что такое площадь сечения в шаре
Что такое шар (сфера): определение, свойства, формулы
В публикации мы рассмотрим определение и основные свойства шара и сферы, а также формулы, с помощью которых можно найти площадь поверхности и объем данных геометрических фигур.
Определение шара и сферы
Шар – это совокупность всех точек в трехмерном пространстве, которые находятся на расстоянии не больше заданного от точки, называемой центром шара (на рисунке ниже – это точка O). Другими словами, это совокупность точек, ограниченных сферой.
Шар образуется путем вращения круга вокруг своего диаметра (оси) на 180° или полукруга – на 360°.
Сфера – это поверхность шара. Образуется путем вращения окружности вокруг своего диаметра на 180° или полуокружности – на 360°.
Различают два вида шаров:
Радиус шара (сферы) – расстояние между центром и точками, лежащими на его поверхности. На рисунке выше обозначен буквой R.
Диаметр шара (сферы) – отрезок, проходящий через центр шара и соединяющие две противоположные точки на его поверхности. Совпадает с осью шара, обычно обозначается буквой d.
Полюсы шара (сферы) – точки A и B, расположенные на концах его диаметра.
Свойства шара и сферы
Свойство 1
Любое сечение шара плоскостью является кругом.
Свойство 2
Любое сечение сферы плоскостью является окружностью.
Свойство 3
Все точки сферы равноудалены от ее центра.
Свойство 4
Сфера имеет самый большой объем среди всех фигур в пространстве, имеющих одинаковую площадь поверхности.
Свойство 5
Через две любые диаметрально противоположные точки (максимально отдаленные друг от друга точки на окружности) можно провести неограниченное количество кругов для шара или окружностей для сфер радиусом, равным радиусу шара/сферы.
Примечание: если точки не диаметрально противоположны, то провести можно только один круг (окружность).
Части шара
Сегмент шара – это часть шара, отсекаемая плоскостью. Иногда называется шаровым сегментом. На рисунке ниже окрашен в зеленый цвет.
Срез шара – часть шара между двумя параллельными плоскостями, пересекающими его. Также может называться шаровым слоем. На рисунке ниже закрашен желтым.
Сектор шара – состоит из шарового сегмента и конуса, вершина которого находится центре шара, а основание совпадает с основанием сегмента. На рисунке ниже сектор залит оранжевым.
Формулы для шара/сферы
В формулах ниже используется как радиус (R), так и диаметр фигур (d). Число π в расчетах обычно округляется до двух знаков после запятой и приблизительно равняется 3,14.
Шар и сфера, их сечения
Урок 40. Подготовка к ЕГЭ по математике
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Шар и сфера, их сечения»
Напомним, что шаром называется тело, состоящее из всех точек пространства, находящихся на расстоянии не большем заданного от некоторой данной точки. Эта точка – центр шара, а заданное расстояние – радиус шара.
Шар так же, как цилиндр и конус, является телом вращения. Он получается в результате вращения полукруга вокруг его диаметра.
Поверхность, образуемая при этом вращении полуокружности, называется сферой. Можно сказать, что сфера – это как бы оболочка, или граница, шара. Как окружность есть граница круга, так и сфера – это граница шара.
Назовём элементы сферы и шара.
Радиус сферы – это отрезок, соединяющий центр сферы и любую её точку.
Хорда сферы – отрезок, соединяющий две точки сферы.
Диаметр сферы – хорда сферы, проходящая через её центр.
Радиус, хорда, диаметр шара – это радиус, хорда, диаметр его сферы.
Любое сечение шара плоскостью есть круг. Центром этого круга является основание перпендикуляра, опущенного из центра шара на секущую плоскость.
Плоскость, которая проходит через центр шара, называется диаметральной плоскостью. Сечение ею шара – большим кругом, а сечение сферы – большой окружностью.
Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.
Плоскость, проходящая через точку А сферы и перпендикулярно радиусу, проведённому в эту точку, называется касательной плоскостью. Точка А называется точкой касания.
Свойство касательной плоскости к сфере: радиус сферы, проведённый в точку касания, перпендикулярен касательной плоскости.
Признак касательной плоскости к сфере: плоскость, перпендикулярная радиусу сферы в конечной его точке на сфере, является касательной к сфере.
Касательная плоскость пересекается с шаром в единственной точке – в точке касания.
Касательной прямой к сфере (шару) называется прямая, имеющая со сферой единственную общую точку.
Отрезки касательных к сфере, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр сферы.
Линией пересечения двух сфер является окружность.
Площадь сферы радиуса :
.
Объём шара радиуса :
.
Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Площадь боковой поверхности шарового сегмента:
.
Объём шарового сегмента:
,
где – радиус шара,
– высота шарового сегмента.
Шаровым сектором называется тело, которое получается из шарового сегмента и конуса, основанием которого является сечение плоскостью данного шара.
Площадь боковой поверхности шарового сектора:
.
Объём шарового сектора:
,
где – радиус шара,
– высота сегмента.
Шар называется вписанным в многогранник, а многогранник – описанным около шара, если поверхность шара касается всех граней многогранника.
Шар называется описанным около многогранника, а многогранник – вписанным в шар, если поверхность шара проходит через все вершины многогранника.
Шар называется вписанным в цилиндр, а цилиндр – описанным около шара, если поверхность шара касается оснований цилиндра и всех образующих.
Шар называется описанным около цилиндра, если окружности оснований цилиндра принадлежат поверхности шара.
Шар называется вписанным в конус (усечённый конус), а конус (усечённый конус) – описанным около шара, если поверхность шара касается основания (оснований) конуса и всех образующих.
Шар называется описанным около конуса (усечённого конуса), если окружность основания и вершина (окружности оснований) конуса принадлежат поверхности шара.
Если боковые грани пирамиды одинаково наклонены к плоскости основания, то в такую пирамиду можно вписать шар.
Около пирамиды можно описать шар тогда и только тогда, когда около её основания можно описать окружность.
Если боковые рёбра пирамиды равны между собой (или одинаково наклонены к плоскости основания), то около такой пирамиды можно описать шар.
В призму можно вписать шар тогда и только тогда, когда в перпендикулярное сечение этой призмы можно вписать окружность, а высота призмы равна диаметру окружности, вписанной в это перпендикулярное сечение.
Описать шар около призмы можно тогда и только тогда, когда призма прямая и около её основания можно описать окружность.
Основные моменты мы с вами повторили, а теперь давайте перейдём к практической части занятия.
Задача первая. Радиус шара увеличили в раза. Во сколько раз увеличился объём шара?
Задача четвёртая. В конус с радиусом основания, равным см, и высотой, равной
см, вписан шар. Найдите отношение площади боковой поверхности конуса к площади поверхности шара.
Задача пятая. Найдите объём шарового сектора, если радиус окружности его основания равен см, а радиус шара –
см.
Задача шестая. Шар с радиусом см пересечён плоскостью, находящейся на расстоянии
см от центра шара. Найдите площадь сечения.
Важные измерения
Радиус (обозначается r) — единственное необходимое измерение. Это расстояние от любой точки на поверхности сферы до её центра. Самый длинный отрезок, равный двум r, называется диаметром (d). Земля называется сфероидом, потому что она очень близка к шару, но не идеально круглая. Она немного вытянута на северном и южном полюсах.
Впервые вычислить площадь (S) поверхности шара удалось Архимеду. Именно он установил, что для того, чтобы найти S любого трёхмерного объекта, необходимо измерить его радиус. Для сферы получилась следующая формула: S = 4 * π * r ². Для того чтобы понять, как это работает, следует рассмотреть пример. Известно, что радиус детского мяча 10 см. Остаётся ещё одна неизвестная — число π. Это математическая константа, которая выражает отношение длины окружности к её диаметру и равна примерно 3,14. Далее, следует подставить цифры в уравнение:
Таким образом, можно найти площадь сферы через её радиус по формуле, полученной ещё в античности. Ещё одна важная характеристика — это объём (V) фигуры. Он вычисляется следующим образом: V = (4/3) * π * r³. Если придерживаться условий задачи, то V мяча = (4/3) * 3,14 * 10³ равен ≈ 4187 см ³. Сейчас можно избежать длительных расчётов, если нужно узнать площадь сферы, онлайн-калькуляторы — сервисы, которые очень в этом помогают.
Сектор сферы — это слой между двумя правильными круговыми конусами, имеющими общую вершину в центре шара и общую ось.
Надо сказать, что внутренний конус может иметь основание с нулевым радиусом. Формула, по которой определяют площадь сектора, следующая: S = 2 * π * r * h, где h — высота. К слову, эта же формула применима, если необходимо найти S части шара, отрезанной плоскостью, то есть полусферы. Такая же формула применяется при нахождении S сегмента (часть между двумя параллельными плоскостями) и зоны сферы (изогнутая поверхность сферического сегмента).
Терминология и сферическая геометрия
Окружность на шаре, которая имеет тот же центр и радиус, что и сама фигура, а следовательно, делит её на две части, называется большим кругом. Если конкретную (произвольную) точку этого геометрического тела обозначить как его северный полюс, то соответствующая антиподальная точка будет южным полюсом. А большой круг станет экватором и будет равноудалённым от них. Если он будет проходить через два полюса, тогда это уже линии долготы (меридианы).
Круги на сфере, проходящие параллельно экватору, называются линиями широты. Все эти термины используются для приблизительно сфероидальных астрономических тел. Любая плоскость, которая включает в себя центр шара, делит его на два равных полушария (полусферы).
Многие теоремы из классической геометрии верны и для сферической, но отнюдь не все, потому что сфера не удовлетворяет некоторым аксиомам, например, постулату параллельности. Такая же ситуация складывается и в тригонометрии — отличия есть во многих отношениях. Например, сумма внутренних углов сферического треугольника всегда превышает 180 градусов. Помимо этого, две таких одинаковых фигуры будут конгруэнтными.
Одиннадцать свойств
В своей книге «Геометрия и воображение» Дэвид Гилберт и Стефан Кон-Фоссен описывают свойства сферы и обсуждают, однозначны ли такие характеристики. Несколько пунктов справедливы и для плоскости, которую можно представить как шар с бесконечным радиусом:
Сфера превращается в себя трёхпараметрическим семейством жёстких движений. Любое вращение вокруг линии, проходящей через начало координат, может быть выражено как комбинация вращений вокруг трёхкоординатной оси.
О шаре и цилиндре
Так называлась работа, опубликованная античным математиком Архимедом. Она вышла в двух томах в 225 году до н. э. Он был первым, кто сделал полный и подробный трактат по основам вычисления площади поверхности сферы, объёма шара и аналогичных значений для таких элементов, как цилиндр. Результатами его деятельности пользуются до сих пор.
Архимед особенно гордился формулой объёма шара, где он доказал, что эта величина составляет две трети объёма описанного цилиндра. Он даже попросил сделать чертёж этих предметов на своей надгробной плите. Позже римский философ Цицерон обнаружил такую гробницу, к сожалению, сильно заросшую окружающей растительностью.
Аргумент, который Архимед использовал для доказательства формулы V шара, был довольно сложным и сильно вовлечён в его геометрию. Поэтому во многих современных учебниках используется упрощённая версия, основанная на концепции предела, которого, конечно, не было в античные времена. Великий математик создавал в сфере усечённый конус путём построения и вращения геометрических фигур, и только после этого он определил объём.
Сейчас кажется, что он специально выбирал такие оригинальные методы. Однако это был всего лишь лучший из тех, которые были ему доступны в греческой математике. Его основные работы были вновь открыты в XX веке. Например, Метод механических теорем, как он назывался в трактате автора.
Расчет площади поперечного сечения круга
В инженерной и строительной практике нередко встречаются задачи по расчёту площади поперечного сечения. Если фигуру разрезать по линии, которая перпендикулярна продольной оси предмета, то полученный торец и будет поперечным сечением. Круг — один из наиболее часто встречающихся видов подобного рассечения. Такой срез присущ цилиндру, шару, конусу, тору, эллипсоиду.
Определение величины
Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.
По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.
На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».
С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.
Область применения
Круг — одна из фундаментальных фигур, которые окружают человека повсюду. Трубы, колеса, лампы, конфорки у плиты — всё это имеет форму круга или поперечное сечение в виде круга. Расчёт площади такого сечения может понадобиться в следующих ситуациях:
Стоит обратить внимание на разницу между кругом и окружностью. Окружность — это замкнутая кривая, все точки которой равно удалены от центра, в то время как круг — это часть плоскости (геометрическая фигура), ограниченная окружностью.
Круг имеет ряд характеристик:
Теорема гласит: площадь круга (S) равна произведению половины длины окружности и его радиуса. Длина окружности С находится в прямой зависимости от радиуса R с коэффициентом π («пи» = 3,14).
Способы расчета
Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.
Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.
При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.
Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:
Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».