что такое поперечное сечение трубы
Виды сечений труб.
Для прокладки водопровода или канализации в строительстве применяют трубы различных форм и сечений. Для классического водопровода могут использоваться круглые, квадратные, прямоугольные, треугольные, эллипсовидные и прочие трубы. Для канализации используют трубы круглой, полукруглой, эллиптической, полуэллиптической, яйцевидной, прямоугольной, трапецеидальной и прочих форм и сечений.
Наибольшей популярностью пользуются трубы с круглой формой поперечного сечения. Изготовление таких труб малозатратно, они обладают хорошими техническими характеристиками, а также рядом отличных технических и эксплуатационных качеств.
Для расчета веса трубы, либо длины трубы вы можете воспользоваться трубным калькулятором.
Виды сечений трубопровода могут быть различными:
Далее представлены формы поперечных сечений самотечных труб и каналов, такие как:
Расчет сечения трубопровода.
Формула площади поперечного сечения трубы будет зависеть от того, какова форма этого сечения. Для расчета сечения трубопровода необходимо вычислить площадь круга с диаметром, который равен наружному диаметру трубы, после чего вычесть толщину ее стенок.
Площадь круга рассчитывается по формуле: S = Pi*(R^2) или S=Pi*(D/2-N)^2,
В качестве примера производим расчет площади внутреннего сечения круглого трубопровода с внутренним диаметром, в 100 мм.
Радиус, данной трубы, будет составлять 50 мм, или 0,05 м.
Площадь трубы будет равна 3,14 х 0,05^2 = 0,00785 м2.
Внимание: рассчитывая проходимость самотечных трубопроводов (например, бытовой канализации) принимайте в расчет не полное, а так называемое живое сечение потока, которое ограничено средним уровнем воды.
Все необходимые данные о внутреннем диаметре ВГП труб, которые применяются при монтаже внутренних коммуникаций, можно найти в ГОСТ 3262-75, по которому эти трубы изготавливаются.
Таблица наружных диаметров труб.
ДУ, мм
Наружный диаметр, мм
Толщина стенки труб, мм
Легких
Обыкновенных
Усиленных
Особенности труб с различными сечениями.
Трубы круглого сечения очень просто очищаются от образовавшегося осадка гидравлическим способом с использованием шаров и цилиндров
По мере того увеличения диаметра трубы круглого сечения, давление грунта и временной внешней нагрузки стремительно увеличиваются. Для уменьшения усилия в стенках труб, своду придают полуэллиптическое сечение.
Иногда может использоваться яйцевидная форма сечения, труба такого сечения способна высокие статические и динамические нагрузки, но такая трубы имеет и недостатки: для монтажа труб с таким сечением необходима большая высота канала и глубина заложения, чем для труб круглого сечения при одинаковой пропускной способности.
Кроме этого, в трубах эллиптического сечения намного быстрее образуется осадок, который отлаживается на стенках. В тех местах, где присутствуют плывуны и грунт очень влажный, могут использоваться трубы лотковой формы. Это позволяет прокладывать канализационные сети на меньшей глубине.
Как рассчитать площадь сечения трубы – простые и проверенные способы
Произвести расчет сечения трубы довольно просто, ведь для этого есть ряд стандартных формул, а также многочисленные калькуляторы и сервисы в интернете, которые могут выполнить ряд простых действий. В данном материале мы расскажем о том, как рассчитать площадь сечения трубы самостоятельно, ведь в некоторых случаях нужно учитывать ряд конструкционных особенностей трубопровода.
Формулы вычислений
При проведении вычислений нужно учитывать, что по существу трубы имеют форму цилиндра. Поэтому для нахождения площади их сечения можно воспользоваться геометрической формулой площади окружности. Зная внешний диаметр трубы и значение толщины его стенок, можно найти показатель внутреннего диаметра, который понадобится для вычислений.
Стандартная формула площади окружности такова:
π – постоянное число, равное 3,14;
R – величина радиуса;
S – площадь сечения трубы, вычисленная для внутреннего диаметра.
Порядок расчета
Поскольку главная задача – это найти площадь проходного сечения трубы, основная формула будет несколько видоизменена.
В результате вычисления производятся так:
D – значение внешнего сечения трубы;
Примите к сведению, что, чем больше знаков в числе π вы подставите в расчеты, тем точнее они будут.
Приведем числовой пример нахождения поперечного сечения трубы, с наружным диаметром в 1 метр (N). При этом стенки имеют толщину в 10 мм (D). Не вдаваясь в тонкости, примем число π равным 3,14.
Итак, расчеты выглядят следующим образом:
Физические характеристики труб
Стоит знать, что показатели площади поперечного сечения трубы напрямую влияют на скорость транспортировки газообразных и жидких веществ. Поэтому крайне важно заложить в проект трубы с правильным сечением. Кроме того, на выбор диаметра трубы будет влиять еще и рабочее давление в трубопроводе. Читайте также: «Как посчитать площадь трубы – способы и формулы расчета».
Также в процессе проектирования трубопроводов стоит учитывать химические свойства рабочей среды, а также ее температурные показатели. Даже если вы знакомы с формулами, как найти площадь сечения трубы, стоит изучить дополнительный теоретический материал. Так, информация относительно требований к диаметрам трубопроводов под горячее и холодное водоснабжение, отопительные коммуникации или транспортировку газов, содержатся в специальной справочной литературе. Значение имеет также сам материал, из которого произведены трубы.
Выводы
Таким образом, определение площади сечения трубы является очень важным, однако, в процессе проектировки нужно обращать внимание на характеристики и особенности системы, материалы трубных изделий и их прочностные показатели.
Виды сечений труб.
Для прокладки водопровода или канализации в строительстве применяют трубы различных форм и сечений. Для классического водопровода могут использоваться круглые, квадратные, прямоугольные, треугольные, эллипсовидные и прочие трубы. Для канализации используют трубы круглой, полукруглой, эллиптической, полуэллиптической, яйцевидной, прямоугольной, трапецеидальной и прочих форм и сечений.
Наибольшей популярностью пользуются трубы с круглой формой поперечного сечения. Изготовление таких труб малозатратно, они обладают хорошими техническими характеристиками, а также рядом отличных технических и эксплуатационных качеств.
Для расчета веса трубы, либо длины трубы вы можете воспользоваться трубным калькулятором.
Виды сечений трубопровода могут быть различными:
Далее представлены формы поперечных сечений самотечных труб и каналов, такие как:
Расчет сечения трубопровода.
Формула площади поперечного сечения трубы будет зависеть от того, какова форма этого сечения. Для расчета сечения трубопровода необходимо вычислить площадь круга с диаметром, который равен наружному диаметру трубы, после чего вычесть толщину ее стенок.
Площадь круга рассчитывается по формуле: S = Pi*(R^2) или S=Pi*(D/2-N)^2,
В качестве примера производим расчет площади внутреннего сечения круглого трубопровода с внутренним диаметром, в 100 мм.
Радиус, данной трубы, будет составлять 50 мм, или 0,05 м.
Площадь трубы будет равна 3,14 х 0,05^2 = 0,00785 м2.
Внимание: рассчитывая проходимость самотечных трубопроводов (например, бытовой канализации) принимайте в расчет не полное, а так называемое живое сечение потока, которое ограничено средним уровнем воды.
Все необходимые данные о внутреннем диаметре ВГП труб, которые применяются при монтаже внутренних коммуникаций, можно найти в ГОСТ 3262-75, по которому эти трубы изготавливаются.
Таблица наружных диаметров труб.
ДУ, мм
Наружный диаметр, мм
Толщина стенки труб, мм
Легких
Обыкновенных
Усиленных
Особенности труб с различными сечениями.
Трубы круглого сечения очень просто очищаются от образовавшегося осадка гидравлическим способом с использованием шаров и цилиндров
По мере того увеличения диаметра трубы круглого сечения, давление грунта и временной внешней нагрузки стремительно увеличиваются. Для уменьшения усилия в стенках труб, своду придают полуэллиптическое сечение.
Иногда может использоваться яйцевидная форма сечения, труба такого сечения способна высокие статические и динамические нагрузки, но такая трубы имеет и недостатки: для монтажа труб с таким сечением необходима большая высота канала и глубина заложения, чем для труб круглого сечения при одинаковой пропускной способности.
Кроме этого, в трубах эллиптического сечения намного быстрее образуется осадок, который отлаживается на стенках. В тех местах, где присутствуют плывуны и грунт очень влажный, могут использоваться трубы лотковой формы. Это позволяет прокладывать канализационные сети на меньшей глубине.
Метод сечений. Силовые факторы в методе сечений
Сегодня нам предстоит небольшой экскурс в школьные программы геометрии и физики. Мы вспомним, как вычисляется площадь поперечного сечения трубы и ее внутренний объем. Кроме того, нам предстоит выяснить, как изменения диаметра трубопровода действуют на давление в потоке жидкости. Итак, в путь.
На фото – водогазопроводные трубы. Нам предстоит научиться вычислять их внутреннее сечение.
Вычисляем площадь сечения
Очевидно, формула площади поперечного сечения трубы будет зависеть от того, какова форма этого сечения. Какие варианты возможны?
Круглая
Площадь круга имеет вид S = Pi R^2, где:
В качестве примера давайте выполним расчет площади внутреннего сечения круглого трубопровода с внутренним диаметром, равным 100 миллиметрам.
Обратите внимание: при расчете проходимости самотечных трубопроводов (например, бытовой канализации) актуально не полное, а так называемое живое сечение потока, ограниченное средним уровнем воды.
А – полное сечение, б – живое сечение потока в частично заполненной трубе, в – живое сечение потока в лотке.
Где взять данные о внутреннем диаметре ВГП труб, использующихся при монтаже внутренних коммуникаций зданий? Продавцами обычно указывается лишь ДУ (условный проход) и тип – легкая, обыкновенная или усиленная.
Вся нужная информация найдется в ГОСТ 3262-75, по которому эти изделия производятся.
ДУ, мм | Наружный диаметр, мм | Толщина стенки труб, мм | ||
Легких | Обыкновенных | Усиленных | ||
15 | 21,3 | 2,5 | 2,8 | 3,2 |
20 | 26,8 | 2,5 | 2,8 | 3,2 |
25 | 33,6 | 2,8 | 3,2 | 4,0 |
32 | 42,3 | 2,8 | 3,2 | 4,0 |
40 | 48,0 | 3,0 | 3,5 | 4,0 |
50 | 60,0 | 3,0 | 3,5 | 4,5 |
65 | 75,5 | 3,2 | 4,0 | 4,5 |
80 | 88,5 | 3,5 | 4,0 | 4,5 |
90 | 101,3 | 3,5 | 4,0 | 4,5 |
100 | 114,0 | 4,0 | 4,5 | 5,0 |
125 | 140,0 | 4,0 | 4,5 | 5,5 |
150 | 165,0 | 4,0 | 4,5 | 5,5 |
Как на основе этой таблицы своими руками вычислить фактический внутренний диаметр?
Инструкция проста и, в общем-то, очевидна.
Подсказка: онлайн-калькулятор площади поперечного сечения трубы любого типа зачастую можно найти на сайте производителя или дилеров.
Квадратная
Профильные трубы сравнительно редко используются для транспортировки жидкостей: это области приоритетного применения трубопроводов круглого сечения.
Тем не менее, в ряде случаев приходится рассчитывать и внутреннее сечение профтруб. В случае квадратной трубы оно равно квадрату разности наружного размера трубы и удвоенной толщины ее стенок. Так, для изделия размером 100х100 мм со стенками толщиной 4 мм расчет приобретет вид (100 – (4 х 2)) ^2 = 8464 мм2.
Приведенная схема расчета будет иметь небольшую погрешность за счет скругления углов.
Важно! В большинстве формул используется площадь, выраженная в квадратных метрах. Коэффициент пересчета мм2 в м2 – 1:1000000, то есть в приведенном выше случае мы получим 0,008464 м2.
Прямоугольная
Схема расчетов практически идентична описанной для квадратных профтруб. Разница лишь в том, что стенки неодинаковы; соответственно, мы перемножаем их размеры за вычетом… да-да, опять-таки удвоенной толщины стенок.
Так, для прямоугольной профтрубы размером 150х180 мм при толщине стенки 6 мм искомое значение будет равным (150 – (6 х 2)) х (180 – (6 х 2)) = 23184 мм2, или 0,023184 м2.
Для расчета нужны три параметра: оба размера и толщина стенки.
Сортамент труб.
Наружный диаметр dн, мм | Внутренний диаметр dвн, мм | Толщина стенки d. мм | Наружный диаметр dн, мм | Внутренний диаметрdвн, мм | Толщина стенки d, мм |
1. Трубы стальные бесшовные общего назначения | 3. Трубы насосно-компрессорные | ||||
14 | 10 | 2.0 | А. Гладкие | ||
22 | 18 | 2.0 | 48.3 | 40.3 | 4.0 |
32 | 27 | 2.5 | 60.3 | 50.3 | 5.0 |
54 | 49 | 2.5 | 73.0 | 62.0 | 5.5 |
60 | 54 | 3.0 | 88.9 | 75.9 | 6.5 |
70 | 64 | 3.0 | 101.6 | 88.6 | 6.5 |
95 | 88 | 3.5 | 114.3 | 100.3 | 7.0 |
108 | 100 | 4.0 | |||
2. Трубы нефтепроводные и газопроводные | Б. Трубы с высаженными концами | ||||
114 | 106 | 4.0 | 32.0 | 25.0 | 3.5 |
146 | 136 | 5.0 | 42.2 | 35.2 | 3.5 |
168 | 156 | 6.0 | 48.3 | 40.3 | 4.0 |
194 | 180 | 7.0 | 60.3 | 50.3 | 5.0 |
245 | 227 | 9.0 | 73.0 | 62.0 | 5.5 |
273 | 253 | 10.0 | 88.9 | 75.9 | 6.5 |
299 | 279 | 10.0 | 101.6 | 88.6 | 6.5 |
426 | 492 | 12.0 | 114.3 | 100.3 | 7.0 |
529 | 513 | 8.0 | |||
632 | 616 | 8.0 |
Сечение и давление
Жил да был в славном 18 веке швейцарец Даниил Бернулли. Жил он, жил да и сформулировал между делом закон, который впоследствии положил начало современной гидродинамике и был назван его именем.
Если перевести сухой язык формул на привычный нам русский, то его можно сформулировать так: скорость потока обратно пропорциональна статическому давлению жидкости или газа в нем.
С практической стороны это означает, что на переходах диаметра трубопровода поток ведет себя вопреки здравому смыслу: увеличение сечения вызывает увеличение давления, а уменьшение и связанное с ним ускорение движения жидкости или газа – рост.
Взаимосвязь между сечением трубы, скоростью потока и давлением в нем.
В наше время этот эффект широко используется в механизмах самого разного назначения.
Приведем пару самых очевидных примеров, с которыми сталкивался любой из нас.
Принципиальная схема работы элеватора – главного элемента теплового узла дома.
Для чего это нужно знать
Ниже рассмотрим ситуации, когда данные параметры обычно всегда необходимо учитывать в работе:
На фото – расчет отопления 1 кв. м площади, исходя от диаметра трубопровода
Калькулятор площади поверхности трубыиз стали для покрасочных работ
Не стоит также забывать, что когда открывается кран горячего водоснабжения, объем жидкости в водопроводе бесцельно остывает. Большой диаметр трубы аккумулирует большое количество воды, которая в ней будет стоять, поэтому вы потратите больше тепла на нагрев помещения.
Как рассчитать сечение
Для гидравлических расчетов последней и ввели понятие – живое сечение.
Диаметр водопровода должен соответствовать его задачам
Расчет поверхности
Геометрическая задача, с которой вы не раз встречались на уроках, когда нужно было узнать площадь поверхности цилиндра, а, труба – это он и есть. Чтобы узнать нужную цифру необходимо знать длину окружности и высоту цилиндра (в нашем случае длину трубопровода).
Формула длины окружности – Lокр = πD, поверхности – S = πDL, где L–длина трубопровода, а D–его диаметр.
Для окрашивания можно использовать данную формулу напрямую, если же необходимо проводить теплоизоляционные работы, материала понадобиться несколько больше, так как он имеет толщину. К тому же во время процесса минеральная вата укладывается с некоторым перехлестом полотен.
Утепление стальных изделий своими руками
Рассчитываем внутреннюю поверхность
Не специалисты обязательно зададут вопрос – для чего нужно знать данный параметр? Специалисты же ответят – для гидродинамических расчетов, чтобы знать, какая площадь имеет контакт с водой во время движения по трубам.
Внутренняя поверхность пластиковых изделий не зарастает минеральными отложениями
С этим параметром есть несколько связанных нюансов:
Диаметр | Чем он больше, тем меньше шероховатость стенок оказывает влияние на движение рабочей жидкости. Если у трубопровода диаметр большой, а его длина маленькая, сопротивлением трубы можно пренебречь. |
Шероховатость | Данный параметр имеет большое значение для гидродинамических расчетов. Например, стальная ржавая внутри водопроводная труба и гладкая полипропиленовая по-разному влияют на скорость рабочей жидкости. |
Постоянство внутреннего диаметра | Стальные и чугунные изделия из-за коррозии и минеральных отложений со временем изменяют свою внутреннюю площадь. Из-за этого проход для потока уменьшается. |
Коррозия на внутренней поверхности уменьшает проход для рабочей жидкости
Формула расчета при этом будет такой – S=π(D-2N)L, где N–толщина стенки, L–длина трубопровода, D–его диаметр.
Сортамент труб.
Наружный диаметр dн, мм | Внутренний диаметр dвн, мм | Толщина стенки d. мм | Наружный диаметр dн, мм | Внутренний диаметрdвн, мм | Толщина стенки d, мм |
1. Трубы стальные бесшовные общего назначения | 3. Трубы насосно-компрессорные | ||||
14 | 10 | 2.0 | А. Гладкие | ||
22 | 18 | 2.0 | 48.3 | 40.3 | 4.0 |
32 | 27 | 2.5 | 60.3 | 50.3 | 5.0 |
54 | 49 | 2.5 | 73.0 | 62.0 | 5.5 |
60 | 54 | 3.0 | 88.9 | 75.9 | 6.5 |
70 | 64 | 3.0 | 101.6 | 88.6 | 6.5 |
95 | 88 | 3.5 | 114.3 | 100.3 | 7.0 |
108 | 100 | 4.0 | |||
2. Трубы нефтепроводные и газопроводные | Б. Трубы с высаженными концами | ||||
114 | 106 | 4.0 | 32.0 | 25.0 | 3.5 |
146 | 136 | 5.0 | 42.2 | 35.2 | 3.5 |
168 | 156 | 6.0 | 48.3 | 40.3 | 4.0 |
194 | 180 | 7.0 | 60.3 | 50.3 | 5.0 |
245 | 227 | 9.0 | 73.0 | 62.0 | 5.5 |
273 | 253 | 10.0 | 88.9 | 75.9 | 6.5 |
299 | 279 | 10.0 | 101.6 | 88.6 | 6.5 |
426 | 492 | 12.0 | 114.3 | 100.3 | 7.0 |
529 | 513 | 8.0 | |||
632 | 616 | 8.0 |
Значения коэффициентов эквивалентной шероховатости ∆ для труб из различных материалов.
Группа | Материалы, вид и состояние трубы | ∆*10-2. мм |
1. Давленые или тянутые трубы | Давленые или тянутые трубы (стеклянные, свинцовые, латунные, медные. цинковые. Оловянные, алюминиевые, никелированные и пр.) | 0.10 |
2. Стальные трубы | Бесшовные стальные трубы высшего качества изготовления | 1.0 |
Новые и чистые стальные трубы | 6.0 | |
Стальные трубы, не подверженные коррозии | 15.0 | |
Стальные трубы, подверженные коррозии | 20.0 | |
Стальные трубы сильно заржавевшие | 200 | |
Очищенные стальные трубы | 17 | |
3. Чугунные трубы | Новые черные чугунные трубы | 25 |
Обыкновенные водопроводные чугунные трубы, б /у | 100 | |
Старые заржавленные чугунные трубы | 150 | |
Очень старые, шероховатые. заржавленные чугунные трубы с отложениями | 250 | |
4. Бетонные, каменные и асбоцементные трубы | Новые асбоцементные трубы | 4 |
Очень тщательно изготовленные трубы из чистого цемента | 15 | |
Обыкновенные чистые бетонные трубы | 50 |
Скорость потока жидкости в трубе формула
При движении жидкости в круглой трубе скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая течение ламинарным, найдем закон изменения скорости с расстоянием от оси трубы.
Выделим воображаемый цилиндрический объем жидкости радиуса и длины l (рис. 77.1). При стационарном течении в трубе постоянного сечения скорости всех частиц жидкости остаются неизменными. Следовательно, сумма внешних сил, приложенных к любому объему жидкости, равна нулю. На основания рассматриваемого цилиндрического объема действуют силы давления, сумма которых равна Эта сала действует в направлении движения жидкости. Кроме того, на боковую поверхность цилиндра действует сила трения, равная (Имеется в виду значение на расстоянии от оси трубы). Условие стационарности имеет вид
Скорость убывает с расстоянием от оси трубы. Следовательно, отрицательна и Учтя это, преобразуем соотношение (77.1) следующим образом:
Разделив переменные, получим уравнение:
Интегрирование дает, что
Постоянную интегрирования нужно выбрать так, чтобы скорость обращалась в нуль на стенках трубы, т. е. — радиус трубы).
Подстановка значения С в (77.2) приводит к формуле
Значение скорости на оси трубы равно
С учетом этого формуле (77.3) можно придать вид
Таким образом, при ламинарном течении скорость изменяется с расстоянием от оси трубы по параболическому закону (рис. 77.2).
При турбулентном течении скорость в каждой точке меняется беспорядочным образом. При неизменных внешних условиях постоянной оказывается средняя (по времени) скорость в каждой точке сечения трубы. Профиль средних скоростей при турбулентном течении изображен на рис. 77.3. Вблизи стенок трубы скорость изменяется гораздо сильнее, чем при ламинарном течении, в остальной же части сечения скорость изменяется меньше.
Полагая течение ламинарным, вычислим поток жидкости Q, т. е. объем жидкости, протекающий через поперечное сечение трубы за единицу времени. Разобьем поперечное сечение трубы на кольца ширины (рис. 77.4). Через кольцо радиуса пройдет за секунду объем жидкости, равный произведению площади кольца на скорость течения в точках, находящихся на расстоянии от оси трубы.
Приняв во внимание формулу (77.5), получим:
Чтобы получить поток Q, нужно проинтегрировать выражение (77.6) по в пределах от нуля до R: я 9
— площадь сечения трубы). Из формулы (77.7) следует, что при ламинарном течении среднее (по сечению) значение скорости равно половине значения скорости на. оси трубы.
Подставив в (77.7) значение (77.4) для
получим для потока формулу
Эта формула называется формулой Пуазейля. Согласно (77.8) поток жидкости пропорционален перепаду давления на единице длины трубы, пропорционален четвертой степени радиуса трубы и обратно пропорционален коэффициенту вязкости жидкости. Напомним, что формула Пуазейля применима только при ламинарном течении.
Соотношение (77.8) используется для определения вязкости жидкостей. Пропуская жидкость через капилляр известного радиуса и измеряя перепад давления и поток Q, можно найти
Скорость потока жидкости в трубе формула
Научная библиотека популярных научных изданий
h м = ζ v 2 /2g.
При развитом турбулентном режиме ζ = const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв. т.е. такой длины прямого трубопровода, для которого ht = hм. В данном случае потери напора в местных сопротивлениях учитываются тем, что к фактической длине трубопровода добавляется сумма их эквивалентных длин
где Lпр – приведенная длина трубопровода.
Зависимость потерь напора h1-2 от расхода называется характеристикой трубопровода.
В случаях когда движение жидкости в трубопроводе обеспечивает центробежный насос, то для определения расхода в системе насос – трубопровод выстраивается характеристика трубопровода h =h(Q) с учетом разности отметок ∆z (h1-2 + ∆z при z1 z2) накладывается на напорную характеристику насоса H=H(Q), которая приведена в паспортных данных насоса (смотреть рисунок). Точка пересечения таких кривых указывает на максимально возможный расход в системе.