что такое окислители в пожарной безопасности

КИСЛОРОД

КИСЛОРОД — газообразное вещество, содержащееся в воздухе в количестве 21 % объема и обладающее окислительными свойствами. Является одним из обязательных компонентов горючей среды при пожаре (см. ПОЖАР ) и образовании взрывоопасных паро-, газо- и пылевоздушных смесей [3] [4]. С увеличением концентрации кислорода в горючей среде (см. ГОРЮЧАЯ СРЕДА) скорость горения (см. ГОРЕНИЕ) веществ и материалов увеличивается. Пожаротушение (см. ТУШЕНИЕ ПОЖАРОВ) в таких средах затрудняется.

Предельную концентрацию кислорода в горючей среде, при которой прекращается распространение пламени (см. ЛОКАЛИЗАЦИЯ ПОЖАРА), называют минимальной взрывоопасной концентрацией (МВСК). Если концентрация кислорода в горючей смеси ниже значения МВСК, то в таком случае воспламенение и горение смеси становится невозможным при любой концентрации горючего в смеси.

Для большинства веществ и материалов МВСК составляет 12–15 % объема, а для водорода, ацетилена, металлов и некоторых других веществ — до 4–5% объема. В обогащенных кислородом средах (свыше 21 % объема) флегматизирующая концентрация ингибиторов существенно повышается, диапазон концентраций между нижним концентрационным пределом воспламенения (НКПР) и верхним концентрационным пределом воспламенения (ВКВР) расширяется, температура самовоспламенения и минимальная энергия зажигания материала снижаются.

Кислород хранят и транспортируют в сжатом состоянии в стальных баллонах или в сжиженном состоянии в изотермических емкостях отдельно от других веществ и материалов. Недопустимо попадание масла на арматуру баллона с кислородом из-за опасности взрыва. Жидкий кислород, смачивая пористые горючие материалы (хлопок, целлюлоз ткани), образует пожаро- или взрывоопасные смеси [3] [4].

Окислитель — вещества и материалы, обладающие способностью вступать в реакцию с горючими веществами, вызывая их горение или увеличивая интенсивность горения [1].

В роли окислителей могут выступать многие химические реагенты, если они соприкасаются с горючими веществами или выделяют кислород при разложении.

Источник

Тема №3: Основы прекращения горения на пожаре. Огнетушащие вещества

С точки зрения пожарной тактики, тушение пожара – это комплекс управленческих решений и ОТД, направленных на обеспечение безопасности людей, животных, спасение материальных ценностей и ликвидацию горения.

Процесс тушения пожара условно принято делить на два периода: первый – до наступления момента локализации, второй – после этого момента, т. е. когда пожар остановлен, ограничен в каких-то пределах.

Пожар считается локализованным, когда распространение огня прекращено, отсутствуют угроза жизни людям, животным и угроза взрыва, созданы условия для его ликвидации.

Условия и способы прекращения горения.

С уменьшением тепловыделения или с уменьшением теплоотдачи снижается температура и скорость горения. При введении в зону горения огнетушащих веществ температура может достигнуть значения, при котором горение прекращается. Минимальная температура горения, ниже которой скорость теплоотвода превышает скорость тепловыделения и горение прекращается, называется температурой потухания. Температура потухания значительно выше температуры самовоспламенения, следовательно, для прекращения горения достаточно понизить температуру зоны реакции ниже температуры потухания, увеличивая интенсивность теплоотвода или уменьшая скорость тепловыделения. Так, если изменить концентрацию кислорода в воздухе, добавив к нему негорючий газ, то скорость выделения теплоты будет уменьшаться и температура горения понизится. При определенной концентрации негорючего газа температура горения опустится ниже температуры потухания и горение прекратится.

Снизить температуру горения и прекратить горение можно как увеличением скорости теплоотвода, так и уменьшением скорости тепловыделения.

Этого можно достигнуть:

Схема прекращения горения

Способы прекращения горения

Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподъемников, навесными струями и т. п.

Огнетушащие вещества охлаждения

Вода – основное ОТВ охлаждения, наиболее доступное и универсальное. Хорошее охлаждающее свойство воды обусловлено ее высокой теплоемкостью [4 187 Дж/(кг/град), 1 ккал/(кг/град)] при нормальных условиях. При попадании на горящее вещество вода частично испаряется и превращается в пар. При испарении 1 л воды образуется 1 700 л пара, которым кислород вытесняется из зоны пожара. Вода, имея высокую теплоту парообразования [2 236 кДж/кг (534 ккал/кг)], отнимает от горящих материалов и продуктов горения большое количество теплоты. Вода обладает высокой термической стойкостью; ее пары только при температуре выше 1 700 °С могут разлагаться на водород и кислород. В связи с этим тушение водой большинства твердых материалов (древесины, пластмасс, каучука и др.) безопасно, так как их температура горения не превышает 1 300 °С. Вода не вступает в реакцию почти со всеми твердыми горючими веществами, за исключением щелочных и щелочноземельных металлов (калия, натрия, кальция, магния и др.) и некоторых других веществ:

Вещество или материалРезультат воздействия воды
Азид свинцаВзрывается при увеличении влажности до 30 %
Алюминий, магний, цинкПри горении разлагают воду на водород и кислород
Гидриды щелочных и щелочноземельных металловВыделяют водород
Гремучая ртутьВзрывается от удара струи
Калий, кальций, натрий, рубидий, цезий металлическиеРеагируют с водой, выделяют водород
Карбиды алюминия, бария, кальцияРазлагаются с выделением горючих газов
Карбиды щелочных металловВзрываются
Кальций, натрий фосфористыеВыделяют самовоспламеняющийся на воздухе фосфористый водород
НитроглицеринВзрывается от удара струи
СелитраПопадание воды в расплав селитры вызывает сильный взрывообразный выброс и усиление горения
Серный ангидридВзрывообразный выброс
СесквихлоридВзрывается
СиланыВыделяют самовоспламеняющийся на воздухе гидрид кремния
Термит, электронРазлагает воду на водород и кислород
Титан и его сплавыРазлагает воду на водород и кислород
ТриэтилалюминийРазлагает воду на водород и кислород
Хлорсульфоновая кислотаВзрывается

Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения, вода быстро нагревается и превращается в пар, отнимая большое количество теплоты. Чтобы избежать ненужных потерь, распыленную воду применяют в основном при сравнительно небольшой высоте пламени, когда можно подать ее между пламенем и нагретой поверхностью (например, при горении подшивки перекрытий, стен и перегородок, обрешетки крыши, волокнистых веществ, пыли, темных нефтепродуктов и др.).

Распыленные водяные струи применяют также для снижения температуры в помещениях, защиты от теплового излучения (водяные завесы), для охлаждения нагретых поверхностей строительных конструкций сооружений, установок а также для осаждения дыма. В зависимости от вида горящих материалов используют распыленную воду различной степени дисперсности. При тушении пожаров твердых материалов, смазочных масел применяют струи со средним диаметром капель около 1 мм; при тушении горящих спиртов, ацетона, метанола и некоторых других горючих жидкостей – распыленные струи, состоящие из капель диаметром 0,2–0,4 мм.

Сплошные струи используют при тушении наружных и открытых внутренних пожаров, когда необходимо подать большое количество воды на значительное расстояние или если воде необходимо придать ударную силу. (Например, при тушении газонефтяных фонтанов, открытых пожаров, а также пожаров в зданиях больших объемов, когда близко подойти к очагу горения невозможно; при охлаждении с большого расстояния соседних объектов, металлических конструкций, резервуаров, технологических аппаратов).

Сплошные струи нельзя применять там, где может быть мучная, угольная и другая пыль, а также при горении жидкостей в резервуарах. Для равномерного охлаждения площади горения сплошную струю воды перемещают с одного участка на другой. Когда с увлажненного горючего вещества сбито пламя и горение прекращено, струю переводят в другое место. Как ОТВ, вода плохо смачивает твердые материалы из-за высокого поверхностного натяжения (72,8–103 Дж/м2), что препятствует быстрому распределению ее по поверхности, прониканию в глубь горящих твердых материалов и замедляет охлаждение. Для уменьшения поверхностного натяжения и увеличения смачивающей способности в воду добавляют поверхностно-активные вещества (ПАВ). На практике используют растворы ПАВ (смачивателей), поверхностное натяжение которых в 2 раза меньше, чем у воды. Оптимальное время смачивания 7–9 с. Применение растворов смачивателей позволяет уменьшить расход воды на 35–50 %, что обеспечивает ликвидацию горения одним и тем же объемом ОТВ на большей площади.

Твердый диоксид углерода (углекислота), как и вода, может быстро отнять теплоту от нагретого поверхностного слоя горящего вещества. При температуре −79 °С он представляет собой мелкокристаллическую массу плотностью 1,53 кг/м3. Такая масса образуется при переходе диоксида углерода из жидкой в газообразную фазу при быстром увеличении объема. Жидкий диоксид углерода в результате расширения переходит в твердое состояние и выбрасывается в виде хлопьев, похожих на снежные, с температурой −78,5 °С. Под влиянием теплоты, выделяющейся на пожаре, твердый диоксид углерода, минуя жидкую фазу, превращается в газ. При этом он является средством не только охлаждения, но и разбавления горящих веществ. Теплота испарения твердого диоксида углерода значительно меньше, чем воды – 0,57·103 кДж/кг (136,9 ккал/кг), однако, из-за большой разницы температур твердого диоксида углерода и нагретой поверхности, поверхность охлаждается гораздо быстрее, чем при применении воды. Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением магния и его сплавов, металлического натрия и калия. Он неэлектропроводен и не взаимодействует с горючими веществами и материалами, поэтому его применяют при тушении электроустановок, двигателей и моторов, а также при пожарах в архивах, музеях, выставках и т.д. Подают твердый диоксид углерода из огнетушителей, передвижных и стационарных установок.

Огнетушащие вещества изоляции

К ОТВ, оказывающим изолирующее действие относятся пена, огнетушащие порошки, негорючие сыпучие вещества (песок, земля, флюсы, графит и др.), листовые материалы (войлочные, асбестовые, брезентовые покрывала, щиты). В некоторых случаях, например при тушении сероуглерода, в качестве изолирующего вещества может быть использована вода.

Пены

Пена – наиболее эффективное и широко применяемое ОТВ изолирующего действия, представляет собой коллоидную систему из жидких пузырьков, наполненных газом. Пленка пузырьков содержит раствор ПАВ в воде с различными стабилизирующими добавками. Пены подразделяются на воздушно-механическую и химическую. В настоящее время в практике пожаротушения в основном применяют воздушно-механическую пену (ВМП). Для ее получения используют различные пенообразователи. Воздушно-механическую пену получают смешением водных растворов пенообразователей с воздухом в пропорциях от 1÷3 до 1÷1 000 и более в специальных стволах (генераторах).

Изолирующее свойство пены – способность препятствовать испарению горючего вещества и прониканию через слой пены паров газов и различных излучений. Изолирующие свойства пены зависят от ее стойкости вязкости и дисперсности.

Низкократная и среднекратная воздушно-механическая пена на поверхности горючих жидкостей обладает изолирующей способностью в пределах 1,5–2,5 мин при толщине изолирующего слоя 0,1–1,0 м. Низкократными пенами тушат в основном горящие поверхности. Они хорошо удерживаются и растекаются по поверхности, препятствуют прорыву горючих паров, обладают значительным охлаждающим действием. Низкократную пену используют для тушения пожаров на складах древесины, так как ее можно подать струей значительной длины; кроме того, она хорошо проникает через неплотности и удерживается на поверхности, обладает высокими изолирующими и охлаждающими свойствами.

Высокократную пену, а также пену средней кратности применяют для объемного тушения, вытеснения дыма, изоляции отдельных объектов от действия теплоты и газовых потоков (в подвалах жилых и производственных зданий, в пустотах перекрытий, в сушильных камерах и вентиляционных системах и т. п.).

Пена средней кратности является основным средством тушения пожаров нефти и нефтепродуктов в резервуарах и разлитых на открытой поверхности. Воздушно-механическую пену часто применяют в сочетании с огнетушащими порошковыми составами, нерастворимыми в воде. Огнетушащие порошковые составы высокоэффективны для ликвидации пламенного горения, но почти не охлаждают горящую поверхность. Пена компенсирует этот недостаток и дополнительно изолирует поверхность.

Пены – достаточно универсальное средство и используются для тушения жидких и твердых веществ, за исключением веществ, взаимодействующих с водой. Пены электропроводны и коррозируют металлы. Наиболее электропроводна и активна химическая пена. Воздушно-механическая пена менее электропроводна, чем химическая, однако, более электропроводна, чем вода, входящая в состав пены.

Классификация пенообразователей

Пенообразователи и пены различаются по химической природе поверхностно-активного вещества, способу образования, назначению, структуре.

По природе основного поверхностно-активного вещества пенообразователи делятся на:

По способу образования пенообразователи делятся на:

По назначению пенообразователи различают:

По структуре пены подразделяются на высокодисперсные и грубодисперсные.

По кратности пены бывают:

Огнетушащие порошки

Порошки используются для тушения пожаров большинства классов. Порошками можно тушить любые известные на сегодняшний день вещества и материалы. Универсальным считается порошок для тушения пожаров классов А, В, С, Е. Порошки, предназначенные для тушения только пожаров классов В, С, Е или Д, называются специальными.

К отечественным огнетушащим порошкам общего назначения относят:

Примером огнетушащего порошка специального назначения является порошок ПХК, применяемый преимущественно Минатомэнерго для тушения пожаров классов В, С, Д и электроустановок. В последние годы в России сертифицированы зарубежные порошки, которые имеют более широкий диапазон эксплуатационных температур: от +85 до −60 °С. Изготовители рекомендуют их для тушения пожаров электроустановок с напряжением до 400 кВ.

Ликвидация горения порошковыми составами осуществляется на основе взаимодействия следующих факторов:

Огнетушащие вещества разбавления

Огнетушащие вещества разбавления понижают концентрацию реагирующих веществ ниже пределов, необходимых для горения. В результате уменьшается скорость реакции горения, скорость выделения тепла, снижается температура горения. При тушении пожаров разбавляют воздух, поддерживающий горение, или горючее вещество, поступающее в зону горения. Воздух избавляют в относительно замкнутых помещениях (сушильных камерах, трюмах судов и т. п.), а также при горении отдельных установок или жидкостей на небольшой площади при свободном доступе воздуха.

К огнетушащим веществам разбавления относятся: диоксид углерода, азот, тонкораспыленная вода, водяной пар, хладоны и др. Огнетушащая концентрация – это объемная доля ОТВ в воздухе, прекращающая горение.

Наиболее распространенные средства разбавления – диоксид углерода, водяной пар, азот и тонкораспыленная вода, перегретая вода.

Газовые огнетушащие составы условно делятся на нейтральные (негорючие) газы и химически активные ингибиторы.

К нейтральным газам относятся инертные газы аргон, гелий, а также азот и двуокись углерода.

К химически активным, «хладонам» или «фреонам», относятся органические соединения с низкой теплотой испарения, в молекуле которых содержатся атомы галоидов, таких как бром или хлор.

Аэрозолеобразующие огнетушащие составы

Аэрозолеобразующие огнетушащие составы представляют собой твердотопливные или пиротехнические композиции. Их особенность в том, что они способны гореть без доступа воздуха. Образующиеся при горении газы состоят из высокодисперсных частиц, солей и окислов щелочных металлов, обладающих высокой огнетушащей способностью по отношению к углеводородному пламени.

Механизм действия огнетушащего аэрозоля во многом аналогичен механизму действия огнетушащих порошков на основе щелочных металлов. Более высокая его эффективность обусловлена большей дисперсностью частиц и некоторым снижением концентрации кислорода в защищаемом помещении.

Тушение аэрозолями осуществляется объемным способом и рекомендуется применять при пожарах класса А и класса В в помещениях с воздушной средой, атмосферном давлении и имеющих негерметичность помещения до 0,5 %. Применяется также для тушения электроустановок под напряжением до 1 000 В. Преимущественная область применения – моторные и багажные отсеки автомобилей, помещения с наличием легковоспламеняющихся веществ (в том числе, ЛВЖ и ГЖ), горючих газов, электрические установки, хранилища материальных ценностей.

Применение аэрозолей неэффективно для материалов, горение которых происходит в тлеющем режиме, или способных гореть без доступа воздуха, порошков металлов. Запрещается их применение в помещениях, которые не могут быть покинутыми людьми до начала применения аэрозолеобразующего состава.

Источник

Тема 5. Горение веществ и материалов, общие сведения о горении, показатели пожаровзрывоопасности веществ и материалов

Вопрос №1. Общие сведения о процессе горения. Основные понятия и определения.

Горение – это химическая реакция окисления, сопровождающаяся выделением большого количества теплоты и свечением. Окислителем чаще всего является кислород воздуха, иногда – другие химические элементы: хлор, фтор и др.

Для возникновения процесса горения необходимо наличие горючего вещества, окислителя и источника зажигания. Горючим называется вещество что такое окислители в пожарной безопасности. Смотреть фото что такое окислители в пожарной безопасности. Смотреть картинку что такое окислители в пожарной безопасности. Картинка про что такое окислители в пожарной безопасности. Фото что такое окислители в пожарной безопасности Нажмите для перехода на ПожВики (материал, смесь, конструкция), способное самостоятельно гореть после удаления источника зажигания. Под источником зажигания понимают горячее или раскаленное тело, а также электрический разряд, обладающие запасом энергии и температурой, достаточной для возникновения горения других веществ (пламя, искры, раскаленные предметы, выделяемая при трении теплота и др.).

Необходимым и достаточным условием для горения при пожаре обычно представляют в виде «классического треугольника пожара» (рис. 1): горючее – окислитель – источник воспламенения. Устранив одно из слагаемых треугольника, снижается вероятность возникновения пожара.

что такое окислители в пожарной безопасности. Смотреть фото что такое окислители в пожарной безопасности. Смотреть картинку что такое окислители в пожарной безопасности. Картинка про что такое окислители в пожарной безопасности. Фото что такое окислители в пожарной безопасности

Рис. 1 Классический треугольник пожара.

Горение бывает полное и неполное. Полное горение протекает при достаточном количестве кислорода (не менее 14 %), в результате чего образуются вещества, неспособные к длительному окислению (диоксид углерода, вода, азот и др.). При недостаточном содержании кислорода (менее 10 %) происходит неполное беспламенное горение (тление), сопровождающееся образованием токсичных и горючих продуктов (спиртов, кетонов, угарного газа и т. п.).

Пожар – неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Пожар следует отличать от сжигания, представляющего собой контролируемое горение внутри или вне специального очага.

Взрыв – это быстрое превращение вещества (взрывное горение), сопровождающееся образованием большого количества сжатых газов, под давлением которых могут происходить разрушения. Горючие газообразные продукты взрыва, соприкасаясь с воздухом, часто воспламеняются, что обычно приводит к пожару, усугубляющему негативные последствия взрыва.

Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильной ударной волны. При ударном сжатии температура газа может повыситься до температуры самовоспламенения. Происходит химическая реакция. Часть выделившейся теплоты затрачивается на энергетическое развитие и усиление ударной волны, поэтому она перемещается по горючей смеси не ослабевая. Такой комплекс, представляющий собой ударную волну и зону химической реакции, называют детонационной волной, а само явление – детонацией. Детонационное горение вызывает сильные разрушения и поэтому представляет большую опасность при образовании горючих газовых систем.

Следует различать термины «самовозгорание» и «самовоспламенение».

Самовозгорание – это явление резкого увеличения скорости экзотермических реакций, приводящее к горению вещества, материала или смеси в отсутствие источника зажигания. Оно может быть тепловое, химическое и микробиологическое.

Самовоспламенение представляет собой самовозгорание, сопровождающееся появлением пламени. Температура самовоспламенения большинства горючих жидкостей находится в пределах 250. 700 °С (исключения: сероуглерод – 112…150 °С, серный эфир – 175. 205 °С), а твердых горючих веществ – 150. 700 °С, хотя, например, целлулоид способен самовоспламеняться уже при температуре 141 °С.

Вопрос №2. Показатели, характеризующие взрывопожароопасные свойства веществ и материалов.

Изучение взрывопожароопасных свойств веществ и материалов, обращающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.

В соответствии с ГОСТ 12.1.044-89 по агрегатному состоянию вещества и материалы подразделяются на:

Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл. 1.

Показатели и их применяемость для характеристики

взрывопожароопасных свойств веществ и материалов

Концентрационные пределы воспламенения

Условия теплового самовозгорания

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами

Показатель токсичности продуктов горения полимерных материалов

(Знак «+» обозначает применяемость, знак «—» неприменяемость показателя).

Температура самонагревания – самая низкая температура вещества, при которой самопроизвольный процесс его нагревания не приводит к тлению или пламенному горению.

Безопасной температурой длительного нагрева вещества считают температуру, не превышающую 90% температуры самонагревания.

Коэффициент дымообразования – показатель, характеризующий оптическую плотность дыма, образующегося при пламенном горении или термоокислительной деструкции (тлении) определенного количества твердого вещества (материала) в условиях специальных испытаний.

Различают 3 группы материалов по дымообразующей способности (табл. 2).

Группы материалов по дымообразующей способности

Группы материалов по дымообразующей способности

Коэффициент дымообразования, м 2 /кг (м 3 /кг)

до 50 вкл. (до 10 вкл.)

свыше 50 до 500 вкл. (св. 10 до 100 вкл.)

свыше 500 (свыше 100)

Примеры дымообразующей способности строительных материалов при тлении (горении), м 3 /кг:

Древесное волокно (береза, осина) — 62.

Декоративный бумажно-слоистый пластик — 75.

Фанера марки ФСФ — 140.

ДВП, облицованная пластиком — 170.

Классификация материалов приведена в таблице 3:

Показатели токсичности веществ и материалов

при времени экспозиции, мин

* Для материалов чрезвычайно опасных по токсичности масса не превышает 25 грамм, чтобы создать смертельную концентрацию в объеме 1 м 3 за время 5 мин. Соответственно, за время 15 мин — до 17; 30 мин — до 13; 60 мин — до 10 грамм.

Нижний (верхний) концентрационные пределы распространения пламени (воспламенения) — минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Температура тления — температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления.

Негорючие (несгораемые) — вещества и материалы, не способные к горению в воздухе. Негорючие вещества могут быть пожаровзрыво-опасными (например, окислители или вещества, выделяющие продукты при взаимодействии с водой, кислородом воздуха или друг с другом).

Трудногорючие (трудносгораемые) — вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но не способные самостоятельно гореть после его удаления.

Горючие (сгораемые) — вещества и материалы, способные самовозгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.

Горючие жидкости (ГЖ) с Твсп Вопрос №3. Классификация строительных, текстильных и кожевенных материалов по пожарной опасности.

Классификация веществ и материалов по пожаровзрывоопасности и пожарной опасности что такое окислители в пожарной безопасности. Смотреть фото что такое окислители в пожарной безопасности. Смотреть картинку что такое окислители в пожарной безопасности. Картинка про что такое окислители в пожарной безопасности. Фото что такое окислители в пожарной безопасности Нажмите для перехода на ПожВики используется для установления требований пожарной безопасности при получении веществ и материалов, применении, хранении, транспортировании, переработке и утилизации.

Классификация строительных, текстильных и кожевенных материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара.

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:

3) способность распространения пламени по поверхности;

4) дымообразующая способность;

5) токсичность продуктов горения.

По горючести строительные материалы подразделяются на горючие (Г) и негорючие (НГ).

Горючие строительные материалы подразделяются на следующие группы:

1) слабогорючие (Г1), имеющие температуру дымовых газов не более 135 градусов Цельсия, степень повреждения по длине испытываемого образца не более 65 процентов, степень повреждения по массе испытываемого образца не более 20 процентов, продолжительность самостоятельного горения 0 секунд;

2) умеренногорючие (Г2), имеющие температуру дымовых газов не более 235 градусов Цельсия, степень повреждения по длине испытываемого образца не более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 30 секунд;

3) нормальногорючие (Г3), имеющие температуру дымовых газов не более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 300 секунд;

4) сильногорючие (Г4), имеющие температуру дымовых газов более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца более 50 процентов, продолжительность самостоятельного горения более 300 секунд.

По воспламеняемости горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

1) трудновоспламеняемые (В1), имеющие величину критической поверхностной плотности теплового потока более 35 киловатт на квадратный метр;

2) умеренновоспламеняемые (В2), имеющие величину критической поверхностной плотности теплового потока не менее 20, но не более 35 киловатт на квадратный метр;

3) легковоспламеняемые что такое окислители в пожарной безопасности. Смотреть фото что такое окислители в пожарной безопасности. Смотреть картинку что такое окислители в пожарной безопасности. Картинка про что такое окислители в пожарной безопасности. Фото что такое окислители в пожарной безопасности Нажмите для перехода на ПожВики (В3), имеющие величину критической поверхностной плотности теплового потока менее 20 киловатт на квадратный метр.

По скорости распространения пламени по поверхности горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

1) нераспространяющие (РП1), имеющие величину критической поверхностной плотности теплового потока более 11 киловатт на квадратный метр;

2) слабораспространяющие (РП2), имеющие величину критической поверхностной плотности теплового потока не менее 8, но не более 11 киловатт на квадратный метр;

3) умереннораспространяющие (РП3), имеющие величину критической поверхностной плотности теплового потока не менее 5, но не более 8 киловатт на квадратный метр;

4) сильнораспространяющие (РП4), имеющие величину критической поверхностной плотности теплового потока менее 5 киловатт на квадратный метр.

По дымообразующей способности горючие строительные материалы в зависимости от значения коэффициента дымообразования подразделяются на следующие группы:

1) с малой дымообразующей способностью (Д1), имеющие коэффициент дымообразования менее 50 квадратных метров на килограмм;

2) с умеренной дымообразующей способностью (Д2), имеющие коэффициент дымообразования не менее 50, но не более 500 квадратных метров на килограмм;

3) с высокой дымообразующей способностью (Д3), имеющие коэффициент дымообразования более 500 квадратных метров на килограмм.

По токсичности продуктов горения горючие строительные материалы подразделяются на следующие группы (см. табл. 3):

2) умеренноопасные (Т2);

3) высокоопасные (Т3);

4) чрезвычайно опасные (Т4).

Вопрос №4. Огнестойкость строительных конструкций и способы их огнезащиты.

Для строительных конструкций, а также зданий или сооружений важным фактором является огнестойкость. Огнестойкость – это способность строительных конструкций сохранять свои рабочие функции под действием высоких температур пожара. Огнестойкость зданий и сооружений делят на пять степеней (I, II, III, IV и V), которым должны соответствовать пределы огнестойкости строительных конструкций и пределы распространения огня по ним (табл. 4).

Классификация зданий и пожарных отсеков по конструктивной пожарной опасности

Предел огнестойкости строительных конструкций, не менее

Несущие элементы здания

Наруж-ные не-несущие стены

(в т.ч. чердачные и над подвалами)

Элементы бесчердачных покрытий

Настилы (в том числе с утеплите-лем)

Фермы, балки, прогоны

Марши и площадки лестниц

Огнестойкость строительных конструкций характеризуется пределом огнестойкости «П». Под пределом огнестойкости понимают время, по истечении которого конструкция теряет несущую или ограждающую способность. Потеря несущей способности означает обрушение строительной конструкции при пожаре. Потеря ограждающей способности означает прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции трещин, через которые могут проникать в соседние помещения продукты горения.

Нормируемые признаки предельных состояний строительных конструкций [6]:

потеря несущей способности (R);

потеря целостности (Е);

потеря теплоизолирующей способности (I).

Различают фактический и требуемый предел огнестойкости. Требуемая огнестойкость – тот минимальный предел огнестойкости Птр, которым должна обладать соответствующая строительная конструкция, чтобы удовлетворить требованиям пожарной безопасности. Значения требуемых пределов огнестойкости определяют опытным путем. Фактический предел огнестойкости Пф запроектированных или уже функционирующих конструкций определяют расчетным путем.

По пожарной опасности строительные конструкции подразделяются на четыре класса [6]:

Поведение железобетонных конструкций при действии высоких температур различно для разных типов конструкций. Предел огнестойкости центрально сжатых железобетонных колонн с гибкой арматурой зависит от сечения колонн, теплотехнических показателей материала колонн, коэффициента изменения прочности бетона при действии высоких температур. Поэтому при необходимости увеличения пределов огнестойкости колонн рекомендуют увеличение сечения, выбор бетона с меньшим коэффициентом температуропроводности, снижение нагрузки на колонну, выбор бетона с более высокой критической температурой, что достигается подбором вяжущих веществ и соответствующих заполнителей для бетонов или применением жаростойких бетонов.

Повышение пределов огнестойкости свободно опертых плит и балок может быть достигнуто путем увеличения толщины защитного слоя бетона, снижения его температуропроводности, нанесения штукатурок или облицовок из малотеплопроводных материалов, уменьшения нагрузки и выбора арматуры с более высокой критической температурой.

Опыты и наблюдения на пожарах показали, что огнестойкость стальных несущих конструкций незначительна, они в основном под действием высоких температур теряют устойчивость. Предел огнестойкости металлических конструкций ограничивается несколькими минутами и зависит от их сечения и температуры пожара. Особенно неблагоприятные условия работы для металлических конструкций при пожаре создаются в тех случаях, когда они находятся в сочетании с горючими материалами, например деревянные прогоны и обрешетки, горючая кровля, заполнение перекрытий горючими материалами. Такое сочетание вызывает быстрое распространение пожара на значительной площади.

Увеличение огнестойкости металлических конструкций осуществляют с помощью технических и проектных решений. К техническим решениям, замедляющим нагрев конструкций до критических температур, относят применение штукатурки, облицовки вспучивающихся красок (рис. 2). Использование вспучивающихся красок очень выгодно. Окраска слоем 2,5. 3 мм по огнезащитному эффекту равноценна штукатурке или облицовочным плитам толщиной 2,5. 3 см.

что такое окислители в пожарной безопасности. Смотреть фото что такое окислители в пожарной безопасности. Смотреть картинку что такое окислители в пожарной безопасности. Картинка про что такое окислители в пожарной безопасности. Фото что такое окислители в пожарной безопасностичто такое окислители в пожарной безопасности. Смотреть фото что такое окислители в пожарной безопасности. Смотреть картинку что такое окислители в пожарной безопасности. Картинка про что такое окислители в пожарной безопасности. Фото что такое окислители в пожарной безопасности

Рис. 2. Огнезащита стальных конструкций с применением вспучивающихся красок.

В качестве строительного материала широко применяется древесина. Чтобы предотвратить ее воспламенение, необходимы защитные меры. Древесина, предварительно обработанная защитными средствами, подвергаясь действию огня, будет разлагаться, но не воспламеняется. Вследствие этого горение открытым пламенем не будет возникать и распространяться от действия внешнего источника огня. Кроме общеизвестной и широко применяемой для строительных деревянных конструкций облицовки (штукатурки) обработка древесины может осуществляться с помощью обмазки, окраски, пропитки и минерализации.

Обработка древесины окраской состоит в том, что на поверхность древесины наносят плотный слой обмазки или краски, приготовленной из таких веществ, которые сами по себе не горят, достаточно долго не разрушаются в огне и малотеплопроводны.

Обработка древесины пропитыванием огнезащитными веществами — антипиренами более эффективно защищает от загорания, чем окраска. Но этот способ огнезащитной обработки более дорог и трудоемок.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *