что такое пьезо датчики

Пьезоэлектрический датчик

что такое пьезо датчики. Смотреть фото что такое пьезо датчики. Смотреть картинку что такое пьезо датчики. Картинка про что такое пьезо датчики. Фото что такое пьезо датчики

Смотреть что такое «Пьезоэлектрический датчик» в других словарях:

пьезоэлектрический датчик — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN piezoelectric pickup … Справочник технического переводчика

пьезоэлектрический датчик — pjezoelektrinis jutiklis statusas T sritis automatika atitikmenys: angl. piezoelectric sensing element; piezoelectric sensor vok. piezoelektrischer Geber, m rus. пьезоэлектрический датчик, m pranc. capteur piézoélectrique, m … Automatikos terminų žodynas

пьезоэлектрический датчик — pjezoelektrinis jutiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Pjezoelektrinis elementas, keičiantis mechaninę deformaciją elektriniu signalu ir atvirkščiai. atitikmenys: angl. piezoelectric sensing element; piezoelectric… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

пьезоэлектрический датчик — pjezoelektrinis jutiklis statusas T sritis fizika atitikmenys: angl. piezoelectric sensing element; piezoelectric sensor vok. piezoelektrischer Geber, m; piezoelektrischer Sensor, m rus. пьезоэлектрический датчик, m pranc. capteur piézoélectrique … Fizikos terminų žodynas

Датчик — Датчик, сенсор (от англ. sensor) понятие систем управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для… … Википедия

датчик — Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем (по РМГ 29).… … Справочник технического переводчика

датчик (металлургия) — датчик Элемент (первичный преобразователь) измерит., сигнального регулир. или управл. устрва системы, преобраз. контролир. величину (давление, темп ру, частоту, скорость, перемещение, напряжение, электрич. ток и т.п.) в сигнал, удобный для… … Справочник технического переводчика

Датчик — первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину (давление, температуру, частоту, скорость, перемещение, напряжение, электрический ток … Большая советская энциклопедия

Датчик — [transducer, gage, pickup, sensor] элемент (первичный преобразователь) измерительного, сигнального регулирующего или управляющего устройства системы, преобразующий контролируемую величину (давление, температуру, частоту, скорость, перемещение,… … Энциклопедический словарь по металлургии

Датчик давления — Датчик давления устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газы, пар). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический… … Википедия

Источник

Критерии выбора пьезоэлектрических датчиков и влияние внешних факторов

При выборе пьезоэлектрических датчиков всегда надо обращать внимание на условия их применения. Пьезоэлектрические датчики характеризуются более, чем сорока параметрами, служащими для оценки их работоспособности, точности и применимости для конкретных измерительных целей.

Технические характеристики делятся на метрологические и эксплуатационные.

К важнейшим метрологическим характеристикам относятся:

К основным эксплуатационным характеристикам могут относиться:

Пьезоэлектрические преобразователи по типу выходного сигнала делятся на две группы:

Каждая группа обладает своим рядом недостатков и преимуществ. Если при проведении измерений нужно обеспечить высокую стойкость датчика к температуре (более 150 °С) или большим значениям амплитуд измеряемых ускорений (более 500 000 м/с2), то выбирать лучше из ряда датчиков с выходом по заряду.

В остальных случаях целесообразно использовать преобразователи со встроенной электроникой, обладающие более помехоустойчивыми характеристиками, возможностью использования более длинных кабельных линий (пьезоэлектрический преобразователь — согласующее устройство) до 500 метров (для питания током 2 мА — до 50 м). При этом паразитный сигнал, пропорциональный внешним факторам может внести существенное влияние в полезный сигнал пропорциональный контролируемым механическим колебаниям.

что такое пьезо датчики. Смотреть фото что такое пьезо датчики. Смотреть картинку что такое пьезо датчики. Картинка про что такое пьезо датчики. Фото что такое пьезо датчики

Виды воздействий на пьезодатчик

Влияние температуры окружающей среды

Пьезоэлектрические датчики работоспособны в широком диапазоне температур. При отклонении температуры от нормальной изменяются как осевая чувствительность, так и электрическая ёмкость преобразователей. Эти изменения носят обратимый характер и при установлении нормальной температуры восстанавливаются.

На рисунке приведены характерные температурные зависимости чувствительности и емкости для пьезопреобразователей (датчиков) с чувствительным элементов из пьезокерамики.

При известной температуре эксплуатации пьезопреобразователей по этим зависимостям при необходимости можно откорректировать результаты измерения ускорений. Наименьшей чувствительностью к изменению температуры обладают датчики с чувствительными элементами из кварца.

Поперечная чувствительность

Поперечная чувствительность пьезопреобразователей не превышает 5% от осевой чувствительности. В паспорте на каждый датчик приводится только максимальное значение поперечной чувствительности. С целью снижения влияния поперечной чувствительности на результаты измерения необходимо по возможности точно совместить ожидаемое направление действия ускорения с рабочей осью чувствительности пьезопреобразователя.

Влияние деформации объекта испытаний

При установке пьезопреобразователей на сильно деформирующуюся в процессе удара или вибрации поверхность возможно появление паразитного сигнала вследствие передачи деформации через основание корпуса чувствительному элементу. Большинство вибропреобразователей ООО «ГлобалТест» имеют сдвиговую схему работы пьезоэлемента и отличаются малой деформационной чувствительностью, которая в основном не превышает величины 5∙10-3 g∙м/мкм при деформации 250 мкм/м.

Влияние переменного магнитного поля

Основную роль в формировании чувствительности пьезопреобразователей к переменному магнитному полю играет магнитная восприимчивость материалов основных элементов конструкции. В связи с этим основные элементы конструкции пьезопреобразователей выполнены из неферромагнитных материалов, магнитная восприимчивость которых близка к нулю. Чувствительность пьезопреобразователей ООО «ГлобалТест» к переменному магнитному полю не превышает 10-4 g/A∙м-1 и заметное влияние её возможно лишь при измерении ускорений низкого уровня.

Акустическая чувствительность

Акустические поля высокого давления оказывают незначительное влияние на выходной сигнал пьезопреобразователей. При уровнях звукового давления около 140 дБ на частоте 250 Гц акустическая чувствительность пьезопреобразователей АР составляет десятые доли «g».

Влияние кабельного эффекта

Монтаж соединительного кабеля — один из наиболее важных аспектов установки вибропреобразователя на объекте контроля. Особое внимание необходимо уделять трем основным моментам: длине кабеля, выбору направления монтажа и заземлению.

Влияние кабельного эффекта

В вибропреобразователях АР используется антивибрационный малошумящий кабель. Однако при измерении ускорений низкого уровня (единицы «g») могут появляться эффекты, связанные с трибоэлектрическими явлениями в кабеле. При ударных нагружениях данный эффект пропорционален длине колеблющейся (незакреплённой) части кабеля и длительности ударного нагружения. При длительностях ударного нагружения до 10–20 мс его влияние на результат измерений незначительно. В то же время при низкочастотных колебаниях влияние трибоэлектричества на результат измерения может оказаться
решающим. Поэтому при измерениях вибропреобразователями АР ускорений низкого уровня целесообразно:

Выбор направления монтажа кабеля и электромагнитные помехи

Портативные радиостанции, шины питания и даже электростатические искровые разряды могут вызвать сигнал помехи. Правильно выбранное направление монтажа кабеля позволит минимизировать сигнал помехи. Соединительные кабели не должны проходить вдоль шин питания переменного тока. Кабели должны пересекать шины питания переменного тока под прямым углом. Кроме того, кабели следует направлять в противоположную сторону от радиопередающих устройств, двигателей, генераторов и трансформаторов.

Влияние контуров заземления

Заземление кабеля и паразитные контуры с замыканием через землю

Для исключения сигналов помехи, обусловленной протекающими через шины заземления объектов контроля и регистрирующей аппаратуры паразитными токами, необходимо уделять особое внимание заземлению кабеля в зависимости от схемы подключения вибропреобразователя к регистрирующей аппаратуре.

Паразитный контур в результате неправильного заземления

Паразитный контур с замыканием через шину заземления возникает, когда общая шина «вибропреобразователь — регистрирующая аппаратура» заземлена в двух местах с различными электрическими потенциалами. В условиях возможного возникновения паразитных контуров рекомендуется применять вибропреобразователи с внешней электрической изоляцией корпуса или использовать изолирующие шпильки (AH1005, AH1006, AH1010) и изолирующие магниты (AM05, AM08). В вибропреобразователях с чувствительным элементом и встроенным усилителем, электрически изолированными от корпуса, возникновение паразитных контуров не происходит (АР2028В, АР2028I, АР2035 и АР2036 (без металлорукава), АР208501, АР2086).

что такое пьезо датчики. Смотреть фото что такое пьезо датчики. Смотреть картинку что такое пьезо датчики. Картинка про что такое пьезо датчики. Фото что такое пьезо датчики

Смещение нулевой линии

Смещение нулевой линии в вибропреобразователях может проявляться в виде смещения постоянной составляющей, которая возвращается к нулевой линии по экспоненте. Причиной появления смещения нулевой линии может быть влияние кабельного эффекта, нерациональное заземление объекта испытаний и регистрирующей аппаратуры, а также конструктивные особенности вибропреобразователей. Вибропреобразователи АР с чувствительным элементом, работающим на сдвиг, наименее подвержены явлению смещения нулевой линии и в этом отношении превосходят вибропреобразователи других конструкций.

Требования к электропитанию вибропреобразователей со встроенной электроникой

Величина тока питания зависит от длины соединительного кабеля (емкостной нагрузки) и условий эксплуатации вибропреобразователя. При температуре окружающей среды t > 100 °C, когда важен фактор теплового рассеяния, оказывающий влияние на коэффициент передачи усилителя, ток питания не должен превышать 6 мА.

Если в регистрирующей аппаратуре отсутствует устройство питания, отвечающее выше перечисленным требованиям, подключение вибропреобразователей к регистрирующей аппаратуре следует производить через блок питания AS01 или согласующие устройства AG01 (AG013), AG02 (AG023). Применение согласующих устройств AG02 (AG023) снижает влияние переходных процессов при переключении каналов на результат измерения в низкочастотной области.

Для использования других схем питания вибропреобразователей со встроенной электроникой требуется консультация с изготовителем.

Источник: Компания «ГлобалТест»

Источник

7. Пьезоэлектрические датчики

§ 7.1. Принцип действия

что такое пьезо датчики. Смотреть фото что такое пьезо датчики. Смотреть картинку что такое пьезо датчики. Картинка про что такое пьезо датчики. Фото что такое пьезо датчикиРабота пьезоэлектрического датчика основана на физи­ческом явлении, которое называется пьезоэлектрическим эффек­том. Этот эффект проявляется в некоторых кристаллах в виде по­явления на их гранях электрических зарядов разных знаков при сжатии кристалла в определенном направлении. Слово «пьезо» по-гречески означает «давлю». В зависимости от значения силы

сжатия ^или растяжения; меняется ко­личество зарядов, а следовательно, и разность потенциалов, замеренная меж­ду гранями. Пьезоэлектрические датчи­ки относятся к генераторному типу. Ши­роко известны пьезоэлектрические звуко­сниматели: игла звукоснимателя воспри­нимает все изменения глубины звуковой дорожки и передает их на пьезокрис-талл. Выходное напряжение с пьезокрис-талла усиливается, и через динамик мы слышим записанные звуки. Появление зарядов на гранях в зависимости от сжа­тия называется прямым пьезоэффектом. Существует и обратный пьезоэффект: при подаче напряжения на грани крис­талла изменяются его размеры (он сжи­мается или разжимается). Обратный пье-зоэлемент (наряду с магнитострикцион-ным, упомянутым в § 6.6) нашел приме­нение в ультразвуковых генераторах. А основанные на прямом пьезоэффекте пьезоэлектрические датчики используют­ся в автоматике для измерения давлений, вибраций, ускорений, других параметров быстропротекающих процессов.

Рассмотрим появление зарядов на гранях кристалла кварца, у которого пьезоэлектрический эффект достаточно сильно выражен. На рис. 7.1 изображен кристалл кварца, который имеет вид шести­гранной призмы. В кристалле можно выделить три оси симметрии: Z — продольная ось, называемая оптической осью; X— поперечная ось, проходящая через ребра призмы перпендикулярно продоль­ной оси; У—поперечная ось, проходящая через грани призмы пер­пендикулярно им и осям Z, X. Ось X называется электрической осью, ось У—механической илинейтральной.

Использование двух (а иногда и больше) пластин повышает выходную ЭДС, поскольку выходные сигналы пластин складываются.

На рис. 7.3 показан пьезоэлектрический датчик ускорения, ис­пользуемый в виброизмерительной аппаратуре. Пьезоэлемент 1 из титаната бария расположен в корпусе прибора 2 между инерцион­ной массой 3 и подпятником 4. Для увеличения силы, действующей

Источник

Принцип работы пьезоэлемента

Что такое пьезоэлектрический эффект?

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

Прямой пьезоэлектрический эффект

Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:

Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.

Обратный пьезоэлектрический эффект

Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:

Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств.

Примером могут послужить звуковые колонки, сирены, звонки.

Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах.

Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.

Пьезоэлектрические материалы

Данные материалы должны производить электрическую энергию из-за механических воздействий, таких как сжатие. Также эти материалы должны деформироваться при приложении к ним напряжения.

Данные материалы условно разделяют на две группы – кристаллы и керамические изделия. ЦТС (цирконат-титанат свинца), титанат бария, ниобат лития – примеры искусственных пьезоэлектрических материалов, обладающих более ярко выраженным эффектом, чем кварц и другие природные материалы.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов.

Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок.

В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

Принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на основе пьезоэлектрического эффекта:

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя.

Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

Описание устройства и цепей измерения

Пьезоэлектрический преобразователь давления имеет следующую структуру:

Мощность на выходе – минимальна, в связи с этим предусматривают усилитель с большим сопротивлением. По сути, напряжение зависит от емкости цепи входа. Характеристики преобразователя указывают на чувствительность и емкость. В основном это заряд и собственные показатели устройства. Если рассчитать суммарно, то получится следующая выходная мощность: Sq = q/F или Uxx = d11·F/Co.

Чтобы расширить диапазон частоты, необходимо измеряемые низкие переменные увеличить в сторону постоянной цепи времени. Подобное действие легко осуществить с помощью включения конденсаторов, которые расположены параллельно с устройством. Правда при этом напряжение выхода снизится. Сопротивление, которое было увеличено, расширит диапазон без утрат чувствительности. Но для его повышения необходимы улучшенные изоляционные качества и усилители с высокоомным входом.

Описание цепей измерения

Удельное и поверхностное сопротивления определяют собственное, причем основная составляющая для кварца выше, поэтому пьезоэлектрический преобразователь необходимо герметизировать. В результате повышаются качества, и поверхность защищается от влаги и грязи. Цепи измерения датчиков создавались как высокоомные усилители, в основе которых использовались выходной каскад на полевом транзисторе и неинвертирующий усилитель с операционным устройством. Напряжение поступает на вход и выход.

Однако в этом устаревшем пьезоэлектрическом преобразователе были недостатки:

Напряжение усилителя и чувствительность определяются допустимой погрешностью, если дополнить включенный стабильный объем С1.

Формула: ys = (ΔCo + ΔCk)/(Co+Ck +C1).

После преобразования получаем: S=Ubx/F.

Если коэффициент увеличивается, соответственно, и эти переменные возрастают.

Для измерительной цепи характерно:

Анализируя последнюю переменную, можно предположить, что постоянная линия времени следующая: t ≤ 1c. Сегодня устройства могут использовать с усилителями напряжения пьезоэлектрические датчики для заряда.

Преимущественные характеристики устройств

Однако развитие высокоточной техники улучшило способность реализовать точность без потерь.

В результате можно прийти к выводу, что для измерителей сил, давления и прочих элементов наиболее подходящими являются пьезоэлектрические преобразователи.

ПЭП ускорения имеет следующую конструкцию:

Конструкционные особенности преобразователей

Если необходимо изготовить датчик акселерометра, то важно правильно прикрепить пьезочувствительные пластины к основанию. Это действие осуществляется паянием.

Кабель должен соответствовать следующим требованиям:

То есть на вход усилителя не должна производиться тряска кабеля. Измерительная цепь создается симметрично, чтобы не возникало помех. В датчике связь несимметричная, сопротивление выводов и корпуса соединено таким образом, что получается изоляция внешних пластин. Чтобы добиться нужного результата, требуется измеритель выполнить из нечетного количества материалов, которые используются в процессе. Элементы прижимаются к усилителю сквозь отверстия в центральной части и через изоляторы, которые привинчены к корпусу.

Особенности приборов, измеряющих вибрации

Чтобы увеличить чувствительность измерительного прибора, необходимо применить пьезоэлементы с высоким модулем. Этот материал укладывают параллельно в ряд и соединяют металлическими прокладками и пластинами. Для подобного эффекта еще могут применяться вещества, которые работают на изгиб. Однако они имеют низкую частоту и уступают механике сжатия.

Материал может быть биморфным, его обычно собирают последовательно или параллельно, все зависит от положительно расположенных осей. Как правило, это две пластины. Если учитывать нейтральный слой, то над ним вместо пьезоэлемента может использоваться накладка из металла со средней толщиной.

Чтобы измерить сигналы, которые двигаются достаточно медленно, необходимо сделать следующее:

Сегодня пьезоакселерометры – усовершенствованные приборы, которые могут быть высокочастотными, с сильной чувствительностью.

Альтернативный источник энергии посредством преобразователей

Одним из знаменитых и неисчерпаемых средств получения электричества является энергия волн. Такие станции монтируют непосредственно в водную среду. Это явление связано с солнечными лучами, которые нагревают массу воздуха, благодаря чему возникают волны. Вал данного явления имеет энергоемкость, которая определяется по силе ветра, ширине воздушных фронтов, продолжительности порывов.

Значение может колебаться на мелководье или достигать 100 кВт на один метр. Пьезоэлектрический преобразователь энергии волн работает по определенному принципу. Уровень воды поднимается посредством волны, в процессе воздух выдавливается из сосуда. Затем потоки пропускаются реверсирующейся турбиной. Агрегат вращается по определенному направлению, вне зависимости от движения волн.

Этот аппарат имеет положительную характеристику.

До сегодняшнего дня совершенствование конструкции не прогнозируется, потому что эффективность и принцип работы доказаны всеми существующими путями.

В процессе технического прогресса, возможно, будут построены плавучие станции.

Ультразвуковой пьезоэлектрический преобразователь

Этот прибор устроен таким образом, что не требует дополнительных настроек. Он снабжен блоком памяти, который выдает технический результат. Относится к контрольно-измерительным аппаратам. Подобные устройства отличаются по типу, техническим характеристикам, которые составляются на основе данных о конструкции и предназначении с минимальными погрешностями. Все требования учитываются на основе конструкции.

Для всех подобных аппаратов предусмотрена стандартная схема создания: дефектоскоп, корпус, электроды, главный элемент, который скрепляют с основанием, жила, фольга и другие материалы. Ультразвуковой пьезоэлектрический преобразователь является полезной моделью. Он позволяет получать данные непосредственно с помощью звука, установленного на основании устройства.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *