что такое период дроби

Периодические десятичные дроби

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

— это любая десятичная дробь, у которой:

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь Разложим ее знаменатель на простые множители. Возможны два варианта:

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Как видим, остатки повторяются. Запишем дробь в «правильном» виде:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

В итоге получается дробь:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Записываем в нормальном виде:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

Задача. Приведите к обыкновенной неправильной дроби числа:

Работаем с первой дробью:

В скобках содержится лишь одна цифра, поэтому период Далее умножаем эту дробь Имеем:

Вычитаем исходную дробь и решаем уравнение:

Теперь разберемся со второй дробью. Итак,

Период k = 2, поэтому умножаем все

Снова вычитаем исходную дробь и решаем уравнение:

100 X − X =
99 X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

Наконец, последняя дробь: Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

Источник

Бесконечные периодические десятичные дроби

В данной публикации мы рассмотрим, что из себя представляют бесконечные периодические десятичные дроби, какие бывают виды, и как их можно перевести в обыкновенную дробь. Также разберем примеры для закрепления материала.

Периодические десятичные дроби

Определение

Если в дробной части бесконечной десятичной дроби есть один или несколько цифр, которые повторяются в одной и той же последовательности, такая дробь является периодической.

Примеры периодических десятичных дробей:

Запись

Повторяющаяся цифра/цифры – это период дроби, который пишется в скобке для сокращения длины записи. Например, дроби выше сокращенно следует писать так:

Произношение

Чистые периодические дроби – это такие бесконечные десятичные дроби, период которых начинается сразу после запятой.

Смешанные периодические дроби – бесконечные десятичные дроби, у которых между запятой и периодом присутствует одна и более цифр (их количество ограничено).

Перевод периодической десятичной дроби в обыкновенную

Для того, чтобы перевести периодическую дробь в обыкновенную (простую), выполняем следующие шаги:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Пример 1

Давайте переведем число 0,8(3) в обыкновенную дробь.

Действовать будет пошагово согласно инструкции выше:
1. n = 1
2. m = 1
3. a = 83
4. b = 8
5. x = 0
6. Остается только применить формулу:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Пример 2

Представим периодическую дробь 2,64(378) в виде обыкновенной.

1. n = 3
2. m = 2
3. a = 64378
4. b = 64
5. x = 2
6. Подставляем эти значения в формулу нахождения простой дроби и получаем:

Источник

Как перевести периодическую дробь

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Определение дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь вида a/b. Разложим ее знаменатель на простые множители. Тут есть два варианта:

Чтобы задать периодическую десятичную дробь, нужно найти ее периодическую и непериодическую часть. Чтобы это сделать нужно привести дробь в неправильную, а затем разделить числитель на знаменатель столбиком.

Что будет происходить в процессе:

Повторяющиеся цифры после десятичной точки нужно обозначить периодической частью, а то, что стоит спереди — непериодической.

Пример. Перевести обыкновенные дроби в периодические десятичные:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Все дроби без целой части, поэтому просто делим числитель на знаменатель уголком:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Определение периодической дроби

Периодическая дробь — это бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр.

Периодическая часть дроби — это набор повторяющихся цифр, из которых состоит значащая часть.

В краткой записи периодической дроби повторяющиеся цифры пишут в скобках и называют периодом дроби. Например, вместо 1,555… записывают 1,(5) и читают «одна целая и пять в периоде».

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Виды периодических дробей: чистые и смешанные.

Чистая периодическая десятичная дробь — это десятичная дробь, в записи которой сразу после запятой следует период. Например: 1,(4); 4,(25); 21,(693).

Смешанная периодическая десятичная дробь — это десятичная дробь, в записи которой после запятой через одну или несколько цифр начинается период. Например: 3,5(1); 0,02(89); 7,0(123) и т.д.

Рассмотрим примеры дробей, чтобы научиться определять части и период.

Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Читаем так: ноль целых три в периоде.

7/12 = 0,583333. = 0,58(3)

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Читаем так: ноль целых пятьдесят восемь сотых и три в периоде.

17/11 = 1,545454. = 1,(54)

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Читаем так: одна целая пятьдесят четыре сотых в периоде.

25/39 = 0,641025 641025. = 0,(641025)

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6.

Читаем так: ноль целых шестьсот сорок одна двадцать пять миллионных в периоде.

пятьдесят четыре сотых в периоде.

9200/3 = 3066,666. = 3066,(6)

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Читаем так: три тысячи шестьдесят шесть целых и шесть в периоде.

Перевод периодической дроби в обыкновенную

Давайте разберемся, как перевести периодическую десятичную дробь в обыкновенную дробь.

Если период дроби равен нулю, значит решение будет быстрым. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.

Пример. Преобразуем периодическую дробь 1,32(0) в обыкновенную.

Для этого отброс им нули справа и получим конечную десятичную дробь 1,32. Далее следуем алгоритму из предыдущих пунктов:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Рассмотрим пример, в котором период дроби отличен от нуля.

Как записать периодическую дробь 10,0219(37) в виде обыкновенной:

В нашем примере k = 2.

Если вначале, до первой значащей цифры, идут нули, то отбрасываем их. Обозначим полученное число — a.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Теперь осталось подставить все найденные значения в формулу и получить ответ:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Вот так мы справились с задачей представить бесконечную периодическую дробь в виде обыкновенной.

Есть еще один способ преобразовать периодическую дробь в обыкновенную. Для этого нужно рассматреть периодическую часть как сумму членов геометрический прогрессии, которая убывает. Например, вот так:

Для суммы членов бесконечной убывающей геометрической прогрессии есть формула. Если первый член прогрессии равен b, а знаменатель q таков, что 0

Перевод чистой периодической дроби в обыкновенную

Напомним: отличие чистой периодической десятичной дроби в том, что в ней сразу после запятой следует период.

Чтобы обратить чистую периодическую дробь в обыкновенную, достаточно записать числителем ее период, а в знаменателе записать столько девяток, сколько цифр в периоде. Вот так:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Перевод смешанной периодической дроби в обыкновенную

Отличие смешанной периодической десятичной дроби в том, что после запятой через одну или несколько цифр начинается период.

Чтобы записать смешанную периодическую дробь в виде обыкновенной, нужно из числа, которое стоит до второго периода вычесть число, стоящее до первого периода, и записать результат в числителе.

А в знаменатель нужно поставить число, которое содержит столько девяток, сколько цифр в периоде, нулей в конце и сколько цифр между запятой и периодом.

Например, запишем 2,34(2) в виде обыкновенной дроби:

Источник

Алгебра. 7 класс

Конспект урока

Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Перечень рассматриваемых вопросов:

Понятие бесконечной периодической десятичной дроби.

Примеры бесконечной периодической десятичной дроби.

Представление рационального числа в видебесконечной периодической десятичной дроби.

Любое целое число и любую конечную десятичную дробь можно считать бесконечной периодической десятичной дробью или коротко: периодической дробью.

Любое положительное рациональное число

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

преобразуется в положительную дробь.

Любая периодическая дробь – это десятичное разложение некоторого положительного рационального числа

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют «чистой».

Если в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют «смешанной».

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

На прошлом уроке мы рассмотрели условия, при которых обыкновенную дробь можно представить в виде конечной десятичной.

А как поступать, когда невозможно представить её в таком виде?

Введём понятие бесконечной периодической десятичной дроби.

Если знаменатель q несократимой дроби p/q не имеет делителей, кроме 2 и 5, то эта дробь преобразуется в конечную десятичную дробь.

Если знаменатель содержит, кроме 2 и 5, другие простые делители, то мы не сможем представить её конечной десятичной дробью.

Знаменатель 9 = 3 3

5/9 не преобразуется в конечную десятичную дробь. Убедимся в этом, выполнив деление уголком.

Разделим числитель 5 на знаменатель 9.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Процесс деления в столбик бесконечный. Приходим к выражению 0,555…,

точки означают, что цифра 5 периодически повторяется бесконечно много раз.

Выражение 0,555… называют бесконечной периодической десятичной дробью или коротко: периодической дробью.

Читают: « ноль целых и пять в периоде».

Цифру (5) называют периодом дроби 0,(5).

Говорят, что число пять девятых представлено в виде периодической дроби ноль целых и пять в периоде.

Выражение 5/9 и 0,(5) являются обозначениями одного и того же числа в виде обыкновенной дроби 5/9 и в виде периодической дроби 0,(5).

Рассмотрим ещё пример.

Дробь четыре пятнадцатых несократимая, и её знаменатель имеет простые делители 3 и 5, поэтому деление не может быть конечным. Проверим.

Делим уголком 4 на 15.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

читают: «ноль целых две десятых и шесть в периоде».

В примерах мы увидели разные периодические дроби.

Периодические дроби бывают двух видов: «чистые» и «смешанные».

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют «чистой».

Видно, что в этих дробях период начинается сразу после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют «смешанной».

Если применить правило деления уголком к любой несократимой дроби p/q

Где q – знаменатель, который, кроме 2 и 5 имеет другие простые делители, то получится бесконечная периодическая десятичная дробь, или коротко: периодическая дробь.

Приписывая к конечной десятичной дроби бесконечно много нулей, мы её приводим в бесконечную периодическую десятичную дробь с периодом 0.

45 = 45,0 = 45,000… = 45,(0)

0,673 = 0,673000 = 0,673(0).

Значит, любое целое число и любую конечную десятичную дробь можно считать бесконечной периодической десятичной дробью или коротко: периодической дробью.

Любое положительное рациональное число p/q преобразуется в периодическую дробь.

Верно обратное. Любая периодическая дробь – это десятичное разложение некоторого положительного рационального числа p/q.

Периодичность десятичного разложения обыкновенной дроби

Рассмотрим произвольную положительную несократимую дробь p/q

Покажем, что если разделить числитель дроби на знаменатель уголком, то в частном получится либо конечное, либо бесконечное периодическое её преобразование.

Нам известно, чтобы получить конечное десятичное разложение, знаменатель qне должен иметь простых делителей, кроме 2 и 5

В других случаях может быть только бесконечное десятичное разложение, которое является периодическим. Пусть нужно найти десятичное разложение несократимой дроби 15/13.

Будем делить уголком 15 на 13.

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Здесь одной звёздочкой отмечен этап вычислений, когда снесена последняя цифра делимого. Получаемые после этого остатки заключены в прямоугольники. Видно, что остатки, отмеченные двумя, тремя звёздочками, равны между собой. Это показывает, что процесс деления носит периодический характер и приводит к бесконечной периодической десятичной дроби, то есть:

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Теперь на примере рассмотрим, как можно, зная бесконечную периодическую десятичную дробь, записать её обыкновенной дробью.

Запишем периодическую дробь 0,(7) в виде обыкновенной.

Для этого обозначим искомую величину х. Тогда справедливо равенство

Умножим это равенство на 10, получим

Вычтем из равенства (2) равенство (1).

Применив к дроби 7/9 деление уголком. Снова получим периодическую дробь 0, (7.)

Разбор заданий тренировочного модуля.

Подберите обыкновенную дробь, равную периодической десятичной 0,(14).

Варианты ответов: 14/99, 14/98 14/90

Обозначим искомую величину х. Тогда справедливо равенство:

Умножим это равенство на 100, получим

Вычтем из равенства (2) равенство (1).

Найдите десятичное разложение обыкновенной дроби 769/4950

Решение: Для решения задачи нужно выполнить деление уголком:

Источник

Периодическая дробь

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

что такое период дроби. Смотреть фото что такое период дроби. Смотреть картинку что такое период дроби. Картинка про что такое период дроби. Фото что такое период дроби

Полезное

Смотреть что такое «Периодическая дробь» в других словарях:

ПЕРИОДИЧЕСКАЯ ДРОБЬ — бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр (период), напр. 0,373737. чисто периодическая дробь или 0,253737. смешанная периодическая дробь … Большой Энциклопедический словарь

периодическая дробь — дробь, бесконечная дробь Словарь русских синонимов. периодическая дробь сущ., кол во синонимов: 2 • бесконечная дробь (2) • … Словарь синонимов

ПЕРИОДИЧЕСКАЯ ДРОБЬ — десятичная дробь, ряд цифр которой повторяется в одном и том же порядке. Например, 0,135135135… есть п. д., которой период 135 и которая равна простой дроби 135/999 = 5/37. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф … Словарь иностранных слов русского языка

Периодическая дробь — Десятичная дробь дробь со знаменателем 10n, где n натуральное число. Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части … Википедия

периодическая дробь — бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определённая группа цифр (период); например, 0,373737. чисто периодическая дробь или 0,253737. смешанная периодическая дробь. * * * ПЕРИОДИЧЕСКАЯ… … Энциклопедический словарь

ПЕРИОДИЧЕСКАЯ ДРОБЬ — бесконечная десятичная дробь, в к рой, начиная с нек рого места, периодически повторяется определ. группа цифр (период); напр., 0,373737. чисто П. д. или 0,253737. смешанная П. д … Естествознание. Энциклопедический словарь

дробь — См. часть. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. дробь мелочь, часть; дунст, шарик, шрот, картечь; дробное число Словарь русских синонимов … Словарь синонимов

периодическая десятичная дробь — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN circulating decimalrecurring decimalperioding decimalperiodic decimalperiodical decimal … Справочник технического переводчика

Дробь — Если делится какое нибудь целое число а на другое целое число b, т. е. ищется число x, удовлетворяющее условию bx=а, то могут представиться два случая: или в ряду целых чисел найдется число х, которое этому условию удовлетворит, или же окажется,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Десятичная дробь — дробь, знаменатель которой есть целая степень числа 10. Д. д. пишут без знаменателя, отделяя в числителе справа запятой столько цифр, сколько нулей содержится в знаменателе. Например, В такой записи часть, стоящая слева… … Большая советская энциклопедия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *