5-6 классах, причем непродолжительно, закрепляется в 7 классе при решении задач на повторение, а в старших классах к этой теме совсем не возвращаются.
Так, пересмотрев школьные учебники по математике, по которым обучаются ученики нашей гимназии, я выяснила, что в учебнике «Алгебра, 9», под ред. Теляковского, задач, в которых упоминается слово «процент», всего три. В учебнике «Алгебра и начала анализа, 10-11» под ред Колмогорова А.Н задач на проценты и процентную концентрацию черыре. Но, задачи на проценты уже встречались в вариантах единого государственного экзамена в 2003, 2004, 2005 годах. Предлагается такая задача и в демонстрационном варианте 2007 года. Поэтому, изучение наиболее часто встречающихся типов задач на проценты, считаю актуальным.
Объектом исследования является изучение различных типов задач по теме «Проценты».
Изучая эту тему по сборникам для поступающих в вузы[5], я пришла к мнению, что многие задачи авторы сборников предлагают решать с использованием специальных формул, которых в школьных учебниках 5-6 классов, когда и изучаются эти темы, нет.
Предмет исследования: решение задач на проценты и процентное содержание, концентрацию, смеси и сплавы с преимущественным использованием основных правил действия с десятичными и обыкновенными дробями.
Цель работы. Составить практическое пособие по решению задач на проценты для школьников.
Задачи исследования:
1) Изучить исторический и теоретический материал по интересующему вопросу.
2) Систематизировать задачи на проценты по типам.
3) Составить практические рекомендации по решению задач на проценты.
4) Выявить практическое применение таких задач.
5) Определить план дальнейшей работы над темой.
Практическая значимость работы. Данное пособие по решению задач на проценты будет интересно не только школьникам 5-6 класса, которым интересна математика. Здесь найдут много полезного и выпускники школ, и абитуриенты при подготовке к выпускным и вступительным экзаменам.
Глава 1.Основные типы задач по теме «Проценты»
В данной главе приводятся примеры задач, которые решаются с применением определения, что такое один процент, как выразить дробь в процентах и правилам нахождения части (дроби) от числа, и числа по значению его части (дроби), т.е. это те темы и задачи, которые рассматриваются в школе.
Обращаем внимание, что существуют и другие способы решения простейших задач на проценты, например, составляют пропорции на каждом шаге, но в этом случае решение становится на несколько шагов длиннее. Мы же видим свою задачу в нахождении более быстрых способов решения таких задач, в связи с тем, что в настоящее время редкий тест по математике для абитуриентов, обходится без задач, в которых не упоминались бы проценты.
1.1. Решение задач на применение основных понятий о процентах.
Сотая часть метра — это сантиметр, сотая часть рубля — копейка, сотая часть центнера — килограмм. Люди давно замети, что сотые доли величин удобны в тактической деятельности. Потому для них было придумано специальное название — процент. Значит одна копейка — один процент от одного рубля, а один сантиметр — один процент от одного метра.
Один процент — это одна сотая доля числа. Математическими знаками один процент записывается так: 1%.
Определение одного процента можно записать равенством: 1 % = 0,01 * а
5%=0,05, 23%=0,23, 130%=1,3 и т. д
Как найти 1% от числа? Раз 1% это одна сотая часть, надо число разделить на 100. Деление на 100 можно заменить умножением на 0,01. Поэтому, чтобы найти 1% от данного числа, нужно умножить его на 0,01. А если нужно найти 5% от числа, то умножаем данное число на 0,05 и т.д.
Пример. Найти: 25% от 120.
Ответ: 30.
Правило 1. Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь
Пример. Токарь вытачивал за час 40 деталей. Применив резец из более прочной стали, он стал вытачивать на 10 деталей в час больше. На сколько процентов повысилась производительность труда токаря?
Решение: Чтобы решить эту задачу, надо узнать, сколько, процентов составляют 10 деталей от 40. Для этого найдем сначала, какую часть составляет число 10 от числа 40. Мы знаем, что нужно разделить 10 на 40. Получится 0,25. А теперь запишем в процентах — 25%. Получаем ответ: производительность труда токаря повысилась на 25%.
Правило 2. Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов.
Пример. При плановом задании 60 автомобилей в день завод выпустил 66 автомобилей. На сколько процентов завод выполнил план?
Решение: — такую часть составляют изготовленные автомобили от количества автомобилей по плану. Запишем в процентах =110%
Ответ: 110%
Пример.
На сколько процентов 10 больше 6? 2. На сколько процентов 6 меньше 10?
Решение:
1. ((10 — 6).100%)/6 = 66 2/3 %
2. ((10 — 6).100%)/10 = 40%
Ответ: 66 2/3 %, 40 %.
Пример. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?
Решение: 1) 6+ 34 =40 (кг) масса всего сплава.
2) = 85% сплава составляет медь.
Ответ. 85%.
Пример. Что произойдет с ценой товара, если сначала ее повысить на 25%, а потом понизить на 25%?
Правило 3. Чтобы найти процентное отношение двух чисел А и В, надо отношение этих чисел умножить на 100%, то есть вычислить (а/в)*100%.
Пример. Найти число, если 15% его равны 30.
Решение:
1) 15% = 0,15;
2) 30 : 0,15 = 200.
или: х — данное число; 0,15.х = 300; х = 200.
Ответ: 200.
Пример. Из хлопка-сырца получается 24% волокна. Сколько надо взять хлопка-сырца, чтобы получить 480кг волокна.?
Решение. Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби). 480 : 0,24= 2000 кг = 2 т
Ответ: 2 т
Пример. Сколько кг белых грибов надо собрать для получения 1 кг сушеных, если при обработке свежих грибов остается 50% их массы, а при сушке остается 10% массы обработанных грибов?
Решение. 1кг сушеных грибов — это 10% или 0, 01 часть обработанных, т.е. 1 кг : 0,1=10 кг обработанных грибов, что составляет 50% или 0,5 собранных грибов, т.е. 10 кг : 0,05=20 кг
Ответ: 20 кг
Ответ: 2,5 кг.
Правило 4. Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби, а затем значение процентов разделить на эту дробь.
1.2. Решение задач на понятия «процентное содержание», «концентрация», «%-й раствор».
Процентное содержание. Процентный раствор.
Пример. Сколько кг соли в 10 кг соленой воды, если процентное содержание соли 15%.
Ответ: 1,5 кг.
Процентное содержание вещества в растворе (например, 15%), иногда называют %-м раствором, например, 15%-й раствор соли.
Пример. Сплав содержит 10 кг олова и 15 кг цинка. Каково процентное содержание олова и цинка в сплаве?
Решение: Процентное содержание вещества в сплаве — это часть, которую составляет вес данного вещества от веса всего сплава.
Ответ: 40%, 60%.
Концентрация.
Если концентрация вещества в соединении по массе составляет р%, то это означает, что масса этого вещества составляет р% от массы всего соединения.
Пример. Концентрация серебра в сплаве 300 г составляет 87%. Это означает, что чистого серебра в сплаве 261 г.
В этом примере концентрация вещества выражена в процентах.
Отношения объема чистой компоненты в растворе ко всему объему смеси называется объемной концентрацией этой компоненты.
Сумма концентраций всех компонент, составляющих смесь, равна 1.
Если известно процентное содержание вещества, то его концентрация находится по формуле: К=р/100% к — концентрация вещества; р — процентное содержание вещества (в процентах).
Пример. Имеется 2 сплава, в одном из которых, содержится 40%, а в другом 20% серебра. Сколько кг второго сплава нужно добавить к 20 кг первого, чтобы после сплавления вместе получить сплав, содержащий 32% серебра?
Ответ: 13 1/3 кг второго сплава нужно добавить к 20 кг первого, чтобы получить сплав, содержащий 32% серебра.
Пример. К 15 л 10%-ного раствора соли добавили 5%-ный раствор соли и получили 8%-ный раствор. Какое количество литров 5%-ного раствора добавили?
Ответ: добавили 10 л 5%-ного раствора
1.3. Решение задач с использованием понятия коэффициента увеличения.
Чтобы увеличить положительное число а на р процентов, следует умножить число а на коэффициент увеличения к=(1+0,01р).
Чтобы уменьшить положительное число а на р процентов, следует умножить число а на коэффициент уменьшения к= (1-0,01р).
Пример. Вклад, вложенный в сбербанк два года назад, достиг суммы, равной 13125 руб. Каков был первоначальный вклад при 25% годовых?
Решение. Если а (рублей) — размер первоначального вклада, то в конце первого года вклад составит 1,25а а в конце второго года размер вклада составит 1,25 *1,25а. Решая уравнение 1,25* 1,25а=13125, находим а=8400.
Ответ: 8400 руб.
Пример. В феврале цена на нефть увеличилась на 12% по сравнению с январской. В марте цена нефти упала на 25%. На сколько процентов мартовская цена изменилась по сравнению с январской?
Решение. Если х — январская цена нефти, то февральская цена нефти равна
Ответ: цена упала на 16%.
Глава 2. Разные задачи на проценты ( с решениями)
В данной главе рассматривается выборка задач из различных источников, которые охватывают весь теоретический материал, который излагался выше, предлагаем свои решения. Отметим, что предложенный способ решения не является единственным.
2.1 Тестовые задания на проценты.
Задача 1.Товар стоил тысячу рублей. Продавец поднял цену на 10%, а через месяц снизил её на 10%.Сколько стал стоить товар?
Решение. Пусть товар стоил 1000руб., после повышения цены на 10% он стал стоить 1,1*1000 руб. После понижения этой цены на 10%, он стал стоить 0,9*1,1*1000=990 руб.
Ответ. 990 руб.
Решение. Так как влажность грибов составляет 99%, это означает, что на так называемое «сухое вещество приходится 1% грибов, т.е 1 кг, после сушки влажность составляет 98%, т.е. на «сухое вещество» приходится 2%, т.е 1кг это 0,02 подсушенных грибов, 1 кг : 0,02=50 кг.
Ответ. 50 кг.
Решение. Пусть зрителей, до понижения цены, на стадион приходило А чел. и выручка составляла 1,8А руб. После понижения цены, цена 1,8*р, зрителей стало 1,5А, выручка составляет 1,8*р*1,5*А руб. С другой стороны, выручка повысилась на 25%, т.е. составляет 1,25*1,8А. Получаем 1,8*р*1,5*А=1,25*1,8А., откуда р=12,5/15, тогда билет стоит 1,8*12,5/15=1,5 руб.
Ответ. 1руб. 50 коп
Задача 4. По дороге идут два туриста. Первый из них делает шаги на 10% короче и в то же время на 10% чаще, чем второй. Кто из туристов идет быстрее и почему?
Решение. Пусть второй турист делает а шагов, каждый из которых равен в, тогда ав это длина пройденного пути. А первый турист тогда прошел1,1*а*0,9*в=0,99*ав, что меньше ав.
Ответ. Второй турист идет быстрее.
Задача 5. Цену за товар уменьшили на 10%, а затем еще на 10%. Стоит ли он дешевле, если цену сразу снизить на 20%?
Ответ. Да.
Задача 6. Числитель дроби увеличили на 20%. На сколько процентов надо уменьшить её знаменатель, чтобы в итоге дробь возросла вдвое?
Ответ. 40%
Задача 7. Матроскин продает молоко через магазин и хочет получать за него 25 рублей за литр. Магазин удерживает 20% стоимости проданного товара. По какой цене будет продаваться молоко в магазине?
Решение. Пусть молоко продает магазин по А руб, тогда после удержания 20% стоимости товара, Матроскину остается 0,8*А=25, откуда А=31, 25 руб.
Ответ. 31 руб. 25 коп.
Задача 8. Один покупатель купил 25% имевшегося куска полотна, второй покупатель 30% остатка, а третий — 40% нового остатка. Сколько (в процентах) полотна осталось непроданным?
Ответ. 31,5%
Задача 9. Бригада косарей в первый день скосила половину луга и еще 2 га, а во второй день 25% оставшейся части и последние 6 га. Найти площадь луга.
Решение. 6 га составляют 75% или0,75=3/4 от оставшейся части после 1 дня работы, т.е.6: 0,75=6 га 8+2=10 га — это половина луга, весь луг 20 га
Ответ. 20 га
Задача 10. Как изменится в процентах площадь прямоугольника, если его длина увеличится на 30%, а ширина уменьшится на 30%?
Решение. АВ- площадь исходного прямоугольника, 1,3*А*0,7*В=0,91АВ — площадь нового прямоугольника, что составляет 91% исходного.
Ответ. Уменьшится на 9%
Задача 11. В драматическом кружке число мальчиков составляет 80% от числа девочек. Сколько процентов составляет число девочек в этом кружке от числа мальчиков?
Решение. Девочек А чел, мальчиков 0,8*А, девочки составляют от мальчиков А/(0,8А)= 1,25, т.е. 125 % от числа мальчиков
Ответ. 125%
Задача 12. В бассейн проведена труба. Вследствие засорения её приток воды уменьшился на 60%. На сколько процентов вследствие этого увеличится время, необходимое для заполнения бассейна
Решение. Пусть Х — объем воды, который должен поступить за время Т при притоке А в ед времени., т.е. Х=АТ. Так как приток уменьшился на 60%, т.е. стал составлять 0,4А, тогда время стало ТК. Получим АТ=0,4А*КТ, откуда К = 2,5, что составляет 250% от времени, необходимого на заполнение бассейна до засорения, т.е. время увеличилось на 150%
Ответ. 150%
Задача 13. 5 литров сливок с содержанием жира 35% смешали с 4 литрами 20%-ных сливок и к смеси добавили 1 литр чистой воды. Какой жирности получилась смесь?
Решение. 0,35*5+0,2*4=р*(5+4+1), откуда р=0,255, что составляет 25,5%
Ответ. 25,5%
2.2. Избранные задачи вариантов единого государственного экзамена.
Впервые в вариантах единого государственного экзамена по математике задача на проценты появились в 2003 году в заданиях группы В, в 2004 и в 2005 годах такие задачи также были представлены в вариантах единого экзамена. В вариантах 2006 года были задачи на работу, но в демонстрационном варианте 2007 года снова появляется задача на проценты, что говорит о необходимости серьезной работы над этой темой. Следует отметить, что для решения всех задач, которые предлагались, достаточно знания тех методов, которые рассматриваются в данной работе.
2003. Тренировочный вариант. Задание В7
Банк предлагает вклад «студенческий». По этому вкладу, сумма, имеющаяся на 1 января, ежегодно увеличивается на одно и то же число процентов. Вкладчик положил 1 января 1000 руб. и в течение 2 лет не производил со своим вкладом никаких операций. В результате вложенная им сумма увеличилась до 1210 руб. На сколько процентов ежегодно увеличивалась сумма денег, положенная на этот вклад?
Решение. Используя формулу увеличения положительного число на p%, получим, что через год сумма вклада составит 1000*(1+0,01р), а через два года 1000*(1+0,01р)2=1210, т.е. (1+0,01р)2=1,21, 1+0,01р=1,1, 0,01р=0,1, откуда р=10%
Ответ: сумма ежегодно увеличивалась на 10%.
2003. Демонстрационный вариант. Задание В7
Владелец дискотеки имел стабильный доход. В погоне за увеличением прибыли он повысил цену на билеты на 25%. Количество посетителей резко уменьшилось, и он стал нести убытки. Тогда он вернулся к первоначальной цене билетов. На сколько процентов, владелец дискотеки снизил новую цену билетов, чтобы она стала равна первоначальной?
Решение. Пусть цена билета была А руб. После повышения на 25% цена стала 1,25А, после понижения цена билета стала р*1,25А. Т.к. цена билета вернулась к первоначальной, то получим р*1,25А=А, откуда р=1/1,25 = 0,8, что означает, что новая цена составляет 80% цены после повышения., значит владелец дискотеки снизил цену на 20%.
Ответ: 20%
2003. ЕГЭ
Предприятие уменьшило выпуск продукции на 20%. На сколько процентов, необходимо теперь увеличить выпуск продукции, чтобы достигнуть его первоначального уровня?
Решение. Пусть А количество продукции, выпускаемое предприятием, 0,8А-количество продукции, которое стало выпускать предприятия после уменьшения на 20%. Из условия задачи следует уравнение р*0,8А=А, где р —коэффициент увеличения, откуда р=1/0,8=1,25, что означает, что необходимо увеличить выпуск продукции на 25%.
Ответ: 25%
2003. ЕГЭ
К 120 г раствора, содержащего 80% соли, добавили 480 г раствора, содержащего 20 % той же соли. Сколько процентов соли содержится в получившемся растворе?
Решение. 1) 0,8*120=96(г)-соли в первоначальном растворе;
2) 480*0,2=96(г) соли во втором растворе;
3) ((96+96)/(120+480))*100%=32%-процентное содержание соли в получившемся растворе.
Ответ: 32%
2003. ЕГЭ
За год стипендия студента увеличилась на 32%. В первом полугодии стипендия увеличилась на 10%. Определить, на сколько процентов увеличилась стипендия во втором полугодии?
Ответ: на 20%.
2004. ЕГЭ
Имеются два слитка сплава золота с медью. Первый слиток содержит 230 г золота и 20 г меди, а второй слиток — 240 г золота и 60 г меди. От каждого слитка взяли по куску, сплавили их и получили 300 г сплава, в котором оказалось 84 % золота. Определить массу ( в граммах) куска, взятого от первого слитка.
Решение. Определим процентное содержание золота в обоих слитках. 1) 230+20=250(г)-масса 1 слитка, 230/250=0,92 (92%)процентное содержание золота в 1 слитке.
2) 240+60=300(г) —масса 2 слитка, 240/300=0,8 (80%)- процентное содержание золота во 2 слитке. Пусть х масса куска, взятого от 1 слитка, (300-х)- масса куска, взятого от 2 слитка, получим уравнение 0,92х+0,8(300-х)=0,84*300, откуда х=100
Ответ: 100г.
2004 ЕГЭ
Первый сплав серебра и меди содержит 70 г меди, а второй сплав — 210 г серебра и 90 г меди. Взяли 225 г первого сплава и кусок второго сплава, сплавили их и получили 300 г сплава, который содержит 82 % серебра. Сколько граммов серебра содержалось в первом сплаве?
Решение. Пусть х г серебра содержится в 1 сплаве., тогда 70/(х+70)-какую часть 1 сплава составляет медь, 90/(210+90)-такую часть составляет медь во 2 сплаве., кусок второго сплава 300-225=75г, тогда получаем уравнение.
225*(70/(х+70))+75*(90/300)=(1-0,82)*300, откуда х=430г
Ответ: 430г
ЕГЭ 2004
Решение. 200*0,8=160(г)-масса чистого спирта в колбе, их колбы отлили х г раствора, осталось (200-х)г раствора, в котором чистого спирта 0,8*(200-х). Когда к раствору добавили х г воды, то масса раствора снова стала 200 г, а концентрация
[(0,8*(200-х))/200]*100%=60%, откуда х=50(г).
Ответ: провизор добавил 50г воды.
ЕГЭ 2004
Решение. После того, как провизор отлил 200 г раствора, стало 600г, в котором чистого спирта 0,8*600=480г, когда добавили200г воды, то раствор снова 800г, а концентрация чистого спирта в растворе (480/800)*100%=60%
Ответ: 60%
ЕГЭ 2005
Численность населения в городе Таганроге в течение двух лет возрастала на 2 процента ежегодно. В результате число жителей возросло на 11312 человек. Сколько жителей было в Таганроге первоначально?
Решение. А- первоначальное количество жителей Таганрога. Используя формулу коэффициента увеличения, получаем
А(1+0,02)2=А+11312, откуда А=280000
Ответ: 280000 чел
ЕГЭ 2005
Решение. Пусть х л вмещает сосуд, тогда из условий задачи следует уравнение 0,94(х-1,5)+0,7*1,5=0,86х, откуда х=4,5 л.
Ответ: 4,5 л
Демонстрационный вариант 2007
Денежный вклад в банк за год увеличивается на 11 %. Вкладчик внес в банк 7000 рублей. В конце первого года он решил увеличить сумму вклада и продлить срок действия договора еще на год, чтобы в конце второго года иметь на счету не менее 10000 рублей. Какую наименьшую сумму необходимо дополнительно положить на счет по окончании первого года, чтобы при той же процентной ставке (11 %) реализовать этот план? (Ответ округлите до целых.)
Решение. 1,11* 7000=7770руб-будет на счете в конце 1 года. Пусть х руб. положили дополнительно на счет, из условия задачи получаем неравенство 1,11(7770+х)> 10000, получим х>1239, 1/111, что означает, чтобы на счету было не менее 10000 руб, нужно положить не менее12 40руб.
Ответ: 1240 руб.
Заключение
Данное практическое пособие позволит развить и закрепить навыки решения задач по теме: «Проценты» у учащихся 5-6 классов, может быть интересно учащимся, увлеченным математикой, а также полезно выпускникам школ и абитуриентам при подготовке к экзаменам. В дальнейшем на факультативных и кружковых занятиях возможны изучение вопроса применения процентов в экономике, в банковском деле. Можно провести сравнительный анализ банковских процентных ставок по потребительским кредитам и ипотечному кредитованию населения.
Литература
2.Денищева Л.О., Глазков Ю.А. и др., Учебно-тренировочные материалы для подготовки к ЕГЭ. Математика, М: Интеллект- Центр, 2003.
3. Потапов М.К., Олехник С.Н., Нестеренко Ю.В., Конкурсные задачи по математикеМ: Наука, 1992.
4. Семенко Е.А. и др., Готовимся к ЕГЭ по математике, Краснодар, Просвещение-Юг, 2005.
5. Алгебра, 9, под ред. Теляковского С.А., М: Просвещение, 2001
6. Алгебра и начала анализа, 10-11, под ред. Колмогорова А.Н., М: Просвещение, 2003.
7. Математика. Контрольные измерительные материалы единого государственного экзамена в 2004 г. М: Центр тестирования, 2004.
8. Экзаменационные материалы для подготовки к единому государственному экзамену. ЕГЭ 2006, М: Центр тестирования, 2005.
[1] «Математика, 5», Виленкин Н.Я. и др., «Мнемозина», 2003, с. 337
[2] «Алгебра, 9», под ред. Теляковского С.А., М: Просвещение, 2001, с.215, 223
[3] «Алгебра и начала анализа, 10-11», под ред. Колмогорова А.Н., М: Просвещение, 2003, с.306,330.
[4] «Учебно-тренировочные материалы для подготовки к ЕГЭ. Математика», Денищева Л.О., Гдазков Ю.А. и др., М: Интеллект- Центр, 2003.
«Математика. Контрольные измерительные материалы единого государственного экзамена в 2004 г.» М: Центр тестирования, 2004.
«Экзаменационные материалы для подготовки к единому государственному экзамену. ЕГЭ 2006», М: Центр тестирования, 2005.
[5] «Конкурсные задачи по математике», Потапов М.К., Олехник С.Н., Нестеренко Ю.В., М: Наука, 1992, с330-332.
«В помощь поступающим в ГУ — ВШЭ, Математика», Быков А.А. и дрМ: ГУ-ВШЭ, 2004, с 53-64
«Готовимся к ЕГЭ по математике», Семенко Е.А. и др., Краснодар, Просвещение-Юг, 2005, с. 46-51