что такое пароперегреватель котла
Пароперегреватели
Назначение и область применения
Пароперегреватель — устройство, предназначенное для получения перегретого пара с температурой выше, чем температура насыщения в барабане котла при том же давлении, что и в котле. Он является одним из наиболее ответственных элементов котельного агрегата, так как температура пара в нем достигает наибольших значений и металл перегревателя работает в условиях, близких к предельно допустимым. Змеевики пароперегревателя и коллекторы, выполненные из углеродистой стали, могут работать при температурах перегрева до 425 °С. В свою очередь, насыщенный перегретый пар значительно повышает коэффициент полезного действия котла.
По назначениям пароперегреватели делятся на основные, в которых перегревается пар высокого давления или сверх критического давления (СКД); промежуточные, в которых перегревается пар, частично отработавший в турбине.
Типы пароперегревателей:
Пароперегреватели по способу тепловосприятия подразделяются:
1. Конвективные пароперегреватели (располагаются в конвективном газоходе и получают теплоту конвекцией).
2. Радиационные пароперегреватели (устанавливаются на стенах топочной камеры и получают теплоту радиацией).
3. Ширмовые пароперегреватели, радиационно-конвективные (располагаются в верхней части топки и частично в горизонтальном газоходе между радиационными и конвективными поверхностями нагрева).
В котельных агрегатах низкого и среднего давлений используются конвективные пароперегреватели с вертикальным или горизонтальным расположением труб.
Для получения пара с температурой перегрева более 500 °С применяют ширмовые, комбинированные пароперегреватели, т.е. такие, в которых тепловосприятие в одной части поверхности происходит за счет излучения, а в другой — путем конвекции. Радиационная часть поверхности нагрева такого пароперегревателя расположена в виде ширм непосредственно в верхней части топочной камеры.
Устройство и принцип действия
1. Конвективные пароперегреватели
В зависимости от направления движения потоков пара и продуктов сгорания в пакетах конвективных пароперегревателей различают три схемы движения потоков:
Направление движения греющей и нагреваемой среды у прямоточного пароперегревателя совпадают, а у противоточного направлены в противоположные стороны.
Рис. 1 – Схемы движения пара и продуктов сгорания в конвективных пароперегревателях:
а – прямоточное; б – противоточное; в – смешанное.
В противоточном пакете пароперегревателя достигается максимальный температурный напор между продуктами сгорания и паром, что уменьшает поверхность нагрева и расход металла.
Недостатком схемы является опасность пережога последних по ходу пара участков змеевиков, так как здесь пар наиболее высокой температуры встречается с продуктами сгорания, также имеющими наибольшую температуру и металл труб находится в тяжелых температурных условиях.
По схеме противотока работают только конвективные поверхности, омываемые газами температурой не выше 600 – 850 °С в зависимости от качества металла.
При прямотоке температурный напор получается меньше, чем при противотоке и, соответственно, увеличивается необходимая поверхность нагрева. Однако условия работы металла лучше, так как участки змеевиков с наибольшей температурой пара обогреваются продуктами сгорания, уже частично охлажденными.
В смешанной схеме взаимного движения пара и продуктов сгорания достигаются оптимальные условия надежности и умеренной стоимости конвективного пароперегревателя.
Конвективные пароперегреватели выполняют из стальных труб наружным диаметром 32— 42 мм для высокого и сверхкритического давления и толщиной стенки 5—7 мм. Различают змеевики одно- и многорядные. Они отличаются числом рядов параллельных труб, выходящих из коллектора.
При большой тепловой мощности котла змеевики пароперегревателя выполняют обычно в три-четыре ряда труб, при этом затрудняются условия для приварки концов труб в коллекторе, увеличивается число сверлений в нем и уменьшается его прочность.
Рис. 2 – Схема вертикального конвективного пароперегревателя:
1 – барабан котла; 2 – главная паровая задвижка; 3 – выходной коллектор перегретого пара; 4 – промежуточный коллектор с поверхностным пароохладителем; 5 – балка для подвески змеевиков; 6 – подвеска змеевиков; 7 – змеевик первой ступени пароперегревателя; 8 – дистанционная планка; 9 – дистанционная гребенка; 10 – змеевик второй ступени пароперегревателя; ПГ – продукты горения.
2. Радиационные пароперегреватели
При небольшой поверхности радиационный пароперегреватель барабанного парового котла обычно занимает потолок топки, а если этого недостаточно, то его размещают и на вертикальных ее стенах.
Настенные перегреватели, выполненные в виде панели на всю высоту топки, оказываются менее надежными и так отвод теплоты от металла к пару во много раз слабее, чем к кипящей воде. Особенно тяжелый режим имеет металл труб настенного перегревателя при сниженных нагрузках, когда расход пара в трубах заметно снижается.
3. Ширмовые пароперегреватели
Ширмовые пароперегреватели представляют собой систему труб, образующих плоские плотные панели с входными и выходными коллекторами.
Ширмы размещают в верхней части топки на расстоянии 600 – 1000 мм одна от другой вертикально или горизонтально.
Они являются радиационно-конвективными поверхностями, так как их тепловосприятие складывается из значительной доли радиационного излучения от ядра факела и раскаленных газов в объеме между ширмами и доли конвективного теплообмена.
Газы омывают ширмы продольно-поперечным потоком со скоростью 5 – 8 м/с.
Ширмовые перегреватели обычно получают 20 – 40% всего тепловосприятия пароперегревателя.
Ширмы могут изготавливаться из плавниковых труб. Они меньше шлакуются и легче очищаются от наружных загрязнений.
Пароперегреватели котлов
Получение перегретого пара из сухого насыщенного осуществляется в пароперегревателе отопительного котла. Пароперегреватель — один из наиболее ответственных элементов отопительного котла, так как из всех поверхностей нагрева он эксплуатируется в наиболее тяжелых температурных условиях. Змеевики пароперегревателя и коллекторы, выполненные из углеродистой стали, могут работать при температурах перегрева до 425 оС.
По способу тепловосприятия пароперегреватели подразделяются на конвективные, радиационно-конвективные и радиационные. В отопительных котлах низкого и среднего давлений используются конвективные пароперегреватели с вертикальным или горизонтальным расположением труб. Для получения пара с температурой перегрева более 500 °С в отопительных котлах применяют комбинированные пароперегреватели, т.е. такие, в которых тепловосприятие в одной части поверхности происходит за счет излучения, а в другой — путем конвекции. Радиационная часть поверхности нагрева пароперегревателя расположена в виде ширм непосредственно в верхней части топочной камеры.
В зависимости от направления движения газов и пара различают три основные схемы включения пароперегревателя в газовый поток: прямоточную (а) — газы и пар движутся в одном направлении; противоточную (б) — газы и пар движутся в противоположных направлениях; смешанную (в) — в одной части змеевиков пароперегревателя газы и пар движутся прямоточно, а в другой — в противоположных направлениях.
В случае прямоточной схемы пароперегревателя в отопительном котле наиболее высокая температура газов соответствует области наиболее низкой температуры пара. В принципе это должно обеспечивать низкие температуры металла пароперегревателя, однако при наличии капель котловой воды, поступающих с насыщенным паром из сепарационных устройств барабана, соли, содержащиеся в данных каплях, будут осаждаться на первых рядах змеевиков, приводя к резкому повышению температуры металла. Кроме того, при такой схеме движения теплоносителей температурный напор (усредненная по поверхности разность температур греющей и нагреваемой сред) минимален, что требует увеличения необходимой поверхности пароперегревателя.
При противоточной схеме движения в отопительном котле змеевики, обогреваемые продуктами горения с наиболее высокой температурой, встречают уже перегретый пар и охлаждаются при этом недостаточно. В результате, несмотря на то, что металл змеевиков пароперегревателя работает в наиболее тяжелых температурных условиях, температурный напор в этой схеме максимальный, а необходимая поверхность теплообмена минимальна, что позволяет делать пароперегреватели с такой схемой движения весьма компактными.
Оптимальной по условиям надежности работы является смешанная схема включения пароперегревателя, при которой первая по ходу пара часть пароперегревателя выполняется противоточной, а завершение перегрева пара происходит во второй его части при прямоточном движении теплоносителей. При этом в части змеевиков, расположенных в области наибольшей тепловой нагрузки пароперегревателя (в начале газохода), будет умеренная температура пара, а завершение процесса его перегрева происходит при меньшей тепловой нагрузке. Соотношение противоточной и прямоточной частей пароперегревателя выбирается из условия одинаковых температур металла в начале и в конце змеевика его прямоточной части.
Вертикальный конвективный пароперегреватель обычно устанавливают в горизонтальном соединительном газоходе между топкой и конвективной шахтой котла. Такой пароперегреватель изготовляют из цельнотянутых труб внутренним диаметром 20. 30 мм, образующих змеевики, ввальцованные или приваренные к круглым коллекторам. Насыщенный пар из барабана (1) котла по потолочным трубам поступает в змеевики первой ступени пароперегревателя. На этой ступени пар вначале движется противоточно, а затем прямоточно по отношению к дымовым газам. Из первой ступени частично перегретый пар направляется в промежуточный коллектор (4), в котором расположен поверхностный пароохладитель (регулятор перегрева пара). В змеевики регулятора перегрева пара подается питательная вода, а в межтрубное пространство — пар, который частично охлаждается, омывая более холодные поверхности труб.
Регулирование перегрева пара осуществляется изменением количества питательной воды, пропускаемой через пароохладитель. Из регулятора перегрева пара пар поступает в змеевики (10) второй ступени пароперегревателя, в которой движется сначала противоточно, а затем противоточно по отношению к газовому потоку. Перегретый пар из второй ступени пароперегревателя направляется в выходной коллектор (3), на котором установлена главная паровая задвижка (2).
Змеевики пароперегревателя с помощью подвесок (6) подвешиваются к потолочным балкам (5). Заданное расстояние между отдельными змеевиками поддерживается с помощью дистанционных планок (8) и дистанционных гребенок (9).
Температуру пара в котлах с давлением до 2,4 МПа не регулируют, а в котлах с давлением 3,9 МПа и выше регулируют следующими способами: впрыском конденсата в пар; в поверхностных пароохладителях; с помощью газового регулирования путем изменения расхода продуктов горения через пароперегреватель либо перемещения положения факела в топке с помощью поворотных горелок.
Пароперегреватель должен быть оборудован манометром, предохранительным клапаном, запорным вентилем для отключения пароперегревателя от паровой магистрали, прибором для измерения температуры перегретого пара.
Пароперегреватели
Пароперегреватели
Металл труб пароперегревателя работает в тяжелых температурных условиях даже при относительно невысоких температурах перегретого пара, 450-500°С.
Во всех случаях обогрева продуктами сгорания средняя температура металла всегда выше средней температуры охлаждающей среды, движущейся внутри труб. Превышение температуры стенки металла трубы зависит от равномерности обогрева продуктами сгорания змеевиков пароперегревателя в поперечном направлении, разности средней температуры продуктов сгорания и внутренней температуры стенки трубы, разности температуры стенки трубы и средней температуры металла. Для экономайзерных и испарительных поверхностей нагрева при высоких коэффициентах теплоотдачи от стенки к воде или к пароводяной эмульсии и при отсутствии накипи на внутренней поверхности труб в самых неблагоприятных условиях температура металла не превышает температуры охлаждающей среды более чем на 60 °С. В пароперегревателях температура пара (даже 450 °С) уже близка к предельной температуре, допустимой для углеродистой стали. Кроме того, коэффициент теплоотдачи от стенки к пару примерно на порядок меньше, чем к кипящей или некипящей воде. Только эти факторы могут дать превышение температуры металла стенки трубы пароперегревателя на 50-70 °С по сравнению со средней температурой пара. Поэтому тепловая разверка между змеевиками вследствие их неравномерного обогрева продуктами сгорания или неравномерного распределения пара по отдельным змеевикам, а тем более отложение накипи могут привести к выходу труб пароперегревателя из строя.
Для уменьшения тепловой разверки вследствие неравномерного распределения пара по отдельным змеевикам производят рассредоточенный ввод пара трубами малого диаметра по всей длине раздающего коллектора, установку промежуточных смешивающих коллекторов, разделение пароперегревателя на несколько частей по ширине с переброской пара из одной части в другую и т. д. Подробные рекомендации к выбору схем подвода пара приведены в «Нормах гидравлического расчета паровых котлов».
Существенное влияние на надежность работы металла пароперегревателя оказывает скорость пара. Повышение скорости пара в змеевиках пароперегревателя приводит к снижению температуры стенки труб, но увеличивает гидравлическое сопротивление пароперегревателя. В пароперегревателях промышленных котлов скорость пара принимается в пределах 20-25 м/с. При этих скоростях гидравлическое сопротивление пароперегревателя не превышает 5-6 % номинального давления пара.
При противоточной схеме движения продукты сгорания и пар движутся в противоположных направлениях. При такой схеме змеевики, обогреваемые продуктами сгорания с наиболее высокой температурой, встречают уже перегретый пар н охлаждаются явно недостаточно. В результате металл змеевиков пароперегревателя работает в наиболее тяжелых температурных условиях. В то же время соли, содержащиеся в насыщенном паре, выпадают в змеевиках, обогреваемых продуктами сгорания с более низкой температурой. По сравнению с предыдущей схемой здесь температурный напор больше, а поверхность нагрева пароперегревателя получается меньшей и более дешевой.
При смешанном взаимном движении продуктов сгорания и пара используется как прямоток, так н противоток в различных комбинациях. При этих схемах создаются наиболееблагоприятные температурные условия работы пароперегревателя, а его поверхность нагрева наименьшая.
Конвективные пароперегреватели располагают в горизонтальном газоходе между топкой и опускной шахтой или в самой опускной шахте. При установке в горизонтальном газоходе глубина каждого пакета пароперегревателя не более 1500 мм, между пакетами оставляют свободное пространство не менее 500 мм для выполнения ремонтных работ и осмотров.
Скорость продуктов сгорания в пароперегревателе обычно принимают 9-14 м/с, но не меньше 6 м/с во избежание заноса его поверхности нагрева летучей золой. При больших скоростях и сжигании высокозольных топлив имеется опасность истирания труб летучей золой.
В зависимости от способа расположения в газоходе различают горизонтальную и вертикальную подвеску параллельно включенных змеевиков. В настоящее время применяют как горизонтальную, так и вертикальную подвеску змеевиков пароперегревателя. Змеевики обычно располагают в коридорном порядке, что облегчает их очистку от загрязнений летучей золой.
Горизонтальное расположение змеевиков пароперегревателя обеспечивает хорошее удаление из них конденсата при остановке парогенератора, но требует более прочных и сложных подвесок во избежание провисания змеевиков. У вертикальных пароперегревателей змеевики свободно подвешиваются, что упрощает конструкцию, повышает надежность работы подвесок, но затрудняет дренаж конденсата, образующегося при остановке парогенератора.
На рис. 8-1 показан конвективный пароперегреватель промышленного котла, изготовленный из цельнотянутых труб диаметром 32 мм. Для промышленных котлов колебания перегрева пара, происходящие при изменении нагрузки, не оказывают существенного влияния на работу теплоиспользующих аппаратов, поэтому в них отсутствуют устройства, регулирующие перегрев пара. У энергетических парогенераторов, снабжающих паром турбины, необходимо поддерживать заданный перегрев пара. Температура перегрева пара в конвективных пароперегревателях увеличивается при росте нагрузки парогенератора и коэффициента избытка воздуха в топке, при снижении температуры питательной воды и шлаковании топки.
Регулирование температуры перегретого пара может осуществляться применением поверхностных пароохладителей, впрыскиванием воды в пар, пропусканием части продуктов сгорания мимо пароперегревателя, рециркуляцией продуктов сгорания в топку, изменением аэродинамики или химической структуры факела, изменением излучательной способности факела.
Регулятор перегрева пара должен обеспечивать поддержание температуры перегретого пара постоянной при изменении нагрузки парогенератора в широких пределах, быть конструктивно простым, надежным и малоинерционным.
Поверхностный пароохладитель представляет собой обычный теплообменный аппарат. Он обычно состоит из двух пакетов U-образных труб, по которым пропускается питательная вода. Трубы снаружи омываются паром, который от соприкосновения с их поверхностью охлаждается. Регулирование перегрева пара осуществляется изменением количества питательной воды, пропускаемой через пароохладитель (рис. 8-2, а).
Типичная схема включения поверхностного пароохладителя показана на рис. 8-2, б. Пароохладитель устанавливается между первой и второй ступенью пароперегревателя. Пар из барабана котла поступает во вторую по ходу продуктов сгорания ступень пароперегревателя, в которой осуществляется противоточная схема движения пара и продуктов сгорания. Пройдя по змеевикам второй ступени пароперегревателя, пар поступает в поверхностный пароохладитель и из него в первую по ходу продуктов сгорания ступень пароперегревателя. Первая ступень пароперегревателя выполнена прямоточной, т. е. пар и продукты сгорания движутся в одном направлении. При такой схеме включения пароохладителя змеевики, расположенные в зоне наиболее высоких температур, охлаждаются паром, предварительно прошедшим через пароохладитель.
В последнее время для регулирования перегрева пара довольно широко применяется впрыскивание воды в пар. Впрыскивать в пар можно только чистый дистиллят или конденсат с незначительным солесодержанием (не более 0,5 мг/кг). В котлах Е-75-40Н, новых газомазутных паровых котлах производительностью 35-75 т/ч и ряде других применены впрыскивающие пароохладители. В настоящее время применяется схема впрыскивания собственного конденсата котла, разработанная проф. Р. Долежалом (рис. 8-3).
Пар из барабана по специальной линии направляется в поверхностный конденсатор, где конденсируется питательной водой, и затем поступает в сборник конденсата. Оттуда конденсат направляется через регулирующий клапан к впрыскивающему пароохладителю. Количество конденсата, поступающего в пароохладитель, регулируется системой автоматики, поддерживающей заданную температуру перегретого пара.
Рециркуляция продуктов сгорания для регулирования перегрева пара применяется на энергетических парогенераторах большой мощности. Регулирование осуществляется за счет отбора продуктов сгорания, имеющих температуру до 400 °С, и направления их в нижнюю часть топочной камеры. Рециркуляция продуктов сгорания для регулирования перегрева пара может применяться только при сжигании газа, мазута и малозольных твердых топлив.
При сжигании различных по теплоте сгорания газов в одном и том же парогенераторе для регулирования перегрева пара применяют горелки с регулируемым факелом. Так, например, для сжигания природного, коксового и доменного газов в одном н том же парогенераторе с успехом применяются реверсивные газовые горелки с регулируемым факелом, разработанные в институте СредАзНИИгаз.
Пароперегреватели предназначаются для перегрева насыщенного пара, поступающего из испарительной системы парогенератора; в установках высокого давления они применяются также для дополнительного вторичного перегрева пара, частично отработавшего в цилиндре высокого давления турбины. Пароперегреватель является одним из основных теплоиспользующих элементов парогенератора и работает в наиболее тяжелых условиях.
Перегрев пара выше температуры насыщения необходим по соображениям повышения термического КПД электростанций и преду-преждения эрозии лопаточного аппарата водой из сконденсировавшегося на лопатках турбины пара. Перегрев пара осуществляется в трубчатых поверхностях, обычно радиационно-конвективного типа.
Поверхности нагрева перегревателя можно классифицировать исходя из способа передачи теплоты от дымовых газов: радиация (радиационные поверхности), конвекция (конвективные поверхности) и смешанная (радиационно-конвективные поверхности нагрева). Все эти поверхности показаны на схеме пароперегревателя котла высокого давления на рис. 43.
Основными конструктивными деталями пароперегревателя являются стальные, часто легированные, трубы и коллекторы. Трубы, как правило, имеют наружный диаметр 28 – 42 мм, промежуточного перегревателя – до 60 мм.
Радиационная поверхность нагрева 2 пароперегревателя размещается обычно на стенах топки с расположением труб перегревателя между испарительными трубами экранов. На рис. 43 радиационно-конвективная поверхность представлена в виде U-образных ширм 3 с поперечным шагом 450 – 700 мм и потолочных панелей 6; а конвективные поверхности – в виде змеевиковых пакетов 4 и 5.
Рис. 43. Основные конструктивные элементы пароперегревателей:
1 – барабан; 2 – двухходовая панель радиационного настенного топочного перегревателя; 3 – подвесные вертикальные полурадиационные перегревательные ширмы на выходе из топки; 4 – конвективный змеевиковый вертикальный перегреватель; 5 – горизонтальный выходной конвективный пароперегреватель; 6 – потолочная трубчатая панель перегревателя; 7 – впрыскивающий пароохладитель; 8 – выходной коллектор перегретого пара; 9 – входной коллектор подвесных труб; 10 – то же выходной; 11 – подвесные трубы перегревателя; 12 – опорная планка; 13 – змеевики горизонтального перегревателя; 14 – горелка
Различают перегреватели по способу крепления змеевиков: вертикальные 4 – первичного перегревателя и горизонтальные 5 – вторичного.
Вертикальные перегреватели крепятся к потолочному перекрытию котла обычно на подвесках из жаростойкой стали, причем последние часто размещают вне газохода.
Горизонтальные перегреватели крепят на подвесных трубках, охлаждаемых паром. Панели и пакеты змеевиков крепятся дистанционирующими вставками и подвесками из жароупорной стали и другими способами.
С повышением параметров пара роль и значение пароперегревателя возрастают. Это положение подтверждается зависимостью доли тепла, воспринимаемого пароперегревателем, от параметров пара, показанной на рис. 44. Так, при средних параметрах пара 3,93 МПа (40 кгс/см 2 ) и 450° С тепло, затрачиваемое на перегрев пара, составляет 30,6 % тепла, затрачиваемого на испарение воды: при высоких параметрах 13,8 МПа и 570 °С его доля доходит до 92 %.
Металл поверхностей нагрева пароперегревателя имеет наибольшую по сравнению с другими теплоиспользующими поверхностями нагрева температуру, что обусловливается высокими температурами пара и большими удельными тепловыми нагрузками поверхностей нагрева.
По назначению пароперегреватели разделяют на первичные, в которых перегревается пар начального давления, и промежуточные, используемые для перегрева частично отработавшего пара.
Рис. 44. Структура тепловосприятия в поверхностях нагрева
8.2. Конвективные пароперегреватели
Конвективный пароперегреватель выполняется обычно из труб с внутренним диаметром 22 – 36 мм, образующих змеевики, ввальцованные или приваренные к круглым коллекторам. Для промежуточных пароперегревателей диаметр труб d 2 ∙с). Большие значения массовой скорости принимаются для последних по ходу пара ступеней пароперегревателя.
При указанных скоростях пара значение коэффициента теплоотдачи от стенки к пару составляет α2 > 2000 Вт/(м 2 ·К), что обеспечивает достаточно хорошее охлаждение металла труб и его температуру в пределах °С. Для выравнивания температуры пара по отдельным змеевикам при температуре его более 450 °С пароперегреватель разделяют на последовательно включенные по пару части с перемешиванием пара между ними. Перемешивание пара обеспечивается в смесительных коллекторах, к которым присоединены змеевики отдельных частей пароперегревателя. Кроме того, осуществляют переброс пара из змеевиков, расположенных в одной части газохода, в змеевики другой части. Подводить пар к раздающему коллектору рекомендуется рядом труб по всей его длине (рис. 45).
Рис. 45. Схема пароперегревателя с перебросом
Для надежной работы пароперегревателя, помимо обеспечения достаточной скорости потока и равномерной температуры подогрева пара по параллельно включенным змеевикам, необходимо осуществить наиболее рациональную схему включения пароперегревателя по ходу по-тока продуктов сгорания. В зависимости от направления движения потоков пара и продуктов сгорания различают пароперегреватели прямоточные, противоточные и со смешанным направлением потоков (рис. 46).
Рис. 46. Схемы движения пара и продуктов сгорания в конвективных
а – противоточное; б – прямоточное; в, г – смешанное
В противоточном пароперегревателе достигается наибольший возможный температурный напор между продуктами сгорания и паром, что уменьшает необходимую поверхность нагрева пароперегревателя и соответственно снижает расход на него металла. Недостатками противоточной схемы являются размещение последних по ходу пара частей змеевиков в области наиболее высоких температур продуктов сгорания и тяжелые температурные условия работы металла труб. При прямоточном пароперегревателе температурный напор меньше, чем при противоточном, однако условия работы металла труб лучше, так как части змеевиков с наибольшей температурой пара обогреваются продуктами сгорания, охлажденными на входных участках змеевиков.
Оптимальной является смешанная схема включения пароперегре-вателя, при которой большая и первая по ходу пара часть перегревателя выполняется противоточной, а завершение перегрева пара происходит во второй его части при прямотоке. При этом в части змеевиков, расположенных в области наибольшей тепловой нагрузки пароперегревателя, в начале газохода, будет умеренная температура пара, а завершение перегрева пара происходит при меньшей тепловой нагрузке. Соотношение противоточной и прямоточной частей пароперегревателя выбирается из условия одинаковых температур металла в начале и конце змеевика прямоточной части пароперегревателя. При выполнении пароперегревателя из обычной углеродистой стали температура пара в конце противоточной части пароперегревателя должна быть не выше 400 – 425 °С.
На рис. 43 показана схема пароперегревателя барабанного парогенератора высокого давления с конвективным пароперегревателем 4, выпол-ненным в виде вертикальных змеевиков. Каждый змеевик располагается в плоскости, перпендикулярной фронту парогенератора. Расположение змеевиков в плоскости, совпадающей с направлением движения продуктов сгорания, обеспечивает одинаковый обогрев всех змеевиков при значительном снижении температуры газов по глубине газохода. Наряду с этим устраняется влияние на тепловосприятие змеевиков неравномерных температур по высоте газохода, которое в нижней и верхней части змеевиков может различаться на 20 % и более. Однако расположение змеевиков в плоскости, перпендикулярной фронту парогенератора, при неодинаковой температуре продуктов сгорания по ширине газохода приводит к неравномерному тепловосприятию змеевиков по ширине газохода. В результате тепловая нагрузка отдельных змеевиков может превышать среднюю на 10 – 20 %. В этих условиях для обеспечения нормальной работы труб пароперегревателя его разделяют на части с перемешиванием пара в коллекторах до поступления его в последующую часть. Змеевики вертикального пароперегревателя обычно располагаются в коридорном порядке с целью обеспечения возможности легкой их очистки от наружных загрязнений и уменьшения опасности зашлаковывания. Змеевик пароперегревателя выполнен из двух параллельно включенных по пару труб, что позволяет разместить в габаритах газохода большую поверхность нагрева. Скорость продуктов сгорания в газоходе остается такой же, как и при одинарном змеевике, а скорость пара уменьшается в 2 раза.
На рис. 47 показано крепление вертикального пароперегревателя. Вертикальные змеевики подвешены к каркасу парогенератора за концы верхних петель, вынесенных из зоны обогрева. Подвеска змеевиков осуществлена с помощью хомутов, охватывающих трубки и подвешенных к крючку, укрепленному на балке каркаса. Для обеспечения определенного расстояния между змеевиками на нижние петли змеевиков укладывают дистанционирующие гребенки из жароупорного чугуна и скрепляют их при помощи хомутов из жаропрочной стали.
Рис. 47. Крепление вертикального конвективного пароперегревателя:
1 – змеевик; 2 – подвесные планки; 3 – верхние изгибы труб;
4 – потолочные трубы; 5 – дистанционирующие гребенки;
8.3. Радиационные и ширмовые пароперегреватели
При высоких параметрах пара возникает необходимость размещения в топке радиационного или ширмового пароперегревателя. Радиационный пароперегреватель барабанных парогенераторов обычно устанавливают на потолке топки, а если этой поверхности недостаточно — и на вертикальных ее стенках по всей их высоте (рис. 43). Обычно размещают пароперегреватель на стенках, на которых установлены горелки, чаще на фронтовой стенке.
На рис. 48 показана конструкция ширм, при которой трубки ширм висят на коллекторах, подвешенных к каркасу парогенератора. Постоянство взаимного расположения ширм в топке обеспечивается соединением хомутами попарно выступающих соседних труб в месте их соприкосновения. Преимуществом вертикальных ширм является стекание налипшего на них шлака по мере утолщения его слоя.
В парогенераторах большой мощности тепловосприятие ширмовых пароперегревателей может составлять до 50 % всего тепла, необходимого для перегрева пара. Использование ширмовых пароперегревателей умень-шает поверхность нагрева настенных радиационных пароперегревателей и улучшает использование объема верхней части топочной камеры.
Рис. 48. Вертикальный ширмовый пароперегреватель:
а – клинообразная форма низа ширмы; б – горизонтальная
форма низа ширмы; 1 – трубы ширмы; 2 – камера;
3 – обвязочные трубы; 4 – хомут
8.4. Компоновка пароперегревателя
Имеется большое разнообразие конструкций пароперегревателя. На рис. 49 показаны наиболее часто применяемые схемы, конструкции и компоновки пароперегревателей.
Пароперегреватель парогенератора среднего давления с параметрами Р = 3,9 МПа, t = 440 °С обычно конвективный, с вертикальными змеевиками; он размещается за фестоном или за конвективным испарительным пучком (рис. 49а). Для защиты металла выходных змеевиков от чрезмерно высокой температуры пароперегреватель выполняется по смешанной противоточно-прямоточной схеме. Выравнивание температуры пара, поступающего в прямоточную часть пароперегревателя, осуществляется в выходном коллекторе противоточной части и во входном коллекторе прямоточной части. При наличии перед пароперегревателем только фестона неравномерность температур по ширине топки сохраняется и на входе продуктов сгорания в пароперегреватель. Повышенная местная температура продуктов сгорания может явиться причиной шлакования пароперегревателя, которое также возможно и при общем увеличении температур в топке. В целях уменьшения опасности зашлаковывания пароперегревателя применяется разрядка его передних рядов — фестонирование.
Рис. 49. Схемы пароперегревателей:
а – среднего давления; б – высокого давления; в – прямоточного котла;
1 – барабан; 2 – конвективный пароперегреватель; 3 – ширмовый
пароперегреватель; 4 – потолочный пароперегреватель;
5 – настенный пароперегреватель; 6 – экраны топочной камеры
В парогенераторах высокого давления с параметрами Р = 9,8 и 13,7 МПа и t = 510 и 540 °С пароперегреватель состоит из двух частей, конвективной и ширмовой (рис. 49б). Ширмовый пароперегреватель с вертикальными панелями размещен в верхней части топки перед фестоном. Конвективный пароперегреватель с вертикальными змеевиками размещается в горизонтальном газоходе за фестоном. Обе части пароперегревателя включаются по пару последовательно. При этом первым по ходу пара включается ширмовый пароперегреватель, работающий в более тяжелых условиях. Насыщенный пар из барабана проходит через небольшую поверхность радиационного пароперегрева-теля, расположенную на потолке топки, затем поступает в ширмовый пароперегреватель, а из него — в конвективный пароперегреватель. Конвективный пароперегреватель включен по смешанной схеме, так что его выходные змеевики расположены в области умеренных температур продуктов сгорания. Описанные конструкция и компоновка пароперегре-вателя являются оптимальными для парогенераторов высокого давления и обеспечивают высокую надежность его работы. Пароперегреватель прямоточного котла (рис. 49в) состоит из радиационных настенного 5 и потолочного 4 пароперегревателей, полурадиационного – ширмового 3 и двух ступеней конвективного 2 пароперегревателя. Все ступени включены последовательно, прямоточная часть конвективного пароперегревателя располагается в горизонтальном газоходе, а противоточная – в конвективной шахте.
8.5. Регулирование температуры пара
В процессе эксплуатации парогенератора температура перегретого пара может меняться вследствие изменения удельного тепловосприятия пароперегревателя. Наибольшее влияние на температуру перегретого пара оказывает нагрузка парогенератора. Температура перегрева пара зависит также от температуры питательной воды, избытка воздуха в топке, шлакования и загрязнения экранов и пароперегревателя, от характеристик топлива.
В радиационном пароперегревателе с повышением нагрузки температура перегрева пара снижается, так как удельное тепловосприятие пароперегревателя возрастает в топке медленнее, чем увеличивается нагрузка.
В конвективном пароперегревателе количество проходящих через него продуктов сгорания увеличивается почти пропорционально увеличению нагрузки и одновременно повышается температура на выходе из топки. Соответственно повышаются коэффициент теплоотдачи в пароперегревателе и температурный напор. В результате удельное тепловосприятие пароперегревателя растет быстрее, чем нагрузка парогенератора, и температура перегрева пара возрастает.
В барабанных парогенераторах при снижении температуры питательной воды расход топлива и продуктов сгорания увеличивается, что повышает скорость газов в пароперегревателе и увеличивает коэффициент теплоотдачи. Следовательно, при неизменном расходе пара повышается температура его перегрева. В прямоточных парогенераторах снижение температуры питательной воды приводит к уменьшению поверхности нагрева зоны пароперегревателя, и температура перегрева пара снижается.
Увеличение избытка воздуха в топке уменьшает долю тепла, передаваемого радиацией в топке, и увеличивает объем и скорость продуктов сгорания, проходящих через пароперегреватель. В результате повышается температура перегрева пара.
Повышение влажности твердого топлива при неизменной паропроизводительности парогенератора увеличивает объем продуктов сгорания, проходящих через пароперегреватель, и его удельное тепловосприятие, за счет чего также повышается температура перегрева пара.
Шлакование экранов в топке вызывает повышение температуры продуктов сгорания перед пароперегревателем и температуры перегрева пара. Загрязнение пароперегревателя вызывает снижение температуры перегретого пара.
В прямоточных парогенераторах поверхность нагрева зоны пароперегревателей меняется и зависит от эксплуатационных факторов. Поддержанием соотношения расхода воды и топлива можно обеспечить неизменную температуру перегрева пара. Вместе с этим небольшое изменение расхода топлива вызывает существенное изменение температуры пара вследствие малой аккумулирующей способности парогенератора.
В соответствии с ГОСТ на турбины установлены допустимые отклонения температуры перегрева пара от номинального значения в пределах от +10 до –15 °С в парогенераторах среднего давления и от +5 до –10 °С в парогенераторах высокого давления. Применяемые системы и конструкции пароперегревателей в различных условиях эксплуатации не могут обеспечить поддержание температуры пара в допустимых пределах. В связи с этим энергетический парогенератор должен иметь устройство для регулирования температуры пара. При этом номинальная температура перегретого пара после первичного и промежуточного пароперегревателей должна обеспечиваться в диапазоне нагрузок парогенератора 70 – 100 % при допустимых изменениях всех других факторов, влияющих на температуру перегрева пара.
В современных парогенераторах применяются два способа регулирования температуры пара: паровое и газовое. При паровом регулировании температура пара поддерживается постоянной путем изменения степени его охлаждения или изменения энтальпия пара, поступающего в пароперегреватель или в отдельные его ступени. При газовом регулировании осуществляется воздействие на тепловосприятие пароперегревателя за счет изменения передачи тепла от газов к его поверхности нагрева.
Паровое регулирование температуры первичного пара, осуществляется либо в поверхностных пароохладителях, либо путем впрыска в поток перегретого пара чистого конденсата - впрыскивающие пароохладители.
Изменение температуры пара по тракту пароперегревателя при различных схемах включения пароохладителя показано на рис. 50.
Рис. 50. Изменение температуры пара в зависимости от размещения
а – за пароперегревателем; б – в рассечку; в – на входе
насыщенного пара; г – допустимая температура металла
труб; 1 – пароохладитель
Установка пароохладителя на выходе пара из пароперегревателя не применяется, так как пароперегреватель при этом остается незащищенным от чрезмерно высокой температуры. Размещение пароохладителя на стороне насыщенного пара определяет значительное запаздывание системы регулирования температуры пара и в настоящее время применяется в агрегатах малой мощности. Как правило, пароохладители компонуются в рассечку, что обеспечивает меньшую инерционность регулирования вследствие сокращения длины пути пара после регулятора и времени, необходимого для изменения количества тепла, аккумулированного в пароперегревателе. В результате регулирование конечной температуры пара достигается почти в 2 раза быстрее, чем при установке пароохладителя на стороне насыщенного пара.
Поверхностные пароохладители . Поверхностный пароохлади-тель представляет собой трубчатый теплообменник. Внутри труб протекает охлаждающая вода, снаружи трубы омываются охлаждаемым паром (рис. 51).
Пароохладитель состоит из корпуса, внутри которого по всей длине размещаются змеевики из стальных труб диаметром 28×3 мм. К корпусу приварены штуцера длиной около 100 мм, к которым сваркой присоединены концы змеевиков пароперегревателя.
Рис. 51. Поверхностный пароохладитель (регулятор перегрева):
1 – входной коллектор питательной воды; 2 – выходной
коллектор воды; 3 – крышка; 4 – корпус; 5 – подвод пара;
6 – корыто; 7 – диск опорный; 8 – выход пара; 9 – змеевики
охладителя; 10 – кожух; 11 – опора
В качестве охлаждающей воды используется обычно питательная вода. По потоку питательной воды пароохладитель может быть включен параллельно или последовательно с экономайзером (рис. 52).
При параллельной схеме включения пароохладителя (рис. 52а) с увеличением количества проходящей через него воды ухудшаются условия охлаждения экономайзера и уменьшается использование в нем тепла отходящих газов. В современных парогенераторах применяется включение пароохладителя последовательно с экономайзером (рис.52б).
В зависимости от температуры перегретого пара автоматически регулируется количество охлаждающей воды, подаваемой в змеевики пароохладителя. Подвод охлаждающей питательной воды производится с торца пароохладителя через входной коллектор, а отвод через выходной коллектор.
Для обеспечения необходимого диапазона регулирования пароохладитель парогенераторов с естественной и многократной принудительной циркуляцией должен обеспечивать возможность снижения энтальпии пара на Δiпо= 60-80 кДж/кг.
Рис. 52. Схемы включения поверхностного пароохладителя:
а – параллельная; б – последовательная; 1 – барабан;
2 – пароохладитель; 3 – отвод охлаждающей воды;
4 – водяной экономайзер
Температура воды на входе в экономайзер (по схеме рис. 52б) будет выше, чем у воды, поступающей в парогенератор
Снижение температуры перегретого пара впрыскивающим пароохладителем достигается на некотором расстоянии от места ввода воды, так как на испарение капель конденсата и последующий перегрев образовавшегося из них пара требуется некоторый промежуток времени, а скорость потока пара в пароохладителе более 40 м/с. Уменьшение этого расстояния достигается более тонким распылением воды за счет уменьшения диаметра отверстий форсунки и увеличения перепада давления между впрыскиваемой водой и паром и, по возможности, увеличением разности температур пара и конденсата.
Количество пара, проходящего через ступень пароперегревателя после пароохладителя, увеличивается и равно, кг/ч:
,
где — количество пара до пароохладителя, кг/ч;
— количество воды, поступающей в пароохладитель, кг/ч.
Разность называют удельным теплосъемом в пароохладителе, где
и
— энтальпия пара на входе и выходе пароохладителя, кДж/кг. Он составляет обычно (в целом на весь пароперегреватель)
кДж/кг или в пересчете на изменение температуры
°С.
Рис. 53. Впрыскивающий пароохладитель:
а – с цилиндрической защитной рубашкой; б – с соплом Вентури;
1 – водяная форсунка; 2 – штуцер; 3 – корпус пароохладителя;
4 – защитная рубашка; 5 – сопло Вентури; 6 – вход охлаждающей воды;
7 – вход пара
Общее количество конденсата, поступающего в пароохладитель, определяется из условий обеспечения снижения энтальпии пара на 80 кДж/кг при работе парогенератора с полной нагрузкой и определяется по формуле
где iп.п и – энтальпии перегретого пара и конденсата, поступающего в пароохладитель, кДж/кг.
Следует учитывать, что по мере приближения пароохладителя к выходу пара из пароперегревателя ухудшаются температурные условия работы металла паропровода в месте впрыска. Это также является одной из причин применения двух-трех пароохладителей по тракту пара, что позволяет более тонко регулировать температуру пара и более надежно защищать отдельные ступени пароперегревателя.
Впрыскивающие пароохладители требовательны к качеству воды, используемой для впрыска.
В барабанных паровых котлах при сильно минерализованной питательной воде конденсат для впрыска получают в самом котле за счет конденсации части насыщенного пара, отбираемого из барабана котла. Такой способ получения качественной воды для впрыска называют схемой впрыска собственного конденсата (рис. 54).
Рис. 54. Схема регулирования перегрева пара впрыском собственного
1 – барабан; 2 – линия перелива; 3 – конденсатор; 4 – сборник
конденсата; 5 – впрыскивающий пароохладитель;
6 – экономайзер; 7 – регулятор температуры пара
Конденсация насыщенного пара происходит за счет отвода теплоты к питательной воде, поступающей затем в экономайзер. Установленный в нижней части конденсатора сборник выдает конденсат на впрыски в пароохладители, а избыток его через линию перелива возвращается в барабан. Для увеличения перепада давления на впрыскивающем устройстве в этом случае рекомендуется защитную рубашку выполнять в форме сопла Вентури, обеспечивающей в узком ее сечении снижение статического давления пара (рис. 53,б).
Рециркуляция продуктов сгорания. Рециркуляция обеспечивается возвратом части газов Vрц из газохода после экономайзера с температурой = 350 – 450 °С в топочную камеру (рис. 55а).
Рис. 55. Организация рециркуляции дымовых газов в топку:
а – общая схема; б – изменение условной температуры вторично
перегретого пара от рециркуляции r при разных нагрузках
котла; 1 – топка; 2 – газомазутные горелки; 3, 4 – конвективные
поверхности основного и промежуточного пароперегревателей;
5 – экономайзер; 6 – РВП (регенеративный воздухоподогреватель);
7 – линия отбора газов на рециркуляцию; 8 – дымосос рециркуляции
газов; 9 – регулятор расхода; 10 – короб горячего воздуха
Газы рециркуляции вводятся либо в кольцевой канал вокруг горелки, либо непосредственно в короб воздуха горелок. Поскольку абсолютное давление газов в топке выше, чем в месте отбора их на рециркуляцию, подача газов в топку возможна только специальным дымососом рециркуляции газов. В связи с этим увеличиваются затраты электроэнергии на перекачку газов.
Кроме того, возврат части газов в топку увеличивает общий объем газов в тракте от точки отбора газов и сопротивление этого тракта, отчего дополнительно увеличиваются затраты энергии на тягу в основных дымососах.
Доля рециркуляции газов:
,
где – объем газов за местом их отбора на рециркуляцию, м 3 /кг. Доля рециркуляции изменяется обычно от 0,05 до 0,4 (или от 5 до 40 %) и увеличивается по мере снижения нагрузки, когда заметно уменьшается тепловосприятие конвективных поверхностей промежуточного перегревателя (рис. 55,б).
Рециркуляция дымовых газов в широком диапазоне применяется преимущественно на газомазутных котлах, на которых ввод инертных газов в зону горения практически не влияет на полноту сгорания топлива и поверхности которых не подвержены золовому износу при повышенной скорости газов в газоходах. При сжигании газа и особенно мазута доля рециркуляции составляет 5 – 10 %, что даже при полной нагрузке обеспечивает снижение теплового потока на экраны топочной камеры и оказывает положительную роль в отношении защиты экранов НРЧ от чрезмерно высоких тепловых нагрузок.
Введение инертных газов рециркуляции в ядро факела при сжигании твердых топлив допустимо только для реакционных топлив, в других случаях это приводит к затягиванию горения и возможному росту потерь теплоты с недожогом. При сжигании шлакующих топлив возможна рециркуляция газов в верхнюю часть топки. Ее цель — снижение температуры газов перед ширмами, что уменьшает вероятность их шлакования.
Рециркуляции газов приводит к некоторому повышению температуры уходящих газов и, следовательно, потерь теплоты с ними. При этим несколько возрастет расход топлива по сравнению с режимом без рециркуляции.
Байпасирование продуктов сгорания . Регулирование температуры вторично перегреваемого пара байпасированием продуктов сгорания (рис. 56) можно осуществить двумя способами: либо использованием холостого газохода между пакетами пароперегревателя (рис. 56а), либо перераспределением продуктов сгорания по параллельным газоходам, в одном из которых расположена поверхность перегревателя (так называемый «расщепленный газоход») (рис. 56,б).
Рис. 56. Схемы регулирования температуры пара байпасированием
а – через холостой газоход; б – распределением газов по газоходам:
1 – пакеты промежуточного перегревателя; 2 – экономайзер;
3 – регулирующая заслонка; в – с разделением газоходов:
1 – промперегреватель; 2 – экономайзер; 3 – основной воздухоподо-
греватель; 4 – предвключенный воздухоподогреватель; 5 – дымосос
Водяные экономайзеры служат для подогрева питательной воды и снижения температуры уходящих газов. Располагаются в одну или две ступени в конвективной шахте топки.
Экономайзеры различаются по:
— материалу, из которого изготовлены: чугунные и стальные;
— типу труб: с гладкими трубами и ребристыми;
— кипящего и некипящего типа.
В экономайзерах некипящего типа подогрев воды происходит только до температуры кипения. В экономайзерах кипящего типа происходит частичное парообразование. Температура питательной воды на выходе из экономайзера равна температуре насыщения (кипения), соответствующей давлению в экономайзере. Питательная вода в экономайзере этого типа может содержать 15-20 % пара.
Чугунные экономайзеры (рис. 57) комплектуются с котлами, давление в которых не превышает 2,4 МПа. Эти экономайзеры бывают только некипящего типа. Температура воды на входе в экономайзер должна быть на 5 – 10 °С выше температуры точки росы отходящих газов, а на выходе из экономайзера на 20 °С ниже температуры насыщения. Основное преимущество экономайзера такого типа – повышение стойкости к коррозии. Они изготавливаются из чугунных ребристых труб с внутренним диаметром 60 мм. Ребра квадратные 150×150 мм. Длина труб 2 – 3 м.
Рис. 57. Общий вид чугунного экономайзера ВТИ:
Рис. 58. Водяной экономайзер с параллельным включением ряда змеевиков:
1 – входная камера; 2 – выходная камера; 3 – змеевики экономайзера
В другой конструкции малый продольный шаг труб достигается лирообразным изгибом труб (рис. 59). Крепление змеевиков водяного экономайзера осуществляется путем их установки на опорных или подвесных конструкциях.
К коллекторам змеевики присоединяются вальцовкой или сваркой через промежуточные штуцера. Выходной коллектор экономайзера присоединяется к барабану парогенератора несколькими водоперепуск-ными трубами, в которых обеспечивается восходящий поток с целью свободного выхода с водой газов и образовавшегося в экономайзере пара в барабан. Для удобства очистки поверхностей нагрева от наружных загрязнений и его ремонта экономайзер разделяют на пакеты высотой до 1 м. Разрывы между пакетами должны быть 550 – 600 мм, а между пакетами экономайзера и воздухоподогревателем – не менее 800 мм.
Рис. 59. Присоединение к коллекторам змеевиков экономайзера:
а – с использованием развилок; б – с разделением на два пучка;
в – при двух параллельных коллекторах; г и д – с использованием
Змеевики экономайзера могут располагаться перпендикулярно или параллельно фронту парогенератора (рис. 60). В первом случае длина змеевиков невелика, что облегчает их крепление. Во втором случае резко уменьшается число параллельно включенных змеевиков, но усложняется их крепление. В парогенераторах небольшой мощности применяется одностороннее расположение коллекторов. В парогенераторах с развитым фронтом экономайзеры выполняются двусторонними, симметричными, с расположением коллекторов с двух боковых сторон конвективной шахты.
Скорость воды в водяном экономайзере принимается исходя из условий предотвращения в них кислородной коррозии и расслоения пароводяной смеси. При малой скорости воды остающийся в ней кислород задерживается в местах шероховатости верхней образующей трубок и вызывает язвенную коррозию, которая распространяется на большую толщину стенки трубки вплоть до образования свищей. Расслоение пароводяной смеси при малой скорости потока вызывает ухудшение условий их охлаждения и перегрев металла трубок.
Рис. 60. Компоновка экономайзера:
а – перпендикулярное фронту расположение змеевиков;
б – параллельное фронту расположение змеевиков;
в, г – двустороннее параллельное фронту расположение змеевиков;
д – защита труб от износа; 1 – барабан; 2 – водоперепускные трубы;
3 – экономайзер; 4 – входные коллекторы; 5 – перекидные трубы
Рис. 61. Плавниковые трубы экономайзеров:
а – с приваренными ребрами; б – из плавниковых труб
10. ВОЗДУХОПОДОГРЕВАТЕЛИ
Для подогрева воздуха применяются два типа воздухоподогревателей: рекуперативные и регенеративные.
Для получения необходимой скорости перекрестного тока воздуха трубную систему по высоте разделяют промежуточными досками на несколько ходов. Для перепуска воздуха из одного хода в другой устанавливаются короба. Воздухоподогреватель снаружи имеет стальную обшивку и опирается нижней трубной доской на раму, связанную с каркасом парогенератора. Трубная система расширяется вверх, и верхняя трубная доска соединяется с газоходом линзовым компенсатором, что обеспечивает свободное термическое расширение воздухоподогревателя. Воздухоподогреватель выполняется из ряда секций, удобных для монтажа и транспортировки, которые устанавливаются рядом, заполняя все сечение газохода.
Компенсация температурного расширения воздухоподогревателя осуществляется с помощью линзовых или набивных компенсаторов (рис. 63).
Применяются однопоточная и двухпоточная схемы подвода воздуха в воздухоподогреватель. В воздухоподогревателях парогенераторов малой и средней мощности применяется однопоточная схема подвода воздуха по его широкой стороне.
Рис. 62. Трубчатый воздухоподогреватель:
1 – стальные трубы 40×1,5 мм; 2, 6 – верхняя и нижняя трубные
короб; 5 – промежуточная трубная доска; 7, 8 – опорные рамы и
Рис. 63. Компенсаторы тепловых расширений воздухоподогревателя:
а – линзовые компенсаторы; б – набивные компенсаторы;
1 – трубная доска; 2 – компенсатор расширения труб относительно
короба воздуха; 3 – компенсатор расширения короба относительно
каркаса; 4 – каркас короба; 5 – камера с крошкой шамота и песка;
6 – лист уплотнения
В агрегатах большой мощности высота одного воздушного хода достигает больших размеров, и число ходов воздуха в каждой ступени воздухоподогревателя уменьшается. Двухпоточная схема подвода воздуха позволяет уменьшать высоту хода и увеличивать число ходов при меньшем в них числе рядов трубок и, соответственно, уменьшить сопротивление по ходу воздуха и повысить температурный напор в воздухоподогревателе. Применение двухпоточной схемы подвода воздуха и труб малого диаметра с малым шагом позволяет создать достаточно компактные воздухоподогреватели.
Различные схемы компоновки трубчатых воздухоподогревателей показаны на рис. 64.
Рис. 64. Схемы компоновки воздухоподогревателя:
а – двухпоточный по воздуху при двустороннем его подводе;
б – двухпоточный при одностороннем подводе воздуха;
в – многопоточный по воздуху; 1 – вход холодного воздуха;
2 – выход горячего воздуха
Трубчатые воздухоподогреватели просты по конструкции, надежны в работе и более плотны, чем другие системы воздухоподогревателей. Недостатком трубчатых воздухоподогревателей являются относительно большие удельный расход металла и удельный объем.
Рис. 65. Регенеративный воздухоподогреватель:
1 – вал ротора; 2 – подшипники; 3 – электродвигатель;
4 – набивки; 5 – наружный кожух; 6, 7 – радиальное и
периферийное уплотнения; 8 – утечка воздуха через уплотнения
Рис. 66. Схема установки комбинированного рекуперативного и
1 – топка; 2 – экраны топочной камеры; 3 – фестон; 4 – ширмовый
пароперегреватель; 5 – конвективный пароперегреватель; 6 – водяной
экономайзер I ступени; 7 – то же II ступени; 8 – регенеративный
воздухоподогреватель I ступени; 9 – рекуперативный трубчатый
воздухоподогреватель II ступени
Выбор температуры горячего воздуха. Температура горячего воздуха при сжигании твердых топлив определяется не только характеристиками топлива, но и организацией его сжигания.
Количество поступающего в зону горения воздуха по массе в несколько раз превосходит массу топлива. Недостаточный подогрев воздуха может затормозить воспламенение топлива и привести к значительному недожогу. Так, для топлив с относительно малым выходом летучих веществ (V daf daf > 25 %). Исключение составляют сильновлажные топлива, требующие использо-вания для работы в пылесистеме высокотемпературного сушильного агента. Последний можно получить путем смешения части горячих топочных газов с воздухом. Тогда допустимо некоторое снижение подогрева воздуха в воздухоподогревателях. Так, при влажности топлива ≤ 2 (%·кг)/МДж температура горячего воздуха может быть принята 270-300 °С, а при
≥ 5 (%·кг)/МДж – 400 °С.
Обеспечение жидкого шлакоудаления требует высокого подогрева воздуха (не ниже 350 °С). Уровень его подогрева зависит от выхода летучих, температуры плавкости золы и влажности сжигаемого топлива.
Сжигание мазута и природного газа допускает умеренный подогрев воздуха, при котором исключается недогорание топлива в высоконапря-женных топках. Экономически выгодно подогревать воздух выше температуры питательной воды, поступающей в экономайзер.
При температурах горячего воздуха выше 300 °С компоновка воздухоподогревателя выполняется двухступенчатой, в рассечку с водяным экономайзером. В табл.2 приведены рекомендуемые значения температуры горячего воздуха для различных топлив.
Таблица 2