что такое озз в энергетике

Однофазные замыкания на землю

Из Википедии — свободной энциклопедии

Сама по себе передача электроэнергии производится по специальным трехфазным электрическим цепям высокого напряжения. Одна из особенностей транспорта электроэнергии заключается в наличии нейтрального провода в схеме, который представляет из себя общую точку источников питания трехфазной электрической системы, также называемой нейтралью. Процессы, протекающие в сети при возникновении такого замыкания, значительным образом зависят от режима работы нейтрали данной сети.

В сетях с изолированной нейтралью ток однофазного замыкания на землю замыкается через емкости неповрежденных фаз. Его значение невелико и определяется суммарной емкостью неповрежденных фаз. Это позволяет эксплуатировать сеть, не отключая повреждения данного вида незамедлительно. Но в таком случае изоляция оборудования будет стареть намного быстрее, и это может привести к более опасному явлению — короткому замыканию, которое требует немедленного отключения поврежденного участка сети.

В сетях с заземленной нейтралью однофазное замыкание на землю является коротким замыканием. Ток повреждения в данном случае замыкается через заземленные нейтрали первичного оборудования и имеет значительную величину. Такое повреждение требует немедленного обесточивания поврежденного участка. Учитывая данную особенность, то выбор оптимального типа нейтрали является сложной технико-экономической задачей. В России данная задача нашла решение в таком виде, что распределительные сети уровнем 6-35 кВ эксплуатируются в изолированном от земли режиме нейтрали источников питания, а сети более высокого уровня напряжения эксплуатируются в режиме, когда нейтраль напрямую связана с землей — глухозаземленный и эффективный режим нейтрали. Причины однофазных замыканий на землю Износ или повреждение изоляции оборудования — основная причина возникновения ОЗЗ. Изоляция может быть нарушена по разным обстоятельствам. Это может произойти как вследствие внешнего механического повреждения, так и по причине старения.

Источник

Виды защит от однофазных замыканий на землю (ОЗЗ)

что такое озз в энергетике. Смотреть фото что такое озз в энергетике. Смотреть картинку что такое озз в энергетике. Картинка про что такое озз в энергетике. Фото что такое озз в энергетике

Факторы, влияющие на работы защит от ОЗЗ

Проблема массового применения защит от ОЗЗ состоит в том, что большинство используемых на данный момент устройств показывают низкую эффективность из-за частых отказов в срабатывании, ложных и излишних срабатываний. Низкая эффективность данных защит связана со сложностью и многообразием факторов, связанных с протеканием процессов, которые используются для защит от замыканий на землю. Основные факторы, влияющие на работу защиты от замыканий на землю, это:

1. Вид замыкания (металлическая связь, замыкание через переходное сопротивление, замыкание через дугу);

2. Устойчивость замыкания (устойчивые и неустойчивые: прерывистое замыкание и замыкание через перемежающуюся дугу);

3. Наличие небалансов в сети;

4. Переходные процессы схожие с процессами при ОЗЗ (включение линии, наводка от других ЛЭП при ОЗЗ на них и т.д.).

Индивидуальные защиты – решение прошлого века

Индивидуальные защиты наиболее просты, но при этом имеют высокий процент ложных срабатываний.

1.Токовая защита нулевой последовательности.

Наиболее простой и распространенной из защит от ОЗЗ является токовая индивидуальная защита нулевой последовательности, реагирующая на ток нулевой последовательности (далее НП) рабочей частоты. Однако для обеспечения условия селективности действия эти защиты должны отстраиваться от собственного ёмкостного тока фидера, что с учетом бросков ёмкостного тока в момент замыкания ограничивает чувствительность защиты.

В целом индивидуальные ненаправленные токовые защиты от ОЗЗ могут быть эффективны лишь в установках, с большим количеством подключенных к секции присоединений, каждое из которых имеет малый емкостный ток. Тогда отстройка от этого тока не приведет к недопустимому снижению чувствительности. Этот случай характерен, например, для цехов предприятий с большим количеством маломощных электродвигателей, включенных через короткие кабели. Однако если в такой сети установлен дугогасящий реактор, то защита, построенная на данном принципе не способна обеспечить устойчивость функционирования, так как емкостной ток 50 Гц поврежденного присоединения будет скомпенсирован.

Защиты, использующие только один сигнал тока НП, несмотря на свою простоту, имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается только от тока небаланса в максимальном рабочем режиме, а отстройка защиты от собственного ёмкостного тока линии не требуется, поскольку от этого тока она отстроена по направлению. Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ.

3.Защита по активной мощности нулевой последовательности.

Другим методом определения поврежденного присоединения с использованием сигналов тока и напряжения НП является расчет активной мощности нулевой последовательности в установившемся режиме. Защиты, реализованные на этом принципе, обладают более высокой устойчивостью функционирования в режимах с перемежающейся дугой в месте ОЗЗ и отстроены в большей мере от бросков ёмкостных токов в переходных процессах. Обеспечить стабильное функционирование таких защит возможно в основном в сетях с резистивным заземлением нейтрали.

4.Защита нулевой последовательности на токах высших гармоник.

Так как основной недостаток защит, использующих токи и напряжения НП промышленной частоты, в том, что они не способны работать в сетях с компенсированной нейтралью из-за отсутствия устойчивого полезного сигнала 50 Гц, то были разработаны защиты от однофазных замыканий на землю, реагирующие на высшие гармоники электрических величин. При возникновении дуговых ОЗЗ содержание высших гармонических составляющих в сети резко увеличивается, особенно в токе повреждённой линии, где их доля значительно больше, чем в токах нулевой последовательности неповреждённых линий. Эти процессы наблюдаются в сетях всех видов заземления нейтрали.

Общие недостатки устройств, выполненных с использованием высших гармоник:

— вероятность отказа в срабатывании при ОЗЗ через переходные сопротивления;

— нестабильность состава и уровня высших гармоник в токе НП.

Условия селективности несрабатывания при внешних ОЗЗ и устойчивости срабатывания при внутренних повреждениях для устройств абсолютного замера высших гармоник обеспечиваются в основном на крупных подстанциях и электростанциях с большим числом присоединений.

5. Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Централизация – решения проблемы с землей

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

1.Централизованная защита с поочередным опросом каналов.

Первые централизованные защиты в силу отсутствия быстродействующих микропроцессорных систем использовали последовательное сравнение токов нулевой последовательности между каждым присоединениям с целью выявить присоединение с максимальном током замыкания на землю. По этой причине данные системы не имели широкого распространения, так как при большом количестве присоединений время обработки сигналов доходило до 9 секунд.

2.Централизованная защита с параллельным опросом каналов.

За счет применения микропроцессорных систем и специальных физических элементов для устройств релейной защиты появилась возможность реализовать параллельное сравнение токов нулевой последовательности между каждым присоединением. Первые такие системы сравнивали амплитуды переходных токов, но в дальнейшем как показала практика данные системы имели ложные срабатывания из-за несинхронности или несинфазности сравниваемых сигналов, поскольку частоты и фазы переходных токов в повреждённом и неповреждённых присоединениях могут различаться между собой.

3.Централизованная защита с параллельным синхронизированным опросом каналов.

Следующий шаг в развитии защит от ОЗЗ требовал разработку устройств защиты, работающих в режиме импульсного сравнения токов нулевой последовательности во всех присоединениях, тем самым устраняя влияния несинфазности и несинхронности сравниваемых сигналов. Одной из таких разработок является защита типа Геум производства НПП «Микропроцессорные технологии» для сетей с изолированной (также способно работать и с резистивно-заземленной нейтралью) и компенсированной (комбинированной) нейтралью. Защита по принципу действия является централизованной токовой ненаправленной, сравнивающей амплитуды бросков емкостных токов нулевой последовательности во всех присоединениях защищаемой секции в момент срабатывания пускового органа, включенного на напряжение нулевой последовательности и определяющей повреждённое присоединение по наибольшей амплитуде. Ток срабатывания этой защиты не требуется отстраивать от ёмкостного тока каждого из защищаемых присоединений, что существенно повышает чувствительность защиты и тем самым выгодно отличает её от описанных ранее устройств ненаправленной токовой защиты нулевой последовательности. Являясь передовой разработкой в выявлении ОЗЗ данная защита, основываясь только на алгоритме относительного замера не способна охватить все многообразие режимов связанных с процессами, влияющими на работу защит от ОЗЗ, которые описаны выше. Таким образом, в данную защиту были внедрены еще дополнительные алгоритмы.

Источник

Что такое озз в энергетике

Езерский Владимир Георгиевич

Комбинированная защита от однофазных замыканий на землю

Защитам от однофазных замыканий на землю (ОЗЗ) в сетях 6-35 кВ посвящено много публикаций [1,2,3,4]. От 80 до 90% случаев повреждений в сетях 6-35 кВ вызвано однофазными замыканиями на землю – ОЗЗ. В настоящее время для защиты от ОЗЗ используют серийно выпускаемые устройства типа ЗЗН, УСЗ-ЗМ и др., а также различные устройства единичного и мелкосерийного производства [1]. Опыт многолетней эксплуатации различных по принципу действия устройств защиты от ОЗЗ, а также анализ многочисленных публикаций по данной тематике [1, 2, 3,4 и др.] позволяет с уверенностью утверждать, что общепризнанного по селективности и надежности действия устройства релейной защиты от ОЗЗ для сетей с различными режимами заземления нейтрали в настоящее время не существует.

Однако эти и подобные устройства позволяют достоверно определить ОЗЗ только при устойчивом характере замыкания на землю. Если процесс ОЗЗ протекает нестабильно, то характеристики тока нулевой последовательности имеют неустойчивый, случайный характер, что часто приводит либо к несрабатыванию, либо к излишнему неселективному срабатыванию устройств защиты от ОЗЗ.

(3 I 0 50 ). При перемежающихся дуговых замыканиях направленная защита либо не действует, либо срабатывает неселективно.

– действие только при устойчивом ОЗЗ;

— значительные затраты времени на определения поврежденного фидера оператором.

Учитывая сказанное, при разработке селективно действующего устройства защиты от ОЗЗ для присоединений, отходящих от секций КРУ были поставлены следующие задачи:

1. Создать комбинированное устройство, сочетающее положительные свойства

направленной защиты от ОЗЗ, учитывающей ток основной частоты 50 Гц и защиты от ОЗЗ, использующей токи высших частот.

2. Повысить достоверность и автоматизировать процесс определения поврежденного присоединения с использованием высокочастотных составляющих тока 3 I 0

3. Уменьшить вероятность излишнего действия направленной защиты

4. Обеспечить непрерывность действия устройства при устойчивых ОЗЗ

5. Обеспечить регистрацию одиночных и повторно-кратковременных ОЗЗ

В качестве направленной защиты в разработанном устройстве применена высо-кочувствительная защита от ОЗЗ, используемая в цифровых терминалах серии БМРЗ с начала их серийного выпуска в 1996.

В алгоритме этой защиты (обозначим её как Н50) предусмотрено использование следующих величин:

50-70 мА в первичных значениях тока нулевой последовательности. Уставка по току 3 I 0 в данной защите используется прежде всего для отстройки от небаланса и наводок во вторичной цепи ТТНП. Действующее значение тока 3 I 050 информативного значения для работы алгоритма направленной защиты не имеет;

напряжения, соединенных в «разомкнутый» треугольник. Чувствительность по напряжению 3 U 0 – 5 В, а устойчи-вость к перегрузке по напряжению 3 U 0 –350 В длительно. Уставка по напряжению 3 U 0 в данной защите используется прежде всего для отстройки от небаланса в цепях обмоток ТН. Действующее значение напряжения 3 U 0 информативного значения для работы алгоритма направленной защиты не имеет;

Направленная защита Н50 в терминалах серии БМРЗ имеет зону срабатывания по углу между векторами 3 I 0 и 3 U 0 – (170 ± 5 0 ), а

Защита Н50 сохраняет свои свойства и в сетях с компенсированной нейтралью, когда ДГР настроен с «недокомпенсацией» и остаточная емкостная составляющая в токе 3 I 050 при ОЗЗ превышает чувствительность защиты, равную 3 мА.

Известно, что рассматриваемый алгоритм Н50 может срабатывать излишне (неселективно) при:

ОЗЗ в сетях с перекомпенсацией;

— перемежающихся (прерывистых) дуговых ОЗЗ в сетях с изолированной нейтралью.

Для устранения излишних отключений не следует допускать работу сетей в режиме перекомпенсации, а при возникновении неустойчивых дуговых замыканий следует блокировать работу алгоритма Н 50. Однако в любом случае чувствительный орган защиты от ОЗЗ по 3 U 0 может работать на сигнализацию.

Поэтому в комбинированной защите от ОЗЗ помимо алгоритма направленной защиты Н 50 применен алгоритм ТЗ вч, обеспечивающий контроль «свободных» составляющих, присутствующих в спектре тока 3 I 0 при ОЗЗ – 3 I 0вч .

После срабатывания пускового органа значение тока 3 I 0ВЧ записывается в память устройства и может использоваться для:

— проведения измерений, выполняемых по принципу, использованному в устройстве типа УСЗ-3М, с передачей информации по каналу связи и последующего отключения поврежденного фидера по команде из АСУ;

что такое озз в энергетике. Смотреть фото что такое озз в энергетике. Смотреть картинку что такое озз в энергетике. Картинка про что такое озз в энергетике. Фото что такое озз в энергетике

Рис. 1 Время срабатывания ТЗ ВЧ в зависимости от значения тока 3 I 0ВЧ

При задании уставок для алгоритма, использующего рассматриваемую характеристику, следует учитывать нестабильность параметров

Рассмотренные алгоритмы Н50 и ТЗВЧ объединяются в комбинированном устройстве защиты от ОЗЗ (рис. 2), причем выбор первого или второго алгоритма прои c ходит автоматически в зависимости от характера замыкания.

что такое озз в энергетике. Смотреть фото что такое озз в энергетике. Смотреть картинку что такое озз в энергетике. Картинка про что такое озз в энергетике. Фото что такое озз в энергетике

Рис. 2 Функциональная схема комбинированной защиты от ОЗЗ

Пуск одного из двух алгоритмов защиты от ОЗЗ осуществляется по результату спектрального анализа тока 3 I 0 в начальной стадии замыкания, определяющего его коэффициент синусоидальности Кс по формуле:

Для практического использования коэффициента Кс в качестве условия выбора одного из двух алгоритмов, в комбинированном алгоритме защиты от ОЗЗ предусмотрено задание уставки К сп, выбираемой из диапазона значений от 0,2 до 1,0.

При Кс > КСП активизируется алгоритм направленной защиты Н50, контролирующий направление мощности нулевой последовательности. При Кс КСП. алгоритм защиты Н50 блокируется и активизируется алгоритм защиты ТЗВЧ. Предусмотрено действие обоих алгоритмов как на отключение, так и на сигнализацию.

Благодаря встроенному осциллографу, регистратору аварийных событий и регистратору кратковременных замыканий, обеспечена возможность корректировки уставок защиты на основе статистического анализа. Такой подход к определению уставок для защит от ОЗЗ в сетях с изолированной и компенсированной нейтралью более эффективен, чем расчетные методы. Кроме этого, массовое использование такого устройства позволит собрать и обобщить статистические данные, полезные для оценки работ других защит от ОЗЗ.

Как и во всех разработках НТЦ «Механотроника», пользователю обеспечены все сервисные возможности современного цифрового устройства РЗА. Дополнительно предусмотрена сигнализация каждого вида ОЗЗ. Комбинированная защита от ОЗЗ входит составной частью в многофункциональное устройство защиты отходящих линий типа БМРЗ-КЛ.

1. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6-10 кВ. М.:НТФ «Энергопрогресс». //Приложение к журналу, «Энергетик», выпуск 11(35) 2001, 102 с.

2. Шабад М.А. Защита от однофазных замыканий на землю в сетях 6-35 кВ. СПб, ПЭИПК.

3. Кискачи В.В. Защита от однофазных замыканий на землю в сетях напряжением 6-10 кВ с различным режимом заземления нейтрали типа ЗЗН.// Учебно-методическое пособие ИПКГС, 2001 г.

4. Шабад М.А. Автоматизация распределительных электрических сетей с использо-ванием цифровых реле. ПЭИПК, СПб, 2004 г.

5. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей. СПб,. ПЭИПК, 2003 г.

6. Миронов И.А. Автоматические устройства настройки компенсации емкостного тока замыкания на землю в сетях СН электростанций. Особенности настройки РЗ в сетях СН электростанций с различными способами заземления нейтрали.// Сборник докладов технического семинара в ОРГРЭС, стр. 43-50, 2004 г.

7. Протоколы опытов ОЗЗ на подстанциях 110/10 кВ. АО «Ленэнерго», 1997, 2000 г.г.

8. Борухман В.А. Об эксплуатации селективных защит от замыканий на землю в сетях 6-10 кВ и мероприятия по их совершенствованию.// «Энергетик», 2000 г., №1 стр.20-22

Публикацию подготовил О.Г. Захаров. 2012-09-07

Источник

Виды защит от однофазных замыканий на землю (ОЗЗ)

что такое озз в энергетике. Смотреть фото что такое озз в энергетике. Смотреть картинку что такое озз в энергетике. Картинка про что такое озз в энергетике. Фото что такое озз в энергетике

Факторы, влияющие на работы защит от ОЗЗ

Проблема массового применения защит от ОЗЗ состоит в том, что большинство используемых на данный момент устройств показывают низкую эффективность из-за частых отказов в срабатывании, ложных и излишних срабатываний. Низкая эффективность данных защит связана со сложностью и многообразием факторов, связанных с протеканием процессов, которые используются для защит от замыканий на землю. Основные факторы, влияющие на работу защиты от замыканий на землю, это:

1. Вид замыкания (металлическая связь, замыкание через переходное сопротивление, замыкание через дугу);

2. Устойчивость замыкания (устойчивые и неустойчивые: прерывистое замыкание и замыкание через перемежающуюся дугу);

3. Наличие небалансов в сети;

4. Переходные процессы схожие с процессами при ОЗЗ (включение линии, наводка от других ЛЭП при ОЗЗ на них и т.д.).

Индивидуальные защиты – решение прошлого века

Индивидуальные защиты наиболее просты, но при этом имеют высокий процент ложных срабатываний.

1.Токовая защита нулевой последовательности.

Наиболее простой и распространенной из защит от ОЗЗ является токовая индивидуальная защита нулевой последовательности, реагирующая на ток нулевой последовательности (далее НП) рабочей частоты. Однако для обеспечения условия селективности действия эти защиты должны отстраиваться от собственного ёмкостного тока фидера, что с учетом бросков ёмкостного тока в момент замыкания ограничивает чувствительность защиты.

В целом индивидуальные ненаправленные токовые защиты от ОЗЗ могут быть эффективны лишь в установках, с большим количеством подключенных к секции присоединений, каждое из которых имеет малый емкостный ток. Тогда отстройка от этого тока не приведет к недопустимому снижению чувствительности. Этот случай характерен, например, для цехов предприятий с большим количеством маломощных электродвигателей, включенных через короткие кабели. Однако если в такой сети установлен дугогасящий реактор, то защита, построенная на данном принципе не способна обеспечить устойчивость функционирования, так как емкостной ток 50 Гц поврежденного присоединения будет скомпенсирован.

Защиты, использующие только один сигнал тока НП, несмотря на свою простоту, имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается только от тока небаланса в максимальном рабочем режиме, а отстройка защиты от собственного ёмкостного тока линии не требуется, поскольку от этого тока она отстроена по направлению. Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ.

3.Защита по активной мощности нулевой последовательности.

Другим методом определения поврежденного присоединения с использованием сигналов тока и напряжения НП является расчет активной мощности нулевой последовательности в установившемся режиме. Защиты, реализованные на этом принципе, обладают более высокой устойчивостью функционирования в режимах с перемежающейся дугой в месте ОЗЗ и отстроены в большей мере от бросков ёмкостных токов в переходных процессах. Обеспечить стабильное функционирование таких защит возможно в основном в сетях с резистивным заземлением нейтрали.

4.Защита нулевой последовательности на токах высших гармоник.

Так как основной недостаток защит, использующих токи и напряжения НП промышленной частоты, в том, что они не способны работать в сетях с компенсированной нейтралью из-за отсутствия устойчивого полезного сигнала 50 Гц, то были разработаны защиты от однофазных замыканий на землю, реагирующие на высшие гармоники электрических величин. При возникновении дуговых ОЗЗ содержание высших гармонических составляющих в сети резко увеличивается, особенно в токе повреждённой линии, где их доля значительно больше, чем в токах нулевой последовательности неповреждённых линий. Эти процессы наблюдаются в сетях всех видов заземления нейтрали.

Общие недостатки устройств, выполненных с использованием высших гармоник:

— вероятность отказа в срабатывании при ОЗЗ через переходные сопротивления;

— нестабильность состава и уровня высших гармоник в токе НП.

Условия селективности несрабатывания при внешних ОЗЗ и устойчивости срабатывания при внутренних повреждениях для устройств абсолютного замера высших гармоник обеспечиваются в основном на крупных подстанциях и электростанциях с большим числом присоединений.

5. Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Централизация – решения проблемы с землей

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

1.Централизованная защита с поочередным опросом каналов.

Первые централизованные защиты в силу отсутствия быстродействующих микропроцессорных систем использовали последовательное сравнение токов нулевой последовательности между каждым присоединениям с целью выявить присоединение с максимальном током замыкания на землю. По этой причине данные системы не имели широкого распространения, так как при большом количестве присоединений время обработки сигналов доходило до 9 секунд.

2.Централизованная защита с параллельным опросом каналов.

За счет применения микропроцессорных систем и специальных физических элементов для устройств релейной защиты появилась возможность реализовать параллельное сравнение токов нулевой последовательности между каждым присоединением. Первые такие системы сравнивали амплитуды переходных токов, но в дальнейшем как показала практика данные системы имели ложные срабатывания из-за несинхронности или несинфазности сравниваемых сигналов, поскольку частоты и фазы переходных токов в повреждённом и неповреждённых присоединениях могут различаться между собой.

3.Централизованная защита с параллельным синхронизированным опросом каналов.

Следующий шаг в развитии защит от ОЗЗ требовал разработку устройств защиты, работающих в режиме импульсного сравнения токов нулевой последовательности во всех присоединениях, тем самым устраняя влияния несинфазности и несинхронности сравниваемых сигналов. Одной из таких разработок является защита типа Геум производства НПП «Микропроцессорные технологии» для сетей с изолированной (также способно работать и с резистивно-заземленной нейтралью) и компенсированной (комбинированной) нейтралью. Защита по принципу действия является централизованной токовой ненаправленной, сравнивающей амплитуды бросков емкостных токов нулевой последовательности во всех присоединениях защищаемой секции в момент срабатывания пускового органа, включенного на напряжение нулевой последовательности и определяющей повреждённое присоединение по наибольшей амплитуде. Ток срабатывания этой защиты не требуется отстраивать от ёмкостного тока каждого из защищаемых присоединений, что существенно повышает чувствительность защиты и тем самым выгодно отличает её от описанных ранее устройств ненаправленной токовой защиты нулевой последовательности. Являясь передовой разработкой в выявлении ОЗЗ данная защита, основываясь только на алгоритме относительного замера не способна охватить все многообразие режимов связанных с процессами, влияющими на работу защит от ОЗЗ, которые описаны выше. Таким образом, в данную защиту были внедрены еще дополнительные алгоритмы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *