что такое предел текучести полимера
Механические свойства полимеров
Механические свойства полимеров — это комплекс свойств, определяющих механическое поведение полимеров при воздействии на них внешних сил.
Общие закономерности механических свойств полимеров
Для механических свойств полимеров характерны:
Общий характер механического поведения конкретного полимерного тела определяется тем, в каком физическом состоянии оно находится.
Линейные и разветвленные полимеры могут находиться в трех основных аморфных состояниях:
трехмерные (пространственные, сшитые) полимеры — только в первых двух из этих состояний.
Многие полимеры могут также находиться в кристаллическом состоянии, существенной особенностью которого является то, что практически всегда в полимерном теле наряду со строго упорядоченными кристаллическими областями сохраняются области с аморфной структурой (поэтому такое состояние называют также аморфно-кристаллическим, частично кристаллическим или полукристаллическим). Строго кристаллическое состояние реализуется только в полимерных монокристаллах.
При рассмотрении механических свойств полимеров в особую группу выделяют ориентированное состояние, в котором могут находиться как аморфные, так и кристаллические полимеры и для которого характерна анизотропия механических свойств.
Область применения полимера во многом определяется тем, в каком состоянии находится он в температурном интервале эксплуатации (обычно от —40 до 40 °С).
Полимеры, находящиеся в этом интервале в высокоэластическом состоянии, называются эластомерами. Из эластомеров широкое техническое применение находят резины. Полимерные материалы, находящиеся в условиях эксплуатации в стеклообразном или кристаллическом состоянии, называются пластическими массами. Последние используют в виде объемных изделий и пленок. Одноосноориентированные полимеры широко применяют в качестве волокон.
Классификация и общая характеристика механических свойств полимеров
Под действием механических сил все тела деформируются, а при достаточно сильных или длительных воздействиях разрушаются. В соответствии с этим различают деформационные и прочностные свойства. В отдельную группу механических свойств выделяют фрикционные свойства, проявляющиеся при движении твердого полимерного тела по поверхности другого тела.
Для изучения механических свойств и определения механических характеристик материалов проводятся по определенным методикам механические испытания.
Испытания различаются типом деформации:
и режимом нагружения:
Выбор метода испытаний определяется как их целями, так и типом исследуемого материала.
Для качественного и количественного описания механических свойств полимеров пользуются теми же понятиями и характеристиками, что и для описания механических свойств неполимерных материалов. Вместе с тем особенности поведения полимеров требуют введения новых понятий, а иногда и некоторого изменения смысла принятых.
Деформационные свойства полимеров:
Прочностные свойства полимеров:
Фрикционные свойства полимеров
Для количественного описания этих свойств используют коэффициент трения — отношение тангенциальной силы к нормальному усилию и износостойкость, характеризующую скорость разрушения материала при трении.
Физическое состояние полимера и его механические свойства
Механические свойства полимеров в аморфном состоянии
Различие между отдельными физическими состояниями аморфных полимеров состоит в разной реакции полимеров, находящихся в этих состояниях, на механическое воздействие:
Из-за релаксационного характера высокоэластической деформации и вязкого течения характер реакции на механическое воздействие существенно зависит от длительности воздействия. В определенном диапазоне температур тело может реагировать на кратковременное воздействие упруго, а при длительных (порядка времени релаксации высокоэластической деформации или большего) проявлять высокоэластичность.
При более высоких температуpax вследствие уменьшения с ростом температуры времени релаксации тело может проявлять высокоэластичность при кратковременных воздействиях, а при длительных вести себя как вязкая жидкость.
Таким образом, разделение на стеклообразное, высокоэластическое и вязкотекучее состояния связано с временным режимом воздействия.
Чтобы придать определенность разделению на состояния, при нахождении температур переходов выбирают некоторую скорость нагревания (например, 1 ⁰С/сек) и по резкому изменению величины деформации определяют температуры переходов. Поскольку упругая и высокоэластическая деформации имеют характерные, сильно различающиеся между собой значения модулей, деление на состояния проводят также по значению модуля, измеряемого в динамическм режиме или в режиме релаксации напряжений.
В стеклообразном состоянии ниже температуры хрупкости Tхр полимер ведет себя как хрупкое твердое тело, разрушаясь при небольших, до нескольких процентов, относительных деформациях (рисунок 1, кривая 1). Выше Тхр, при напряжениях, больших σв — предела текучести (вынужденной высокоэластичности), развивается вынужденная высокоэластическая деформация, которая может достигать десятков и сотен процентов; при этом происходит переход от хрупкого разрушения к квазипластическому, сопровождающийся обычно резким ростом ударной вязкости (кроме тех случаев, когда падение прочности происходит быстрее роста предельной деформации). Растяжение полимера при температуpax выше Tхр (рисунок 1, кривая 2) у многих полимеров протекает неоднородно по образцу, образуется локальное сужение — шейка, в которой материал сильно ориентирован.
По мере растяжения шейка распространяется на весь образец. С ростом температуры модуль Юнга, прочность, твердость падают, однако их изменение не превышает, как правило, одного порядка. С ростом температуры уменьшаются также значения предела текучести, достигая нуля при температуре стеклования Тс. Восстановление формы образца достигается нагреванием до температуры, несколько превышающей Тс.
В высокоэластическом состоянии высокоэластическая деформация может развиться при любом напряжении. Переход в это состояние при Тс сопровождается быстрым изменением некоторых равновесных физических свойств, в частности коэффициента теплового расширения. Переход в стеклообразное состояние может быть осуществлен также изменением временного фактора воздействия на материал, например, частоты деформирования.
В этом случае говорят о механическом стекловании. Каждой частоте отвечает определенная температуpa Тм, при которой развитие деформаций сопровождается наибольшими механическими потерями. Положение максимума механических потерь определяет значение температуры стеклования, а его зависимость от частоты — кинетический (релаксационный) характер стеклования.
Вблизи Тм рост деформации с температурой происходит наиболее резко (рисунок 2). Это связано с тем, что в этой области время релаксации падает при линейном росте температуры (вернее при линейном уменьшении обратной температуры) по закону, близкому к экспоненциальному. Описать единым образом деформацию полимера в переходной области в определенном интервале времен и частот воздействия позволяет суперпозиции принцип температурно-временной (температурно-частотный), устанавливающий количественно эквивалентность влияния роста температуры и уменьшения времени воздействия (увеличения частоты, см. также Александрова — Лазуркииа частотно-температурный метод). С ростом температуры происходит уменьшение внутреннего трения, приводящее к уменьшению времени релаксации, и при достаточно высоких температуpax развитие высокоэластической деформации происходит за доли секунды. Эту область называют иногда плато высокоэластичности. Растяжение полимера в высокоэластическом состоянии носит существенно нелинейный характер и при больших деформациях сопровождается ориентацией макромолекул, которая может приводить к обратимой кристаллизации. При больших деформациях проявляется существенное различие в поведении линейных и пространственных (сшитых) полимеров. Если деформация сшитых полимеров обратима, то у линейных полимеров развитие высокоэластической деформации сопровождается также развитием необратимых деформаций.
В вязкотекучем состоянии доминирующим является вязкое течение, осуществляемое в результате необратимого перемещения целых макромолекул или даже агрегатов макромолекул. Особенностью течения полимерных тел является то, что одновременно с ним развивается обратимая высокоэластическая деформация. Это приводит к ряду специфичных эффектов, в частности к разбуханию струи, вытекающей из трубы (высокоэластическое восстановление), Вайссенберга эффекту и др. Для полимеров в вязкотекучем состоянии характерно также явление тиксотропии — обратимое разрушение структуры в процессе течения, приводящее к падению вязкости.
К свойствам полимеров в вязкотекучем состоянии близки свойства концентрированных растворов полимеров. Механические свойства разбавленных растворов полимеров близки к свойствам вязких простых жидкостей, причем с ростом концентрации полимера, а также молекулярной массы вязкость растворов растет. Даже в очень разбавленных растворах полимеров наблюдается градиентная зависимость вязкости.
Механические свойства полимеров в (аморфно-кристаллическом) состоянии.
Механические свойства полимеров в аморфно-кристаллическом состоянии во многом определяются тем, что в этом состоянии полимеры представляют собой своеобразные микроконструкции, состоящие из связанных между собой элементов (кристаллических и аморфных областей) с различными механическими характеристиками. Различные области полимера деформируются по-разному, а в пределах одной области разные макромолекулы напряжены и деформированы также различно. Физические методы позволяют установить особенности реакции отдельных структурных элементов на механическое воздействие. В частности, исследование смещения рефлексов на широкоугловых рентгенограммах кристаллических полимеров при их растяжении позволило рассчитать величины деформации и модули Юнга кристаллических участков. Рассчитанные модули для всех полимеров превышали модули Юнга, определенные по механическим испытаниям, причем для полиэтилена при растяжении примерно на 10% на долю кристаллических участков пришлась деформация всего в 0,1%, а модуль Юнга кристаллической решетки достиг значения 25 000 Мн/м 2 (2500 кгс/мм 2 ), превысив значение механического модуля Юнга на 2 порядка.
При небольших напряжениях и деформациях благодаря существенному вкладу в общую деформацию деформации аморфных областей, механические свойства аморфно-кристаллических полимеров имеют сходство с механическими свойствами аморфных полимеров. При повышении температуры происходит уменьшение модуля Юнга, причем при переходе через температуру стеклования аморфных участков иногда наблюдается падение модуля, однако не на 4—5, как в случае аморфных полимеров, а всего на 1 — 2 порядка. Ниже определенной температуры аморфно-кристаллические полимеры, как и аморфные, разрушаются обычно хрупко (исключение составляют полипропилен и некоторые полиимиды, например, полипиромеллитимид, сохраняющие способность к большим деформациям до температуры —200 °С).
При больших напряжениях аморфно-кристаллические полимеры проявляют вынужденную высокоэластнчность. При этом деформируются как аморфные, так и кристаллические области, разрушаются одни кристаллические образования и возникают другие. У многих полимеров растяжение в кристаллическом состоянии идет с образованием шейки, в которой происходит ориентация макромолекул, сопровождающаяся обычно переходом от сферолитной кристаллической структуры к фибриллярной; при этом происходит резкое изменение механических свойств полимера.
Повышение температуры вызывает изменение механических характеристик:
При температуре плавления кристаллический полимер переходит в вязкотекучее состояние. Этот переход является фазовым, но температуpa плавления зависит от условий кристаллизации. Механические свойства аморфно-кристаллических полимеров зависят от степени кристалличности. Так, с ростом степени кристалличности растет модуль Юнга.
Механические свойства полимеров в ориентированном состоянии.
В одноосном и двухосном ориентированных состояниях могут находиться и кристаллические, и аморфные полимеры. Механические свойства ориентированных полимеров существенно зависят от степени ориентации. С повышением степени одноосной ориентации возрастает прочность (более чем на порядок), а деформируемость, как правило, падает. Повышение прочности носит четко выраженный анизотропный характер и происходит только в направлении ориентации; в перпендикулярном направлении прочность, как правило, падает, причем иногда настолько сильно, что может произойти расслоение полимера (волокна).
Предел текучести
Обозначение — σт. Единица измерения — Паскаль.
После прохождения предела текучести в металле в материале образца начинают происходить необратимые изменения, перестраивается кристаллическая решетка металла, появляются значительные пластические деформации. При этом металл самоупрочняется, об этом говорит то, что после площадки текучести деформации растут при возрастающем значении растягивающей силы.
Часто для данной механической характеристики дают формулировку «напряжение, при котором начинает развиваться пластическая деформация», не делая разницы с пределом упругости. В реальности значения предела текучести выше, чем предел упругости, примерно на 5 %.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
100 000), малой коэрцитивной силой, почти нулевой магнитострикцией и значительным магниторезистивным эффектом. Благодаря низкой магнитострикции сплав применяется в прецизионных магнито-механических устройствах и других устройствах.
Эта статья о способе обработки металлов. О методе укрепления здоровья человека см. ЗакаливаниеЗака́лка — вид термической обработки материалов (металлы, сплавы металлов, стекло), заключающийся в их нагреве выше критической точки (температуры изменения типа кристаллической решетки, то есть полиморфного превращения, либо температуры, при которой в матрице растворяются фазы, существующие при низкой температуре), с последующим быстрым охлаждением. Закалку металла для получения избытка вакансий не следует.
Термической (или тепловой) обработкой называется совокупность операций нагрева, выдержки и охлаждения твёрдых металлических сплавов с целью получения заданных свойств за счёт изменения внутреннего строения и структуры. Тепловая обработка используется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием, либо как окончательная операция технологического процесса, обеспечивающая заданный уровень свойств изделия.
Предел текучести стали
Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой. Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении. Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.
Текучесть металла
Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе. Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена. Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.
Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.
На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы. На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций. Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.
Величина предела текучести материала
С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году. Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы. Величина предела текучести материала будет равна
Расчет величины предела текучести
Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости.
График физического предела текучести
Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров. Такое строение предполагает наличие пространственной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы. Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела.
При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины
В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На практике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.
Физический предел текучести
В теории прочности для каждого материала существует несколько значений этой важной характеристики. Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно. Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия
Условный предел текучести
Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его трактуют как напряжение, при котором происходит деформация в переделах 0,2%.
Условный предел текучести
К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.
Предел текучести стали
Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них.
Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими. Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения.
Предел текучести стали
Поэтому к стали и предъявляются повышенные требования по механическим свойствам. С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные характеристики. На практике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях.
Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он характеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.
Влияние содержание углерода на свойства сталей
Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода. Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава. Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.
Азот и кислород в сплаве
Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость. Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала. С другой стороны, содержание азота повышает прочность, снижая предел текучести.
Микроструктура сплава, в составе которого присутствуют азот и кислород
Добавки марганца и кремния
Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%.
Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.
Примеси серы и фосфора
Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.
Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%
Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.
Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%. Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.
Легирующие добавки в составе сплавов
Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях.
Влияние легирующих элементов на свойства стали
Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.
Текучесть расплава металла
Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности.
Жидкий металл для процессоров
Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.
Испытание образца для определения предела текучести
Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия.
Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца. По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением. На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.
Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в практических применениях разницу между ними не учитывают.