что такое приведенная длина участка трубопровода
СП 36.13330.2012 Магистральные трубопроводы. Актуализированная редакция СНиП 2.05.06-85* (с Изменениями N 1, 2, 3)
6 Классификация и категории магистральных трубопроводов
6.1 Магистральные газопроводы в зависимости от рабочего давления в трубопроводе подразделяют:
6.2 Магистральные нефтепроводы и нефтепродуктопроводы в зависимости от диаметра трубопровода подразделяют на:
6.2.1 Магистральные нефтепроводы:
6.2.2 Магистральные нефтепродуктопроводы:
6.3 Магистральные трубопроводы и их участки подразделяют на категории в соответствии с таблицей 1.
Категория трубопровода и его участка
Коэффициент условий работы трубопровода при расчете его на прочность, устойчивость и деформативность
6.4 Категории магистральных трубопроводов следует принимать по таблице 2.
Категория трубопровода при прокладке
наземной и надземной
Для транспортирования природного газа:
номинальным диаметром менее 200*
номинальным диаметром 1200 и более
в северной строительно-климатической зоне
Для транспортирования нефти и нефтепродуктов:
номинальным диаметром менее 700
номинальным диаметром 700 и более
в северной строительно-климатической зоне
6.5 Категории участков магистральных трубопроводов следует принимать по таблице 3.
Назначение участков трубопроводов
Категория участков при прокладке
нефтепроводов и нефтепродуктопроводов
1 Переходы через водные преграды:
г) горные потоки (реки)
д) поймы рек по горизонту высоких вод 10%-ной обеспеченности при диаметре трубопровода:
е) участки протяженностью 1000 м от границ горизонта высоких вод 10%-ной обеспеченности
ж) шириной зеркала воды в межень 75 м и более
2 Переходы через болота типа:
3 Переходы через железные и автомобильные дороги (на перегонах):
а) железные дороги общей сети, включая участки длиной не менее 50 м каждый по обе стороны дороги от осей крайних путей, но не менее 25 м от подошвы насыпи земляного полотна дороги
б) подъездные железные дороги промышленных предприятий, включая участки длиной 25 м каждый по обе стороны дороги от осей крайних путей
в) автомобильные дороги категорий I и II, включая участки длиной 25 м каждый по обе стороны дороги от подошвы насыпи или бровки выемки земляного полотна дороги
г) автомобильные дороги категорий III, IV, включая участки длиной 25 м каждый по обе стороны дороги от подошвы насыпи или бровки выемки земляного полотна дороги
д) автомобильные дороги категории V, включая участки длиной 15 м по обе стороны дороги от подошвы насыпи или бровки выемки земляного полотна
е) участки трубопроводов в пределах расстояний, указанных в таблице 4, примыкающие к переходам:
через все железные дороги и автомобильные дороги категорий I и II
через автомобильные дороги категорий III, IV, V
4 Трубопроводы в горной местности при укладке:
5 Трубопроводы, прокладываемые в слабосвязанных барханных песках в условиях пустынь
6 Трубопроводы, прокладываемые по поливным и орошаемым землям:
а) хлопковых и рисовых плантаций
б) прочих сельскохозяйственных культур
7 Трубопроводы, прокладываемые по территории распространения многолетнемерзлых грунтов, имеющих при оттаивании относительную осадку свыше 0,1
8 Переходы через селевые потоки, конуса выносов и солончаковые грунты
9 Узлы установки линейной арматуры (за исключением участков категорий В и I)
10 Газопроводы на длине 250 м от линейной запорной арматуры и гребенок подводных переходов (за исключением участков категорий В и I)
11 Трубопроводы на длине 100 м от границ примыкающих участков II категории, приведенных в поз.3e
12 Трубопроводы, примыкающие к территориям СПХГ, установок очистки и осушки газа, головных сооружений со стороны коллекторов и трубопроводов в пределах расстояний, указанных в поз.5 таблицы 4
13 Межпромысловые коллекторы
14 Узлы пуска и приема очистных устройств:
а) на переходах через водные преграды (категория узла определяется категорий* трубопровода на переходе);
б) на линейной части, а также участки трубопроводов длиной 100 м, примыкающие к ним
15 Трубопроводы в пределах территорий ПРГ линейной части газопроводов
16 Трубопроводы, расположенные внутри зданий и в пределах территорий КС, ПРГ, СПХГ, ДКС, ГРС, НПС, УЗРГ, включая трубопроводы топливного и пускового газа
17 Узлы подключения в газопровод, участки между охранными кранами, всасывающие и нагнетательные газопроводы КС, СПХГ, УКПГ, УППГ, ДКС (шлейфы) и головных сооружений, а также газопроводы собственных нужд от узла подключения до ограждения территории указанных сооружений
18 Газопроводы, примыкающие к ГРС в пределах расстояний, указанных в поз.8 таблицы 4, а также участки за охранными кранами длиной 250 м
19 Трубопроводы, примыкающие к секущему крану УЗРГ и ПРГ, длиной 250 м в обе стороны
20 Пересечения с подземными коммуникациями (канализационными коллекторами, нефтепроводами, нефтепродуктопроводами, газопроводами, силовыми кабелями и кабелями связи, подземными, наземными и надземными оросительными системами и т.п.) в пределах 20 м по обе стороны от пересекаемой коммуникации
21 Пересечения с коммуникациями, приведенными в поз.20, и между собой многониточных магистральных газопроводов номинальным диаметром свыше 1000 и давлением 7,5 МПа и более, нефтепроводов номинальным диаметром свыше 700 в пределах 100 м по обе стороны от пересекаемой коммуникации
22 Пересечения (по обе стороны) в пределах расстояний, указанных в поз.12 таблицы 4, с воздушными линиями электропередачи напряжением, кВ:
23 Трубопроводы, прокладываемые по подрабатываемым территориям и территориям, подверженным карстовым явлениям
24 Переходы через овраги, балки, рвы и пересыхающие ручьи
25 Нефтепроводы и нефтепродуктопроводы, прокладываемые
вдоль рек шириной зеркала воды в межень 25 м и более, каналов, озер и других водоемов, имеющих рыбохозяйственное значение, выше населенных пунктов и промышленных предприятий на расстоянии от них до 300 м при номинальном диаметре труб 700 и менее; до 500 м при номинальном диаметре труб до 1000 включительно; до 1000 м при номинальном диаметре труб свыше 1000
(без предварительного гидравлического испытания на трассе)
26 Газопроводы, нефте- и нефтепродуктопроводы,
прокладываемые в одном техническом коридоре, в местах расположения УЗРГ, ПРГ, узлов установки линейной запорной арматуры, пуска и приема очистных устройств, узлов подключения КС, УКПГ, УППГ, СПХГ, ДКС, ГС в трубопровод в пределах расстояний, указанных в поз.9, 10, 14, 15, 17 и 19, а от узлов подключения КС в трубопровод в пределах 250 м по обе стороны от них
(если они не относятся к более высокой категории по виду прокладки и другим параметрам)
27 Участки магистрального трубопровода в зонах активных тектонических разломов и прилегающие участки на расстоянии 100 м от границ разлома
1 Категории отдельных участков трубопроводов, аварийное повреждение которых может вызвать перебои в подаче газа, нефти и нефтепродуктов городам и другим крупным потребителям, а также загрязнение окружающей среды, при соответствующем обосновании допускается повышать на одну категорию.
2 Болота по характеру передвижения по ним строительной техники делятся на следующие типы:
3 При пересечении трубопроводом массива болот различных типов при соответствующем обосновании допускается принимать категорию всего участка как для наиболее высокой категории на данном массиве болот.
4 Испытания участков трубопроводов, прокладываемых через водные преграды шириной в межень менее 25 м и глубиной менее 1,5 м, с границами в межень по 100 м от уреза воды, следует предусматривать в составе смонтированного трубопровода согласно установленной категории.
7 Категорию участков трубопроводов, прокладываемых в поймах рек, подлежащих затоплению под водохранилище, следует принимать как для подводных переходов через водные преграды.
8 При небольшой продолжительности подтопления паводковыми водами (менее 20 дней) и незначительной глубине этого подтопления, позволяющей оперативное проведение в данной местности аварийно-восстановительных работ на трубопроводах в случае их повреждения, выполнение требований поз.1д для газопроводов не обязательно.
9 Знак «-» в настоящей таблице означает, что категория не регламентируется.
10 В случае установки линейной запорной арматуры на газопроводе-ответвлении следует назначать участки категории II на магистральном газопроводе и на газопроводе-ответвлении на длине 250 м по радиусу от границы кранового узла в соответствии с поз. 10.
11 Газопроводы подключения, газопроводы-отводы и газопроводы-перемычки являются магистральными газопроводами.
22 гидравлический расчет длинных трубопроводов
h м = ζ v 2 /2g.
При развитом турбулентном режиме ζ = const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв. т.е. такой длины прямого трубопровода, для которого ht = hм. В данном случае потери напора в местных сопротивлениях учитываются тем, что к фактической длине трубопровода добавляется сумма их эквивалентных длин
где Lпр – приведенная длина трубопровода.
Зависимость потерь напора h1-2 от расхода называется характеристикой трубопровода.
В случаях когда движение жидкости в трубопроводе обеспечивает центробежный насос, то для определения расхода в системе насос – трубопровод выстраивается характеристика трубопровода h =h(Q) с учетом разности отметок ∆z (h1-2 + ∆z при z12 и h1-2 — ∆z при z1>z2) накладывается на напорную характеристику насоса H=H(Q), которая приведена в паспортных данных насоса (смотреть рисунок). Точка пересечения таких кривых указывает на максимально возможный расход в системе.
Построение графика работы насоса на сеть и обоснование правильности выбора марки насоса
Для определения действительной производительности выбранного насоса, подающего воду в напорный трубопровод, необходимо построить характеристику насоса Н = f(Q) и общую характеристику всасывающего и напорного трубопровода НТР = f(Q), показывающую изменение сопротивления трубопровода в зависимости от подаваемого в него расхода воды.
Параметры насоса выбранной марки, необходимые для построения графиков Н = f(Q), з = f(Q) и определяются согласно данным таблицы.
Расчет общей характеристики трубопровода производится по уравнению НТР = НГ +сQ2.
Задаваясь величинами расхода Qi в пределах от Qi = 0 до Qi = QMAX, в пятой колонке необходимо значение расхода принять равным расчетному значению Qi = QРАСЧ, при котором определялись суммарные потери во всасывающем и напорном трубопроводах (УhПОТ). Результаты расчета заносятся в табл. 5.
Таблица 5 — Результаты расчета характеристики трубопровода
По данным табл. 5 строится кривая сопротивления трубопровода НТР=f(Q). На пересечении кривых Н = f(Q) и НТР=f(Q) находится так называемая рабочая точка «А».
Координаты этой точки показывают, какой действительный расход (QД) и напор (НД) будут получены в трубопроводе на выходе из насоса.
Мы получили, что Qд>Qрасч, значит нам необходимо за счет снижения частоты вращения рабочего колеса или его проточки по наружному диаметру уменьшить величину расхода на ДQ = Qд- QРАСЧ.
Суммарные гидравлические потери в сливной гидролинии
Суммарные гидравлические потери в гидроприводе определяются для каждого расчетного случая и складываются из потерь давления в трубопроводах, местных сопротивлениях и элементах гидропривода:
ДРпр =176 + 441 + 662 + 705 + 529 + 1058 + 905 + 107 + 118 + 2,4 + 23,3
Суммарные гидравлические потери в напорной гидролиии ДРпр= 7.3 МПа
Суммарные гидравлические потери в сливной гидролинии: ДРпр= 4.7 МПа
Коэффициенты некоторых местных сопротивлений z.
Вид местного сопротивления
Коэффициент местного сопротивления z
Выход из трубы в резервуар больших размеров
Постепенное расширение (диффузор)
С закругленными краями
0.2-0.1 (в зависимости от радиуса закругления)
С выступающими острыми краями
В виде конического патрубка
eп= 0.62-0.63 (вход с острыми краями)
eп=0.7-0.99 (вход с закругленными краями.
По данным ЦАГИ коэффициент местного сопротивления при внезапном сужении определяется зависимостью:
0.14-0.3 (d/r =0.4-1 при j=90)
Постепенное сужение (конфузор)
Вентили и задвижки (при полном открытии)
Обыкновенный проходной вентиль
Коэффициент сопротивления диафрагмы можно также определить в зависимости от отношения площади поперечного сечения трубы S2 к площади отверстия диафрагмы S1.
5.2. Понятие шероховатости поверхности
Для грубой
количественной оценки шероховатости используется понятие средней высоты
выступов. Эта высота, измеряемая в линейных единицах, называется абсолютной
шероховатостью и обозначается обычно буквой Δ.
При одной и той же величине абсолютной
шероховатости влияние ее на величину гидравлических сопротивлений различно в
зависимости от диаметра трубы. Поэтому вводится понятие относительной
шероховатости, измеряемой отношением абсолютной шероховатости к диаметру
трубы, т. е. Δ/d.
Кроме того, даже при одной и той же абсолютной шероховатости
и одинаковом диаметре трубы из разного материала могут иметь совершенно
различное сопротивление в зависимости от формы выступов, густоты и характера их
расположения и т. д. Учесть это влияние непосредственными измерениями
практически невозможно. В связи с этим в практику гидравлических расчетов было
введено представление об эквивалентной разнозернистой шероховатости Δэ. Под эквивалентной
шероховатостью понимают такую высоту
выступов шероховатости, сложенной из песчинок одинакового размера, которая дает
одинаковую с заданной шероховатостью величину коэффициента гидравлического
трения λ.
Потери напора на прямых участках трубы.
Чтобы подсчитать потери напора воды на прямых участках труб использует уже готовую таблицу, представленную ниже. Значения в этой таблице указаны для труб, изготовленных их полипропилена, полиэтилена и других слов, начинающихся с «поли» (полимеров). Если же вы собираетесь установить стальные трубы, то необходимо умножить приведённые в таблице значения на коэффициент 1,5.
Данные приведены на 100 метров трубопровода, потери указаны в метрах водного столба.
Внутренний диаметр трубы, мм
Как пользоваться таблицей: Например, в горизонтальном водопроводе с диаметром трубы 50 мм и расходом 7 м3/ч потери будут составлять 2,1 метра водного столба для трубы из полимера и 3,15 (2,1*1,5) для трубы из стали. Как видите, всё довольно просто и понятно.
Кондиционер с установкой за 19 990 руб.
Использование трубопроводов в системах кондиционирования и вентиляции
В системах кондиционирования теплоноситель перемещается по трубопроводам. Необходимый диаметр труб зависит от расхода теплоносителя.
При движении теплоносителя по трубопроводу происходят потери давления из-за гидравлических сопротивлений: трения и местных сопротивлений. Поэтому для расчета трубопровода используют формулы гидравлики. Принципы гидравлического расчета не зависят от вида теплоносителя, которым может быть вода, пар, хладагенты и т.д.
Наиболее распространенный метод расчета трубопроводов – метод удельных потерь давления. Этот метод состоит в раздельном подсчете потерь давления на трение и на местные сопротивления в каждом участке системы труб.
Потери давления в трубопроводе на трение
Потери давления на преодоление сил трения зависят от плотности и скорости течения теплоносителя, а также параметров трубопровода. Потери на трение Pтр измеряются в кг на кв.м. и рассчитываются по формуле:
где x – безразмерный коэффициент трения, l – длина трубы в метрах, d – диаметр трубы в метрах, v – скорость течения перемещаемой среды в м/с, y – плотность теплоносителя в кг/куб.м., g – ускорение свободного падения (9,8 м/с2).
Коэффициент трения x определяется материалом и шероховатостью стенок трубы, а также режимом движения жидкости. Различают два режима течения: ламинарное и турбулентное.
Чтобы не рассчитывать каждый раз потери на трение в трубе, составлены таблицы гидравлических потерь в зависимости от диаметра труб и расхода жидкости. Они содержатся в справочниках проектировщика систем кондиционирования. Ниже приведена таблица гидравлического расчета для обыкновенных стальных водогазопроводных труб (ГОСТ 3262-62), по которым движется вода.
Режимы течения жидкости
Потери давления в трубопроводе на местные сопротивления
При изменении направления и скорости движения теплоносителя в трубопроводе системы кондиционирования возникают дополнительные сопротивления. Они называются местными и происходят в клапанах, отводах и т.п.
Потери давления на местные сопротивления на участке трубопровода рассчитываются по формуле:
где v – скорость течения перемещаемой среды в м/с, y – плотность теплоносителя в кг/куб.м., g – ускорение свободного падения (9,8 м/с2), W – суммарный коэффициент местных сопротивлений на данном участке. Он определяется опытным путем либо содержится в справочниках.
Потери давления на местные сопротивления Z ищут отдельно для каждого участка сети трубопровода.
Замечание: при расчете водяных систем можно воспользоваться упрощенной формулой: Рмест = 50W*v*v.
Расчет общих потерь давления
Общие потери давления складываются из действия трения и местных сопротивлений: Р = Ртр + Рмест.
Коэффициент гидравлического сопротивления различных труб
Для фитингов из ППР:
Деталь | Обозначение | Примечание | Коэффициент |
---|---|---|---|
Муфта | 0,25 | ||
Муфта переходная | Уменьшение на 1 размер | 0,40 | |
Уменьшение на 2 размер | 0,50 | ||
Уменьшение на 3 размер | 0,60 | ||
Уменьшение на 4 размер | 0,70 | ||
Угольник 90° | 1,20 | ||
Угольник 45° | 0,50 | ||
Тройник | Разделение потока | 1,20 | |
Соединение потока | 0,80 | ||
Крестовина | Соединение потока | 2,10 | |
Разделение потока | 3,70 | ||
Муфта комб. вн. рез. | 0,50 | ||
Муфта комб. нар. рез | 0,70 | ||
Угольник комб. вн. рез. | 1,40 | ||
Угольник комб. нар. рез. | 1,60 | ||
Тройник комб. вн. рез. | 1,40 — 1,80 | ||
Вентиль | 20 мм | 9,50 | |
25 мм | 8,50 | ||
32 мм | 7,60 | ||
40 мм | 5,70 |
Для полиэтиленовых труб
Труба | Расход, м3/час | Скорость, м/с | Потери напора в метрах, на 100 метров прямого трубопровода (м/100м) |
---|---|---|---|
Сталь новая 133×5 | 60 | 1,4 | 3,6 |
Сталь старая 133×5 | 60 | 1,4 | 6,84 |
ПЭ 100 110×6,6 (5ЭР 17)/td> | 60 | 2,26 | 4,1 |
ПЭ 80 110×8,1 (ЗйР 13,6) | 60 | 2,41 | 4,8 |
Сталь новая 245×6 | 400 | 2,6 | 4,3 |
Сталь старая 245×6 | 400 | 2,6 | 7,0 |
ПЭ 100 225×13,4 (50 В 17) | 400 | 3,6 | 4,0 |
ПЭ 80 225×16,6 (ЗЭК 13,6) | 400 | 3,85 | 4,8 |
Сталь новая 630×10 | 3000 | 2,85 | 1,33 |
Сталь старая 630×10 | 3000 | 2,85 | 1,98 |
ПЭ 100 560×33,2 (ЗЭК 17) | 3000 | 4,35 | 1,96 |
ПЭ 80 560×41,2 (ЗЭК 13,6) | 3000 | 4,65 | 2,3 |
Сталь новая 820×12 | 4000 | 2,23 | 0,6 |
Сталь старая 820×12 | 4000 | 2,23 | 0,87 |
ПЭ100 800×47,4 (ЗЭК 17) | 4000 | 2,85 | 0,59 |
ПЭ 80 800×58,8 (ЗЭР 13,6) | 4000 | 3,0 | 0,69 |
Для бесшовных стальных труб
Режим движения | Число Рейнольдса | Определения λ |
---|---|---|
Ламинарный | или | |
Переходный | Проектирование трубопроводов не рекомендуется | |
Турбулентный | 1-я область | (ф-ла Блазиуса) Бф-ла Конакова) |
2-я область | (ф-ла Альтшуля) | |
3-я область | (ф-ла Альтшуля) (ф-ла Никурадзе) |
Для металлопластиковых труб
Наименование | Символ | Коэффициент |
---|---|---|
Тройник разделения потока | 7,6 | |
Тройник проходной | 4,2 | |
Тройник противоположные потоки при разделении потока | 8,5 | |
Тройник противоположные потоки при слиянии потока | 8,5 | |
Угол 90° | 6,3 | |
Дуга | 0,9 | |
Редукционный переход | 6,3 | |
Установочный уголок | 5,4 |
Расчет гидравлического сопротивления и его роль
Любая трубопроводная коммуникация имеет не только прямолинейные участки, но и повороты, ответвления, для создания которых используются различные фитинги. А для регулирования потока рабочей среды устанавливается запорная арматура
Всё это создаёт сопротивление, поэтому очень важно перед тем, как приступать к монтажу трубопровода, необходимо выполнить ряд расчётов, в том числе определить гидравлическое сопротивление. Это позволит в будущем сократить теплопотери и, соответственно, избежать лишних энергозатрат
Гидравлический расчёт выполняется с целью:
Во время движения по замкнутому контуру рабочему потоку приходится преодолевать определённое гидравлическое сопротивление. Причём с увеличением его значения, должна увеличиваться мощность насоса. Только правильные расчёты помогут выбрать оптимальный вариант насоса. Нет смысла покупать слишком мощное оборудования для трубопроводов с низким гидравлическим сопротивлением, ведь, чем больше мощность, тем выше энергозатраты.
Расчет в Excel трубопроводов по формулам теоретической гидравлики.
Рассмотрим порядок и формулы расчета в Excel на примере прямого горизонтального трубопровода длиной 100 метров из трубы ø108 мм с толщиной стенки 4 мм.
Исходные данные:
1. Расход воды через трубопровод G в т/час вводим
2. Температуру воды на входе в расчетный участок трубопровода tвхв °C заносим
3. Температуру воды на выходе из расчетного участка трубопровода tвыхв °C записываем
4. Внутренний диаметр трубопровода dв мм вписываем
5. Длину трубопровода Lв м записываем
в ячейку D8: 100,000
6. Эквивалентную шероховатость внутренних поверхностей труб ∆ в мм вносим
Выбранное значение эквивалентной шероховатости соответствует стальным старым заржавевшим трубам, находящимся в эксплуатации много лет.
Эквивалентные шероховатости для других типов и состояний труб приведены на листе «Справка» расчетного файла Excel«gidravlicheskiy-raschet-truboprovodov.xls», ссылка на скачивание которого дана в конце статьи.
7. Сумму коэффициентов местных сопротивлений Σ(ξ) вписываем
Мы рассматриваем пример, в котором местные сопротивления присутствуют в виде стыковых сварных швов (9 труб, 8 стыков).
Для ряда основных типов местных сопротивлений данные и формулы расчета представлены на листах «Расчет коэффициентов» и «Справка» файла Excel «gidravlicheskiy-raschet-truboprovodov.xls».
Результаты расчетов:
8.Среднюю температуру воды tср в °C вычисляем
в ячейке D12: =(D5+D6)/2 =82,5
9.Кинематический коэффициент вязкости воды n в cм2/с при температуреtср рассчитываем
в ячейке D13: =0,0178/(1+0,0337*D12+0,000221*D12^2) =0,003368
10.Среднюю плотность воды ρ в т/м3 при температуреtср вычисляем
в ячейке D14: =(-0,003*D12^2-0,1511*D12+1003,1)/1000 =0,970
11.Расход воды через трубопровод G’ в л/мин пересчитываем
в ячейке D15: =D4/D14/60*1000 =773,024
Этот параметр пересчитан нами в других единицах измерения для облегчения восприятия величины расхода.
12.Скорость воды в трубопроводе vв м/с вычисляем
в ячейке D16: =4*D4/D14/ПИ()/(D7/1000)^2/3600 =1,640
К ячейкеD16 применено условное форматирование. Если значение скорости не попадает в диапазон 0,25…1,5 м/с, то фон ячейки становится красным, а шрифт белым.
Предельные скорости движения воды приведены на листе «Справка» расчетного файла Excel «gidravlicheskiy-raschet-truboprovodov.xls».
13.Число Рейнольдса Reопределяем
в ячейке D17: =D16*D7/D13*10 =487001,4
14.Коэффициент гидравлического трения λрассчитываем
в ячейке D18: =ЕСЛИ(D17 =0,035
15.Удельные потери давления на трение Rв кг/(см2*м)вычисляем
в ячейке D19: =D18*D16^2*D14/2/9,81/D7*100 =0,004645
16.Потери давления на трение dPтрв кг/см2 и Па находим соответственно
в ячейке D20: =D19*D8 =0,464485
и в ячейке D21: =D20*9,81*10000 =45565,9
17.Потери давления в местных сопротивлениях dPмсв кг/см2 и Па находим соответственно
в ячейке D22: =D10*D16^2*D14*1000/2/9,81/10000 =0,025150
и в ячейке D23: =D22*9,81*10000 =2467,2
18.Расчетные потери давления в трубопроводе dPв кг/см2 и Па находим соответственно
в ячейке D24: =D20+D22 =0,489634
и в ячейке D25: =D24*9,81*10000 =48033,1
19.Характеристику гидравлического сопротивления трубопровода Sв Па/(т/ч)2 вычисляем
в ячейке D26: =D25/D4^2 =23,720
Гидравлический расчет в Excel трубопровода по формулам теоретической гидравлики выполнен!
4.3 Тройник приточный нестандартизованной формы
Потери
давления в нестандартизованных приточных тройниках определяются по формуле
(4.7)
где wc – скорость движения жидкости до
тройника, м/с.
Коэффициент
сопротивления нестандартизованных приточных тройников нормальной формы с углом (рис.2) вычисляется по формуле
(4.8):
На рисунке 2 стрелками изображены направления движения жидкости;
Величина А’
определяется по таблице 1: