что такое остаток в химии
Кислотный остаток
Кислотный остаток — это анион, который является второй частью формулы сложного химического соединения. Они способны замещать определенное количество атомов или групп атомов. Ни у одного кислотного остатка нет свободных реакциоспособных электронов. Как правило, кислотный остаток состоит из атомов неметаллов.
Таблица самых распространенных кислотных остатков
Кислотный остаток | Валентность | Название | Тривиальное название кислоты |
---|---|---|---|
-Cl | I | хлорид | соляная кислота |
-NO3 | I | нитрат | азотная кислота |
-SO4 | II | сульфат | серная кислота |
-SO3 | II | сульфит | сернистая кислота |
-S | II | сульфид | сероводородная кислота |
-SiO3 | II | силикат | кремниевая кислота |
-CO3 | II | карбонат | угольная кислота |
-PO4 | III | ортофосфат | ортофосфатная кислота |
-NO2 | I | нитрит | нитритная кислота |
-F | I | фторид | плавиковая кислота |
-I | I | иодид | иодидная кислота |
-Br | I | бромид | бромидная кислота |
кислотный остаток — rūgšties liekana statusas T sritis chemija apibrėžtis Rūgšties anijonas. atitikmenys: angl. acid residue rus. кислотный остаток … Chemijos terminų aiškinamasis žodynas
кислотный остаток — кислотный радикал … Cловарь химических синонимов I
кислотный радикал — кислотный остаток … Cловарь химических синонимов I
Эфиры сложные — (хим.) представляют собой сочетания спиртов с кислотами, происходящие путем выделения воды за счет водных остатков этих соединений. Названия [В немецкой химической литературе сложные Э. весьма целесообразно названы, по предложению Гмелина, особым … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Число координатное — химических соединений — Термин введен в науку А. Вернером, который предполагает, что ему удалось открыть закономерность, определяющую состав гидратов, аммиакатов (ср. Кобальтиаковые соединения), двойных (и простых, кислородсодержащих) солей и вообще неорганических и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Анион — Анион отрицательно заряженный ион. Характеризуется величиной отрицательного электрического заряда; например, Cl− однозарядный анион, а SO42− двузарядный анион. В электрическом поле анионы перемещаются к положительному… … Википедия
диазосоединения — органические соединения общей формулы RN2 (алифатические диазосоединения; R алкил) или ArN2X (ароматические диазосоединения; Ar арил, Х гидроксильная группа или кислотный остаток), из которых наиболее важны последние соли диазония.… … Энциклопедический словарь
ртутьорганические соединения — содержат в молекуле атом ртути, непосредственно связанный с углеродом. Известны ртутьорганические соединения типа R2Hg и RHgX, где R органический радикал, Х галоген, ОН, кислотный остаток. Применяются в органическом синтезе, как фунгициды.… … Энциклопедический словарь
соли — продукты замещения атомов водорода кислоты на металл или групп ОН основания на кислотный остаток. При полном замещении образуются средние, или нормальные, соли (NaCl, K2SO4 и др.), при неполном замещении атомов Н кислые (напр., NaHCO3), неполном … Энциклопедический словарь
Что такое остаток в химии
Основания и кислоты — это две противоположности в химии. Как черное и белое, положительное и отрицательное, теплое и холодное, правое и левое. Именно поэтому они отлично взаимодействуют друг с другом: из двух крайностей образуется нечто нейтральное, а именно соли. Но пока мы рассмотрим, что же представляют собой эти два класса, и как им следует давать названия.
Основания
Группа « OH» известна также под названием гидрокси́л, от латинского произношения элементов: гидроген (водород) и оксиген (кислород).
Название основания, данное по систематической номенклатуре, состоит из слова гидроксид, названия металла и его валентности, если она не постоянна:
AgOH — гидроксид серебра (I) | Ca(OH)2 — гидроксид кальция | Pb(OH)4 — гидроксид свинца (IV) |
Серия «Элементы и соединения» |
04 | Гидроксил имеет постоянную степень окисления –1: Поэтому атом металла будет иметь положительную степень окисления, равную количеству гидроксилов в молекуле основания, а значит, и такую же валентность. гидроксид калия — KOH Как правило, при н. у. основания являются кристаллическими веществами. Те из них, которые хорошо растворяются в воде, называются щелоча́ми, а металлы, их образующие — щелочными и щёлочно-земельными. Самая распространенная щёлочь — гидроксид натрия NaOH, — используется в целлюлозно-бумажной промышленности, при производстве мыла, в нефтепереработке и даже в качестве пищевой добавки. При этом, как и другие щёлочи, она является очень едким веществом, поэтому должна маркироваться специальным знаком (рис. 1). Раньше, до введения систематической номенклатуры, гидроксид натрия назывался едким натром. Кислоты | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08 | Перед нами следующий, также немногочисленный класс неорганических веществ: Как это ни забавно звучит, но кислотным остатком принято считать то, что остается от кислоты, если убрать все атомы водорода. Валентность кислотного остатка всегда совпадает с количеством атомов водорода в молекуле кислоты: Очевидно, степень окисления кислотного остатка будет равна его валетности, взятой со знаком «минус», поскольку водород имеет постоянную степень окисления +1: В отличие от остальных классов неорганических соединений, для которых IUPAC сформулировал вполне определенные правила систематической номенклатуры, названия важнейших кислот и их кислотных остатков необходимо выучить. Все они приведены в таблице.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | Самые внимательные наверняка заметили, что у кислотных остатков, не содержащих атомов кислорода, названия оканчиваются буквой «д», в то время как у остальных — буквой «т». Классификация неорганических веществСреди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом: Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии. ОксидыВсе оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например: Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные. Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO. Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют. Li2O + H2O → LiOH (основный оксид + вода → основание) Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов. Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3. С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами. ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль) ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции) Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции) Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7. Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны. SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4) SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6) P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода) Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей: FeO + CO → Fe + CO2 (восстановление железа из его оксида) ОснованияОснования классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные. Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид. Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются) Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют. Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O) KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды) В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет. Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода) Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль) При нагревании до высоких температур комплексные соли не образуются. КислотыКислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты). Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты) Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты) Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту. В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков. Блиц-опрос по теме Классификация неорганических веществ
|