что такое пьезоэлемент в зажигалке
Принцип работы пьезоэлемента
Что такое пьезоэлектрический эффект?
Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.
Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.
Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.
Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.
Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.
Прямой пьезоэлектрический эффект
Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:
Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.
Обратный пьезоэлектрический эффект
Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:
Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств.
Примером могут послужить звуковые колонки, сирены, звонки.
Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах.
Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.
Пьезоэлектрические материалы
Данные материалы должны производить электрическую энергию из-за механических воздействий, таких как сжатие. Также эти материалы должны деформироваться при приложении к ним напряжения.
Данные материалы условно разделяют на две группы – кристаллы и керамические изделия. ЦТС (цирконат-титанат свинца), титанат бария, ниобат лития – примеры искусственных пьезоэлектрических материалов, обладающих более ярко выраженным эффектом, чем кварц и другие природные материалы.
Пьезоэлектрические устройства
Гидролокатор
Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов.
Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок.
В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.
На рисунке ниже показан принцип работы гидролокатора:
Принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.
Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.
Пьезоэлектрические исполнительные устройства
Ниже показана работа силового привода на основе пьезоэлектрического эффекта:
Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.
Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.
Пьезоэлектрические громкоговорители и зуммеры
Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.
Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.
Пьезо драйверы
Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.
Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:
Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя.
Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.
Описание устройства и цепей измерения
Пьезоэлектрический преобразователь давления имеет следующую структуру:
Мощность на выходе – минимальна, в связи с этим предусматривают усилитель с большим сопротивлением. По сути, напряжение зависит от емкости цепи входа. Характеристики преобразователя указывают на чувствительность и емкость. В основном это заряд и собственные показатели устройства. Если рассчитать суммарно, то получится следующая выходная мощность: Sq = q/F или Uxx = d11·F/Co.
Чтобы расширить диапазон частоты, необходимо измеряемые низкие переменные увеличить в сторону постоянной цепи времени. Подобное действие легко осуществить с помощью включения конденсаторов, которые расположены параллельно с устройством. Правда при этом напряжение выхода снизится. Сопротивление, которое было увеличено, расширит диапазон без утрат чувствительности. Но для его повышения необходимы улучшенные изоляционные качества и усилители с высокоомным входом.
Описание цепей измерения
Удельное и поверхностное сопротивления определяют собственное, причем основная составляющая для кварца выше, поэтому пьезоэлектрический преобразователь необходимо герметизировать. В результате повышаются качества, и поверхность защищается от влаги и грязи. Цепи измерения датчиков создавались как высокоомные усилители, в основе которых использовались выходной каскад на полевом транзисторе и неинвертирующий усилитель с операционным устройством. Напряжение поступает на вход и выход.
Однако в этом устаревшем пьезоэлектрическом преобразователе были недостатки:
Напряжение усилителя и чувствительность определяются допустимой погрешностью, если дополнить включенный стабильный объем С1.
Формула: ys = (ΔCo + ΔCk)/(Co+Ck +C1).
После преобразования получаем: S=Ubx/F.
Если коэффициент увеличивается, соответственно, и эти переменные возрастают.
Для измерительной цепи характерно:
Анализируя последнюю переменную, можно предположить, что постоянная линия времени следующая: t ≤ 1c. Сегодня устройства могут использовать с усилителями напряжения пьезоэлектрические датчики для заряда.
Преимущественные характеристики устройств
Однако развитие высокоточной техники улучшило способность реализовать точность без потерь.
В результате можно прийти к выводу, что для измерителей сил, давления и прочих элементов наиболее подходящими являются пьезоэлектрические преобразователи.
ПЭП ускорения имеет следующую конструкцию:
Конструкционные особенности преобразователей
Если необходимо изготовить датчик акселерометра, то важно правильно прикрепить пьезочувствительные пластины к основанию. Это действие осуществляется паянием.
Кабель должен соответствовать следующим требованиям:
То есть на вход усилителя не должна производиться тряска кабеля. Измерительная цепь создается симметрично, чтобы не возникало помех. В датчике связь несимметричная, сопротивление выводов и корпуса соединено таким образом, что получается изоляция внешних пластин. Чтобы добиться нужного результата, требуется измеритель выполнить из нечетного количества материалов, которые используются в процессе. Элементы прижимаются к усилителю сквозь отверстия в центральной части и через изоляторы, которые привинчены к корпусу.
Особенности приборов, измеряющих вибрации
Чтобы увеличить чувствительность измерительного прибора, необходимо применить пьезоэлементы с высоким модулем. Этот материал укладывают параллельно в ряд и соединяют металлическими прокладками и пластинами. Для подобного эффекта еще могут применяться вещества, которые работают на изгиб. Однако они имеют низкую частоту и уступают механике сжатия.
Материал может быть биморфным, его обычно собирают последовательно или параллельно, все зависит от положительно расположенных осей. Как правило, это две пластины. Если учитывать нейтральный слой, то над ним вместо пьезоэлемента может использоваться накладка из металла со средней толщиной.
Чтобы измерить сигналы, которые двигаются достаточно медленно, необходимо сделать следующее:
Сегодня пьезоакселерометры – усовершенствованные приборы, которые могут быть высокочастотными, с сильной чувствительностью.
Альтернативный источник энергии посредством преобразователей
Одним из знаменитых и неисчерпаемых средств получения электричества является энергия волн. Такие станции монтируют непосредственно в водную среду. Это явление связано с солнечными лучами, которые нагревают массу воздуха, благодаря чему возникают волны. Вал данного явления имеет энергоемкость, которая определяется по силе ветра, ширине воздушных фронтов, продолжительности порывов.
Значение может колебаться на мелководье или достигать 100 кВт на один метр. Пьезоэлектрический преобразователь энергии волн работает по определенному принципу. Уровень воды поднимается посредством волны, в процессе воздух выдавливается из сосуда. Затем потоки пропускаются реверсирующейся турбиной. Агрегат вращается по определенному направлению, вне зависимости от движения волн.
Этот аппарат имеет положительную характеристику.
До сегодняшнего дня совершенствование конструкции не прогнозируется, потому что эффективность и принцип работы доказаны всеми существующими путями.
В процессе технического прогресса, возможно, будут построены плавучие станции.
Ультразвуковой пьезоэлектрический преобразователь
Этот прибор устроен таким образом, что не требует дополнительных настроек. Он снабжен блоком памяти, который выдает технический результат. Относится к контрольно-измерительным аппаратам. Подобные устройства отличаются по типу, техническим характеристикам, которые составляются на основе данных о конструкции и предназначении с минимальными погрешностями. Все требования учитываются на основе конструкции.
Для всех подобных аппаратов предусмотрена стандартная схема создания: дефектоскоп, корпус, электроды, главный элемент, который скрепляют с основанием, жила, фольга и другие материалы. Ультразвуковой пьезоэлектрический преобразователь является полезной моделью. Он позволяет получать данные непосредственно с помощью звука, установленного на основании устройства.
источник огня
пятница, 19 октября 2012 г.
Принцип работы пьезозажигалки
Принцип работы пьезозажигалки
Опыты с пьезоэлектричеством проводили давно, в числе других ученых этим занимались и очень знаменитые братья Кюри. Но зажигалки с пьезоэлементом пустили уже на конвейер только лишь в середине XX века. Первой компанией, которая взяла на вооружение эту технологию, стала компания Ronson. Теперь пьезозажигалки — обычные, с турбонаддувом, со светодиодными фонариками — есть в линейках многих, многих производителей.
В зависимости от типа горючего пламя зажигалки может достигать следующих температурных величин:
1. пропан-бутан — от 800 до 1970 °С;
2. бензин — 1300—1400 °С;
Дизайн зажигалки напрямую зависит от её назначения. Карманные зажигалки имеют небольшие размеры, их легко переносить. Оформление совершенно любое, но ограничены размеры. Настольные зажигалки довольно редки. Такие зажигалки достаточно массивны и не предназначены для переноски. Дизайн таких зажигалок может быть любым. Существуют также специальные каминные зажигалки, при большой длине они имеют небольшую ширину и толщину, и даже зажигалки от известных брендов. Не так давно появились сенсорные зажигалки, в которых зажигание газа происходит без механических воздействий, а путем воздействия на сенсорный датчик
Пьезозажигалки с турбонаддувом
Если обычную кремневую зажигалку зажечь на ветру — целая проблема, а пьезозажигалки с турбонаддувом выручают в лютую непогоду. В них газ резко набирает скорость, проходя через микроскопические отверствие в турбине,и, затягивает через боковые отверстия, воздух и поступает в формирователь пламени вверху этой турбины под очень высоким напором. В результате пламя получается очень мощным и от дуновения ветра никак не затухает.
Какая зажигалка прослужит дольше: кремневая или пьезовая?
Пьезозажигалки, как правило, живут намного дольше чем зажигалки механические. Секрет этого долголетия заключается в отсутствии трения элементов. Однако, важно то что с пьезоэлементом если что-то случилось,то починить его вам не удастся. Никакая зачистка ему не поможет, помните что «самодеятельность» убьет зажигалку уже окончательно. Заметим, однако, что выход из строя пьезоэлемента — явление очень редкое.
Производители зажигалок, чаще всего делают пьезозажигалки заправляемыми. Купив одну зажигалку, можно пользоваться ей очень длительное время. Так что, однако если вы хотите выбрать зажигалку в подарок, лучше обратить внимание на оригинальные газовые пьезозажигалки,ведь их сейчас очень большой выбор.
Кроме того, пьезозажигалкам не грозит утечка газа, что с кремневыми случается, к сожалению, нередко.
Окончательный же выбор — пьезозажигалка или старая-добрая зажигалка механическая — зависит исключительно от личных предпочтений.
Зажигалки не рекомендуется длительно хранить без газа и эксплуатации. Зажигалки необходимо оберегать от попадания на них влаги, грязи и пыли. Не рекомендуется дотрагиваться до рассекателя или турбины, так как это может вывести зажигалку из строя.
ликбез от дилетанта estimata
Новичку об основах в области экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.
пятница, 21 февраля 2020 г.
Зажигалка
В этой статье будут описывать карманные зажигалки, т.е. те зажигалки, которые можно носить с собой.
Карманные зажигалки имеют небольшие размеры, их легко переносить. Оформление совершенно любое, но ограничены размеры.
Существуют международные и национальные требования к зажигалкам, направленные на безопасность обращения с ними. Международный стандарт ISO 9994:2005(E) «Lighters — Safety specification» («Зажигалки — требования безопасности»), где описаны технические требования к зажигалкам и методы тестирования. Например, для получения пламени оговариваются минимум двукратное действие пользователя с усилием не ниже 15 Ньютонов. Также оговариваются максимальная высота пламени, устойчивость к падению и непрерывному горению, стойкость к температурам окружающей среды, требования к предупреждающим символам и т. п..
Некоторые региональные стандарты, например, европейский EN 13869:2002, оговаривают ограничения дизайна зажигалок чтобы они не были привлекательными для детей несознательного возраста. Например, выполненных в виде предметов, не являющихся зажигалками (животных, героев мультфильмов, фонарей, фотоаппаратов и др.), которые могут быть ошибочно принятыми детьми за игрушки, и привести в их руках к травмам, ожогам и пожарам.
Большинство зажигалок работает по принципу поджига специального легковоспламеняющегося топлива, заправленного в зажигалку. Горящее топливо служит источником огня для пользователя зажигалки.
В качестве топлива чаще всего используются бензин для так называемых бензиновых зажигалок и сжиженные углеводородные газы для газовых зажигалок. От этого и служит деления на два основных класса зажигалок: газовые и бензиновые.
Газовая зажигалка
Для дозированной подачи газа из емкости в зону горения используется газовый редуктор, обычно выполненный в виде пористого пластикового стержня. В нём происходит постепенное снижение давления газа.
Турбозажигалка |
Различают зажигалки с низким давлением паров газа на выходе редуктора (обычная газовая зажигалка) и так называемые турбозажигалки с высоким давлением паров. Турбозажигалки дают плотный направленный поток газа, сбить пламя с которого ветром гораздо труднее.
Защита сопла зажигалки изготавливается из металла с отверстиями. Защита предназначена для для смешивания топлива и воздуха, и в то же время делая зажигалку менее чувствительной к ветру.
Высокоэнергетическая струя в газовых зажигалках позволяет осуществлять смешивание с использованием принципа Бернулли, так что воздушные отверстия в этом типе имеют тенденцию быть намного меньше и дальше от пламени.
Бензиновая зажигалка
В бензиновых зажигалках горят пары бензина. Температура пламени может достигать 1300—1400 °С.
Защита сопла зажигалки изготавливается из металла с отверстиями. Защита предназначена для для смешивания топлива и воздуха, и в то же время делая зажигалку менее чувствительной к ветру.
Электрическая зажигалка
Отдельно стоит выделить зажигалки, которые работают без топлива. Требуемую температуру он создают пропусканием тока через проволоку или длительным электрическим разрядом.
Первоначально такие зажигалки были стационарными, работая от электрической розетки. И речи об карманном варианте не могло и быть. Но в XXI веке начали появляться карманные зажигалки, работающие от аккумулятора.
Обслуживание зажигалок
Заправка газовой зажигалки
Перед заправкой газом обязательно нужно освободить зажигалку от оставшегося в ней воздуха. Конечно же, сам газ также должен быть использован полностью. Регулятор подачи газа ставят на «максимум». Клапан уровня горения у большинства зажигалок находится в районе основания и найти его будет не сложно. Для того чтобы выпустить воздух следует просто взять иглу, тонкий штырек или любой другой подобный острый инструмент и отодвинуть клапан. После этого все лишнее из зажигалки выйдет. Затем, для полной гарантии результата, нужно щелкнуть зажигалкой. Конечно, огня при этом вы не увидите, однако в том случае, если воздух или остатки бутана все еще имеются в корпусе, они выйдут наружу окончательно.
Если на зажигалке есть крышка, под которой находится гнездо для заправки, то её надо открыть.
Баллончик с газом надо выдержать при комнатной температуре. Обычно в комплекте с баллончиком есть переходники, из которых нужно подобрать более подходящий размер, чтобы он плотно входил в отверстие клапана и не пропускал газ наружу. Одеть этот переходник на газовый баллончик.
После этого баллончик с газом переворачивают и крепко зажимают в руке и хорошенько встряхивают. Далее в клапан, расположенный внизу зажигалки, вставляют наконечник емкости с газом и сильно нажимают. Во время заправки будет слышен характерный шипящий звук. Держать баллончик таким образом нужно секунд 5-10. Затем его резко отдергивают от зажигалки.
Некоторые баллончики оборудуются специальными дозаторами. В этом случае придется проводить заправку в несколько приемов.
Заправка бензиновой зажигалки
Бензиновые зажигалки все являются перезаправляемыми. При этом бензин испаряется и при не использовании зажигалки. Поэтому рекомендуют заправлять зажигалку перед каждой длительной поездкой, а также время от времени по необходимости.
Замена кремния в бензиновой зажигалке
Замена фитиля в бензиновой зажигалке
Если фитиль имеет растрепанный и неопрятный вид, тогда стоит привести его в порядок. Для этого нужно взять обычные маникюрные ножницы и пинцет. При помощи пинцета необходимо вытянуть фитиль за пределы ветрозащитного экрана и отрезать разлохмаченный кусок, используя ножницы. После этой процедуры зажигалка должна гореть, как положено.
Однако со временем все же придется заменить фитиль на новый. Для этого извлеките вставку из кожуха.
Выкрутите винт на нижнем торце, удерживающий пружину. Затем аккуратно извлеките пружину из трубки. Избавьтесь от частичек старого кремня.
Извлеките прослойку из войлока.
Используя пинцет, нужно вытащить весь слой ваты.
Установите фитиль, протянув его снизу сквозь ушко. Проверьте, что фитиль не выступает за границы ветрозащиты.
Поместите ватный наполнитель обратно, при этом укладывайте фитиль между слоями наполнителя как показано на рисунке ниже.
Звукосниматель для гитары — из пьезоэлементов зажигалок
Пьезоэлектрический эффект
Пьезоэлектрические вещества (пьезоэлектрики
), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется
прямым пьезоэлектрическим эффектом
и был открыт в 1880 г. братьями Кюри.
Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина
Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект
, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.
Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.
Рисунок 1 – Элементарная ячейка цирконата титоната свинца (ЦТС) при температуре выше точки Кюри (слева) и при температуре ниже точки Кюри (справа)
Здесь можно кратко пояснить пьезоэлектрический эффект
на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также точкой Кюри, является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (рисунок 1, для ВаТiO3 вместо Pb — Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.
Рисунок 2 – Неупорядоченная поляризация (слева) и упорядоченная поляризация доменов при наложениии сильного электрического поля (справа)
Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.
Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать расчет парметров пьезоэлектрического преобразователя
Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности [2].
ремонт зажигалки газовой плиты
Но я ставил в нее другой кремень, тоже зиппо покупал вместе с зажигалкой — тоже колесико не вращалось. Я просто не знаю мне продавцу что написать, что он прислал брак и просить вернуть деньги или как поступить. Здравствуйте, вот доехала моя зажигалка zippo satin chrome. Но есть проблема, колесико не крутится, не удается его сдвинуть с места чтобы высечь искру. Открутил винтик, вынул кремень из зажигалки, колесико вращается, вернул кремень на место, закрутил винт — снова не проворачивается. В одноразовой зажигалке стерся кремень, я решил вставить туда новый кремень 2 способа вставить кремень Он выглядит как крохотный черный цилиндр длиной около 6 миллиметров. Чтобы поменять кремень, снимите прикрывающие его металлическую крышку и колесико.
Пьезоэлемент_в_зажигалке_сколько_вольт
Нет недостатка в сенсационных публикациях, приписывающих чудодейственные возможности пьезоэлектричеству. Вот, к примеру, цитата: «Два года назад несколько физиков попытались заново решить формальную задачку: как механическую энергию человека преобразовать в киловатты электрической. Так на свет появился пьезоэлектрический генератор. Сначала первого поколения, потом второго, сегодня в лаборатории уже испытывают восьмую версию. Лёгкое нажатие на генератор и: «Гори оно всё огнём». …и когда всё будет окончательно готово произойдёт своеобразная революция в области альтернативных видов энергии». (teros.org.ru
То, что пьезоэлемент не является источником энергии, — очевидно. Ясно также и то, что как преобразователь механической энергии в электрическую, революцию в энергетике он не произведёт. Ведь к чему сводятся идеи использовать пьезогенераторы в кроссовках, в асфальте, в эспандере, на ногах балерины, чтобы ток давала? Всё это сводится к тому, чтобы получить нетрадиционный электрический ток за счёт механической работы (кстати, с крайне низким кпд), которая, в свою очередь, совершается за счёт сжигания традиционного топлива и съёдания традиционной картошки. Пьезогенератор это преобразователь, но никак не источник электроэнергии. Как преобразователь он занимает достойное место в технике в качестве источника электрических зарядов, источника высокого напряжения для целей воспламенения, контроля изоляции и многих других. В некоторых случаях целесообразно применение в качестве микромощных источников питания. В этой статье речь пойдёт о пьезогенераторах, предназначенных для искрообразования и создания электрических зарядов.
Из формулы следует, что напряжение уже зависит от размеров пьезоэлемента, так как входящая в формулу ёмкость C является функцией межэлектродного расстояния и площади электродов. Легко проверить, что в этом примере, положив ёмкость равной 40 пикофарадам (это ёмкость пьезоэлементов пьезозажигалки), получим, что напряжение при силе 1Н будет равно 6В. Если действовать силой 1000Н (100кГ), получим 6 кВ.
Этих сведений вполне достаточно, чтобы проанализировать работу пьезогенератора. Сделаем это на примере пьезоэлектрической зажигалки.
Как работает пьезоэлектрическая зажигалка?
Речь пойдёт о пьезозажигалке нажимного действия, которая по ходу своей клавиши выдаёт серию искр. Есть зажигалки ударного действия, которые выдают одиночную искру при приведении в действие ударного механизма. Пьезоэлектрическая зажигалка – это пример, пожалуй, самого удачного применения пьезогенератора. Это один из самых популярных бытовых приборов в жилищах, оборудованных газовыми плитами для приготовления пищи. Они надёжны, долговечны, не требуют никакого обслуживания и всегда готовы к использованию. На рис.1 представлено фотоизображение раскрытой пьезозажигалки с пьезогенератором. Не будем останавливаться на описании конструкции
Рис.1. Пьезозажигалка в раскрытом виде с пьезогенератором
пьезогенератора, так как в нём нет ничего, выходящего за рамки интеллектуального наследия Архимеда, а рассмотрим упрощённую модель пьезогенератора, изображённую на рис.2. Она представляет собой опору с рычагом, позволяющим прикладывать
значительное усилие на пьезоэлементы. Пьезоэлементы, имеющие форму сплошного цилиндра с электродами на торцевых поверхностях, поставлены друг на друга и вследствие этого подвергаются действию одной и той же силы. Пьезоэлементы ориентированы так, что на электродах соприкасающихся поверхностей наводится заряд одного знака, а на противоположных – другого знака. Противоположные электроды электрически замкнуты элементами рычажного механизма. В таких условиях пьезоэлементы оказываются соединёнными электрически параллельно. Выведем от соприкасающихся электродов токовод с наконечником, желательно, с закруглённым концом и расположим наконечник на некотором расстоянии от металлического основания. Теперь, при нажатии на рычаг, произойдёт пробой воздушного промежутка между наконечником и основанием. Надавив на рычаг сильней можно «высечь» вторую искру, третью и так далее, пока не разрушим пьезоэлементы. Таков, на первый взгляд простой, принцип действия пьезозажигалки. Однако можно посмотреть на это устройство более пристально. Это мы сделаем поставив несколько вопросов и задач. Ответы на них могут оказаться неожиданными.