что такое перегрузка 6g у космонавтов
Перегрузки, невесомость. Космос
При совершении космического полета космонавт подвергается воздействию ряда факторов: невесомость, перегрузки, шумы, вибрации, ограничение подвижности, изоляция, существование в замкнутом ограниченном пространстве и пр.
Ни одна профессиональная деятельность человека не связана с воздействием на него всех этих факторов в тех количественных соотношениях, как при полетах в космос. Так, состояние длительной невесомости, которое испытывает космонавт, не может быть испытано человеком в земных условиях.
В земных условиях человек может испытать только состояние кратковременной невесомости, например, если человек находится в лифте, движущемся по вертикали вниз с ускорением a = g (т.е. это случай, когда лифр оторвался и падает вниз свободно, при этом, если не учитывать его сопротивление с воздухом). Где g – ускорение свободного падения, т.е. ускорение силы тяжести.
Как и сила тяжести, ускорение свободного падения зависит от широты места и высоты его над уровнем моря Н. На широте Москвы на уровне моря g = 9,8м/с2.
Но при а = g – тело и лифт совершают свободное падение и никаких взаимных давлений друг на друга не оказывают, в результате организм воспринимает это состояние, как состояние невесомости. Но, даже и в этом случае из-за наличия атмосферы, падение не будет происходить с ускорением свободного падения, а, значит, и невесомость окажется частичной.
Состояние космической невесомости имеет отличия от состояния невесомости в земных условиях, что вызывает изменения ряда его жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому невесомость рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полета. Ответом на этот раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности невесомости и в значительно меньшей степени от индивидуальных особенностей организма.
С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.
Если в полете не применяются средства профилактики, то в первые часы и сутки после приземления (период реадаптации к земным условиям) у человека, совершившего длительный космический полет, наблюдается следующий комплекс изменений:
-Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей,
-снижением объема циркулирующей крови,
-уменьшением содержания в тканях ряда элементов, в частности калия и кальция;
-Нарушение кислородного режима организма при физических нагрузках;
-Нарушение способности поддерживать вертикальную позу в статике и динамике;
-ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые;
-наблюдается растренированность в дозировании мышечных усилий);
-Нарушение гемодинамики при работе средней и высокой интенсивности;
-возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное;
-Снижение иммунобиологической резистентности (ослабление иммунитета);
-вестибуловегетативные расстройства.
Нарушения работы организма человека, вызванные невесомостью, обратимы. Ускоренное восстановление нормальных функций может быть достигнуто с помощью физиотерапии и лечебной физкультуры, а также применением лекарственных препаратов. Неблагоприятное влияние невесомости на организм человека в полете можно предупредить или ограничить с помощью различных средств и методов (мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства).
Перегрузки
Другим фактором, оказывающим значительное влияние на человеческий организм при совершении космического полета, являются перегрузки.
Перегрузки космонавт испытывает при старте и возвращении космического корабля.
При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. Другими словами, вес космонавта во время запуска корабля как бы увеличивается в семь раз.
Человек легче всего переносит перегрузки, действующие в горизонтальной плоскости, хуже – в вертикальной. Однако способность переносить перегрузки (величина допустимых перегрузок) у разных людей различна и зависит от ряда факторов, например от скорости нарастания перегрузки, температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях
невесомости до начала ускорения и даже от эмоционального состояния космонавта. Существуют, несомненно, и другие более сложные или менее уловимые факторы, влияние которых еще не совсем выяснено.
Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.
-Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения.
-При ускорении 3 g в вертикальном направлении, длящемся более 3 секунд, могут возникнуть серьезные нарушения периферического зрения.
-С увеличением перегрузок острота зрения уменьшается, поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности.
-При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.
-При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).
Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси.
Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.
При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.
Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.
По статистике, космонавты редко испытывают перегрузки, превышающие 4g.
Эксперты не сочли перегрузки экипажа «Союза» при аварии экстраординарными
Андрей Борисенко, космонавт: «Перегрузки не были экстраординарными»
«Системы были штатными, сам спуск был внештатным, но системы работали так, как они и должны были работать. У нас там [в «Союзе»] существует резервирование всевозможных систем. Внештатная ситуация преодолевается в том числе благодаря этому глубокому резервированию систем. Если выходит из строя какая-то система, то есть дублирующая система, которая выполнит эти функции».
Текущая перегрузка, по словам Борисенко, не вызывает у него опасений за здоровье российского космонавта и американского астронавта. «Чуть больше 6g была перегрузка, насколько мне известно». Это та перегрузка, на которой космонавты тестируются штатно в рамках медицинского тестирования. Даже 8g не является для космонавтов экстраординарной — это штатная перегрузка, которую организм должен выдерживать не просто без потерь для здоровья, но и без потери работоспособности».
Андрей Емельянов, заслуженный испытатель космической техники: «Космонавтов швырнуло, поболтало»
«Ракета-носитель «Союз» имеет снизу тонические блоки, на трансляции «Роскосмоса» было видно, что при отделении блоков произошла аномалия. Сразу после отделения блоков также было заметно, что ракета наклонилась и стала уходить куда-то в сторону. Космонавтов швырнуло, поболтало. Но они в скафандрах. В этот раз высота полета была не очень большая. На трансляции после отделения первой ступени было видно перегрузку равную 8g. Такая же перегрузка, вероятно, была при приземлении спускового аппарата».
Александр Железняков, академик Российской академии космонавтики им. Циолковского: «Культура производства ракет упала»
«Я слышал версию о плохом креплении первых ступеней ко второй ступени. Раньше бы я ее сразу отверг как абсурдную версию, но, к сожалению, сейчас приходится согласиться, что и подобная вещь может произойти. Культура производства ракет упала, так что может быть [так все и было]. Но я бы все-таки не спешил с какими-то выводами, а подождал, что скажет комиссия».
«Перегрузки были в пределах того, что испытают космонавты на тренировках. Если медики не ошиблись, при сегодняшней посадке перегрузки у них были в 6 единиц, на тренировках они крутятся и на 8g, и на 10g. В 1975 году был аналогичный инцидент с запуском «Cоюза», космонавты испытывали 20-кратные перегрузки».
Авария при старте ракеты «Союз-ФГ» с пилотируемым кораблем «Союз МС-10» произошла 11 октября. Пуск был произведен в 11:40 мск с космодрома Байконур в Казахстане. Спустя девять минут после этого стало известно об аварии носителя. На борту корабля в момент происшествия находились российский космонавт Алексей Овчинин и астронавт NASA Ник Хейг. «Союз МС-10» должен был доставить их на МКС. В «Роскосмосе» затем сообщили, что экипаж аварийно приземлился в Казахстане. «Все живы», — заявил гендиректор корпорации Дмитрий Рогозин. ТАСС со ссылкой на источник на Байконуре после отметил, что состояние Овчинина и Хейга «не вполне хорошее». NASA уточняет, что из Казахстана экипаж вернется в Москву.
Источники «Интерфакса» и «РИА Новости» отмечали, что, по их данным, на ракете после запуска аварийно отключились двигатели второй ступени. Официально для выяснения причин случившегося была образована Государственная комиссия. До разбора ситуации с «Союзом МС-10» пилотируемые запуски в России приостановили, говорил вице-премьер Юрий Борисов.
Из различных источников приходят различные данные об испытанной экипажем «Союза-10» перегрузке, вызванной работой спасательной системы после аварии ракеты-носителя. По различным данным, она составляла от 6g до 20g.
Он рассказал, что экипаж перенес перегрузки в 6g без дополнительных проблем при аварийной посадке, поскольку выносливость к подобным перегрузкам проверяется при отборе в космонавты и в ходе предполетных тренировок.
«Даже 8g не является для космонавтов экстраординарной, это штатная перегрузка, которую организм должен выдерживать не просто без потерь для здоровья, но и без потери работоспособности»,- заявил РБК летчик-космонавт Андрей Борисенко.
«Космонавтов швырнуло, поболтало. Но они в скафандрах. В этот раз высота полета была не очень большая. На трансляции после отделения первой ступени было видно перегрузку равную 8g. Такая же перегрузка, вероятно, была при приземлении спускового аппарата»,- добавил испытатель космической техники Андрей Емельянов.
В свои очередь академик российской Академии космонавтики Александр Железняков констатитровал, что «на тренировках они крутятся и на 8g и на 10g». Также он напомним, что «в 1975 году был аналогичный инцидент с запуском «Cоюза», космонавты испытывали 20-кратные перегрузки».
В NASA заявили, что испытанные экипажем «постоянные» перегрузки действительно находились в пределах 6g-8g, однако миллисекундные перегрузки, по мнению экспертов были значительно выше.
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
Перегрузки и их действие на человека в разных условиях
В авиационной и космической медицине перегрузкой считается показатель величины ускорения, воздействующего на человека при его перемещении. Он представляет собой отношение равнодействующей перемещающих сил к массе тела человека.
Перегрузка измеряется в единицах, кратных весу тела в земных условиях. Для человека, находящегося на земной поверхности, перегрузка равна единице. К ней приспособлен человеческий организм, поэтому для людей она незаметна.
Если какому-либо телу внешняя сила сообщает ускорение 5 g, то перегрузка будет равна 5. Это значит, что вес тела в данных условиях увеличился в пять раз по сравнению с исходным.
При взлете обычного авиалайнера пассажиры в салоне испытывают перегрузку в 1,5 g. По международным нормам предельно допустимое значение перегрузок для гражданских самолетов составляет 2,5 g.
В момент раскрытия парашюта человек подвергается действию инерционных сил, вызывающих перегрузку, достигающую 4 g. При этом показатель перегрузки зависит от воздушной скорости. Для военных парашютистов он может составлять от 4,3 g при скорости 195 километров в час до 6,8 g при скорости 275 километров в час.
Реакция на перегрузки зависит от их величины, скорости нарастания и исходного состояния организма. Поэтому могут возникать как незначительные функциональные сдвиги (ощущение тяжести в теле, затруднение движений и т.п.), так и очень тяжелые состояния. К ним относятся полная потеря зрения, расстройство функций сердечно-сосудистой, дыхательной и нервной систем, а также потеря сознания и возникновение выраженных морфологических изменений в тканях.
С целью повышения устойчивости организма летчиков к ускорениям в полете применяют противоперегрузочные и высотно-компенсирующие костюмы, которые при перегрузках создают давление на область брюшной стенки и нижние конечности, что приводит к задержке оттока крови в нижнюю половину тела и улучшает кровоснабжение головного мозга.
Для повышения устойчивости к ускорениям проводятся тренировки на центрифуге, закаливание организма, дыхание кислородом под повышенным давлением.
При катапультировании, грубой посадке самолета или приземлении на парашюте возникают значительные по величине перегрузки, которые могут также вызвать органические изменения во внутренних органах и позвоночнике. Для повышения устойчивости к ним используются специальные кресла, имеющие углубленные заголовники, и фиксирующие тело ремнями, ограничителями смещения конечностей.
Перегрузкой также является проявление силы тяжести на борту космического судна. Если в земных условиях характеристикой силы тяжести является ускорение свободного падения тел, то на борту космического корабля в число характеристик перегрузки также входит ускорение свободного падения, равное по величине реактивному ускорению по противоположному ему направлению. Отношение этой величины к величине называется «коэффициентом перегрузки» или «перегрузкой».
На участке разгона ракеты-носителя перегрузка определяется равнодействующей негравитационных сил — силы тяги и силы аэродинамического сопротивления, которая состоит из силы лобового сопротивления, направленной противоположно скорости, и перпендикулярной к ней подъемной силы. Эта равнодействующая создает негравитационное ускорение, которое определяет перегрузку.
Ее коэффициент на участке разгона составляет несколько единиц.
Если космическая ракета в условиях Земли будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды, то произойдет увеличение давления на опору из-за чего возникнет перегрузка. Если движение будет происходить с выключенными двигателями в пустоте, то давление на опору исчезнет и наступит состояние невесомости.
При старте космического корабля на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. По статистике, космонавты редко испытывают перегрузки, превышающие 4 g.
Способность переносить перегрузки зависит от температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и т.д. Существуют и другие более сложные или менее уловимые факторы, влияние которых еще не до конца выяснено.
Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, которое длится более трех секунд, могут возникнуть серьезные нарушения периферического зрения. Поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности.
При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести. При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта иллюзия называется окологиральной и является следствием воздействия перегрузок на органы внутреннего уха.
Многочисленные экспериментальные исследования, которые были начаты еще ученым Константином Циолковским, показали, что физиологическое воздействие перегрузки зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Из-за увеличения своего веса внутренние органы смещаются вниз и вызывают сильное натяжение связок.
Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси, от спины к груди. Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.
При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.
Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.
Перегрузки, испытываемые космонавтами в невесомости. Справка
При совершении космического полета космонавт подвергается воздействию ряда факторов: невесомость, перегрузки, шумы, вибрации, ограничение подвижности, изоляция, существование в замкнутом ограниченном пространстве и пр.
Ни одна профессиональная деятельность человека не связана с воздействием на него всех этих факторов в тех количественных соотношениях, как при полетах в космос. Так, состояние длительной невесомости, которое испытывает космонавт, не может быть испытано человеком в земных условиях.
В земных условиях человек может испытать только состояние кратковременной невесомости, например, если человек находится в лифте, движущемся по вертикали вниз с ускорением a = g. Где g – ускорение свободного падения, т.е. ускорение силы тяжести.
Как и сила тяжести, ускорение свободного падения зависит от широты места j и высоты его над уровнем моря Н. Приблизительно ускорение свободного падения = 978,049 (1 + 0,005288 sin2j – 0,000006 sin22 j – 0,0003086 Н. На широте Москвы на уровне моря g = 981,56 см/сек.
Но при а = g – тело и лифт совершают свободное падение и никаких взаимных давлений друг на друга не оказывают, в результате организм воспринимает оказываемое на него давление как состояние невесомости.
Состояние космической невесомости имеет отличия от состояния невесомости в земных условиях, что вызывает изменения ряда его жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому невесомость рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полета. Ответом на этот раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности невесомости и в значительно меньшей степени от индивидуальных особенностей организма.
С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.
Если в полете не применяются средства профилактики, то в первые часы и сутки после приземления (период реадаптации к земным условиям) у человека, совершившего длительный космический полет, наблюдается следующий комплекс изменений:
1. Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей, снижением объема циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция;
2. Нарушение кислородного режима организма при физических нагрузках;
3. Нарушение способности поддерживать вертикальную позу в статике и динамике; ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые; наблюдается растренированность в дозировании мышечных усилий);
4. Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное;
5. Снижение иммунобиологической резистентности (ослабление иммунитета);
вестибуловегетативные расстройства.
Нарушения работы организма человека, вызванные невесомостью, обратимы. Ускоренное восстановление нормальных функций может быть достигнуто с помощью физиотерапии и лечебной физкультуры, а также применением лекарственных препаратов. Неблагоприятное влияние невесомости на организм человека в полете можно предупредить или ограничить с помощью различных средств и методов (мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства).
Другим фактором, оказывающим значительное влияние на человеческий организм при совершении космического полета, являются перегрузки.
Перегрузки космонавт испытывает при старте и возвращении космического корабля.
При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. Другими словами, вес космонавта во время запуска корабля как бы увеличивается в семь раз.
Человек легче всего переносит перегрузки, действующие в горизонтальной плоскости, хуже – в вертикальной. Однако способность переносить перегрузки (величина допустимых перегрузок) у разных людей различна и зависит от ряда факторов, например от скорости нарастания перегрузки, температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и даже от эмоционального состояния космонавта. Существуют, несомненно, и другие более сложные или менее уловимые факторы, влияние которых еще не совсем выяснено.
Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.
Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, длящемся более 3 секунд, могут возникнуть серьезные нарушения периферического зрения.
С увеличением перегрузок острота зрения уменьшается, поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности. При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.
При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).
Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси.
Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.
При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.
Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.
По статистике, космонавты редко испытывают перегрузки, превышающие 4g.