что такое обратная связь физика
Что такое обратная связь в электронике и автоматике
На функционирующую систему, кроме выходной величины, могут действовать также внешние воздействия (х на рис. 1). Цепь AB, по которой передается обратная связь, называется цепью, линией или каналом обратной связи.
Канал может сам содержать какую-либо систему (Д, рис. 2), преобразующую выходную величину в процессе ее передачи. В этом случае говорят, что обратная связь с выхода системы на ее вход осуществляется с помощью или через посредство системы Д.
Обратная связь является одним из важнейших понятий электроники и теории автоматического управления. Конкретные примеры реализации систем, содержащих обратные связи, можно обнаружить при изучении самых разнообразных процессов в автоматических системах, живых организмах, экономических структурах и т. п.
В силу универсальности понятия применимого в различных областях науки и техники, терминология в этой области не установилась, и в каждой частной области знаний, как правило, используется своя терминология.
Так, например, в системах автоматического регулирования широко применяются понятия отрицательной и положительной обратной связи, которыми определяется связь выхода системы с ее входом через усилительное звено с соответственно отрицательным или положительным коэффициентом усиления.
В теории электронных усилителей смысл этих терминов иной: отрицательной называется обратная связь, уменьшающая абсолютную величину общего коэффициента усиления, а положительной — увеличивающая ее.
В зависимости от способов реализации в теории электронных усилителей выделяют обратные связи по току, по напряжению и комбинированную.
В системы автоматического регулирования часто вводят дополнительные обратные связи, используемые для стабилизации систем или улучшения переходных процессов в них. Они иногда называются корректирующими и среди них выделяют жесткую (осуществляемую с помощью усилительного звена), гибкую (реализуемую дифференцирующим звеном), изодромную и т. п.
В различных системах можно всегда обнаружить замкнутую цепь воздействий. Например, на рис. 2 часть С системы действует на часть Д, а последняя снова на С. Поэтому такие системы называют также системами с замкнутой цепью воздействий, системами с замкнутым циклом или замкнутым контуром.
В сложных системах может существовать множество различных цепей обратных связей. В многоэлементной системе выход каждого элемента может, вообще говоря, воздействовать на входы всех остальных элементов, включая свой собственный вход.
Любое воздействие можно рассматривать с трех основных сторон: метаболической, энергетической и информационной. Первая связана с изменениями расположения, формы и состава вещества, вторая — с передачей и преобразованием энергии, а третья — с передачей и преобразованием информации.
В теории управления рассматривается исключительно информационная сторона воздействий. Таким образом, обратная связь может быть определена как передача информации о выходной величине системы на ее вход либо как поступление информации, преобразованной звеном обратной связи, с выхода на вход системы.
На применении обратной связи основан принцип устройства систем автоматического регулирования (САР). В них наличие обратной связи обеспечивает повышение помехоустойчивости из-за уменьшения влияния помехи (z на рис. 3), действующей в прямом тракте системы.
Если в линейной системе со звеньями, обладающими передаточными фциями Кх(р) и К2(р), снять цепь обратной связи, то изображение х выходной величины х определится следующим соотношением:
Если при этом требуется, чтобы выходная величина х в точности равнялась задающему воздействию х*, то общий коэффициент усиления системы К(р)= К1(р)К2(р) должен равняться единице, а помеха z должна отсутствовать. Наличие z и отклонение К(р) от единицы обусловливают возникновение погрешности е, т. е. разности
Если теперь замкнуть систему с помощью обратной связи, как показано на рис. 3, изображение выходной величины х будет определяться следующим соотношением:
Из соотношения следует, что при достаточно большом по модулю коэффициент усиления Кх(р) второе слагаемое пренебрежимо мало и, следовательно, влияние помехи z ничтожно. В то же время значение выходной величины х будет очень мало отличаться от значения задающего воздействия.
В замкнутой системе с обратной связью удается значительно уменьшить влияние помех по сравнению с разомкнутой системой, т. к. последняя не реагирует на действительное состояние управляемого объекта, «слепа» и «глуха» к изменению этого состояния.
Рассмотрим в качестве примера полет самолета. Если заранее с высокой точностью установить рули самолета так, чтобы он летел в заданном направлении, и жестко закрепить их, то порывы ветра и др. случайные и заранее непредвиденные факторы собьют самолет с нужного курса.
Исправить положение в состоянии только система с обратной связью (автопилот), способная сравнивать заданный курс х* с фактическим х и в зависимости от образовавшегося рассогласования изменять положение рулей.
О системах с обратной связью часто говорят, что они управляются ошибкой е (рассогласованием). Если звено Кх(р) представляет собой усилитель с достаточно большим коэффициентом усиления, то при определенных условиях, наложенных на передаточную функцию К2(р) остальной части тракта, замкнутая система остается устойчивой.
Обратная связь в смешанных системах имеет место также и при функционировании сложных систем, состоящих из объектов различной природы, но действующих целенаправленно. Такими являются системы: оператор (человек) и машина, учитель и ученик, лектор и аудитория, человек и обучаемое устройство.
Во всех этих примерах мы имеем дело с замкнутой цепью воздействий. По каналам обратной связи оператор получает информацию о характере функционирования управляемой машины, обучающий — информацию о поведении ученика и о результатах обучения и т. п. Во всех этих случаях в процессе функционирования существенно изменяются как содержание информации, передаваемое по каналам, так и сами каналы.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Обратная связь
Рис. 2. Блок-схема системы с обратной связью.
В радиоэлектронике используется термин «запаздывающая О. с.» для цепей О. с., содержащих линию задержки. Если цепь О. с. по переменному току содержит фазосдвигающие элементы, то О. с. наз. комплексной. В нелинейной оптике и нек-рых др. дисциплинах вместо термина «запаздывающая О. с.» используют термин «инерционное самовоздействие» или «инерционная нелинейность». В теории автоматич. регулирования употребляют термины «непрерывная О. с.», если сигнал О. с. подаётся на вход системы в течение всего процесса управления, или «прерывистая О. с.», если сигнал по цепи О. с. поступает периодически (или по заданной программе). О. с., охватывающая всю систему управления в целом, наз. полной, для О. с., замыкающейся в отд. части системы, используется термин «локальная О. с.». В биологии О. с. характеризуют по механизму её реализации (напр., кинетич. О. с. или биохим. О. с.), а также по функциональному назначению соответствующей цепи (О. с. для регуляции метаболич. процессов, О. с. в цепи гормональной регуляции и т. п.). В связи с чрезвычайно общим, междисциплинарным характером понятия «О. с.» его дальнейшую детализацию удобно проводить, отправляясь от числа степеней свободы и типа преобразования сигналов в модели, изображённой на рис. 2.
О. с. в сосредоточенных системах осуществляется посредством зависимости скоростей dxi /dt от значений самих величин хi, характеризующих процесс в данный момент времени. Теоретически такая связь описывается системой обыкновенных дифференц. ур-ний:
На рис. 3 (диаграмма Семёнова) изображены графики левой и правой частей ур-пия (3), к-рые характеризуют соотношение между энерговыделением и теплоотводом. Видно, что при р р2уравнение (3) имеет единственное решение, в то время как при р1 2 exp(l/y), у = разделяет на плоскости параметров |р, Фн| области, в к-рых ур-ние (3) имеет одно или три стационарных состояния.
Рис. 5. Катастрофа сборки, характерная для задач теории теплового взрыва.
К тем же выводам можно прийти, рассматривая изображённый на рис. 2 усилитель, к-рый в отсутствие О. с. характеризуется нелинейной передаточной функцией Z = f(z). В установившемся режиме величина сигнала z на входе усилителя определяется из ур-ния
Рис. 6. N-образная нуль-изоклина «быстрой» переменной (А), пересекающаяся с монотонной нуль-изоклиной «медленной» переменной. Различные случаи отвечают ждущему (1), автоколебательному (2) и триггерному (3)режимам.
С ростом числа степеней свободы усложнение динамики системы, напр. при изменении коэф. передачи по каналу О. с., может осуществляться за счёт бифуркаций периодич. движений, приводящих, в частности, к рождению странного аттрактора. Поведение фазовых траекторий на таком аттракторе и вблизи него хаотично, поэтому с рождением странного аттрактора связывают возникновение в системах хаотич. движения (см. Стохастические колебания).
Такое хаотич. движение может демонстрировать уже система, состоящая всего из трёх ур-ний типа (1) (см. Лоренца система).
Аналогичное усложнение динамики системы наблюдается при наличии запаздывания в цепи О. с., когда простейших нелинейностей достаточно для того, чтобы, изменяя коэф. передачи по каналу О. с., реализовать множество динамич. режимов: от простейших колебаний до хаоса.
О. с. в системах с распределёнными параметрами носит нелокальный характер, т. е. взаимовлияние осуществляется между величинами, расположенными в разл. точках пространства. Во многих физ. и хим. системах такое взаимовлияние обусловлено процессами необратимого переноса типа диффузии. В этих системах нелокальная О. с. теоретически описывается системой ур-ний в частных производных:
ОБРАТНАЯ СВЯЗЬ
— воздействие результатовк.-л. процесса на его протекание; самовоздействне, взаимовлияние разл. динамической системы. Если нач. отклонение к.-л. Термин «О. с.» первоначально появилсяв радиоэлектронике, где им обозначалось электрич. воздействие анодной цепилампового усилителя на цепь сетки усиливающей лампы (см. Генератор электромагнитныхколебаний). Впоследствии этот термин использовался для обозначениявоздействия управляемого процесса на орган управления автоматич. регулирования, Простейшим примером системы с положительнойО. с. является усилитель с громкоговорителем, звуковой сигнал к-рого воздействуетна микрофон, подключённый к входу усилителя. Хорошо известный эффект самовозбуждениятакой системы обусловлен О. с., реализуемой по акустич. каналу. Аналогичноположительная О. с. по оптич. каналу осуществляется с помощью телекамеры, В качестве примера устройств с отрицательнойО. с. можно привести разл. системы автоматич. регулирования. Так, механич.
Рис. 2. Блок-схема системы с обратной связью.
В радиоэлектронике используется термин»запаздывающая О. с.» для цепей О. с., содержащих линию задержки. Еслицепь О. с. по переменному току содержит фазосдвигающие элементы, то О. О. с. в сосредоточенных системах осуществляется посредством зависимости скоростей dxi/dt от значений самих величин х i, характеризующих процессв данный момент времени. Теоретически такая связь описывается системойобыкновенных дифференц. ур-ний:
На рис. 3 (диаграмма Семёнова) изображеныграфики левой и правой частей ур-пия (3), к-рые характеризуют соотношениемежду энерговыделением и теплоотводом. Видно, что при р р 2 уравнение (3) имеет единственное решение, р 1 2 exp(l/y), у = разделяет на плоскости параметров | р, Ф н| области, вк-рых ур-ние (3) имеет одно или три стационарных состояния.
Рис. 5. Катастрофа сборки, характернаядля задач теории теплового взрыва.
К тем же выводам можно прийти, рассматриваяизображённый на рис. 2 усилитель, к-рый в отсутствие О. с. характеризуетсянелинейной передаточной ф-цией Z = f(z). В установившемся режимевеличина сигнала z на входе усилителя определяется из ур-ния
С ростом числа степеней свободы усложнениединамики системы, напр. при изменении коэф. передачи по каналу О. с., можетосуществляться за счёт бифуркаций периодич. движений, приводящих, в частности, странного аттрактора. Поведение фазовых траекторий натаком аттракторе и вблизи него хаотично, поэтому с рождением странногоаттрактора связывают возникновение в системах хаотич. движения (см. Стохастическиеколебания).
Такое хаотич. движение может демонстрироватьуже система, состоящая всего из трёх ур-ний типа (1) (см.Лоренца система).
Аналогичное усложнение динамики системынаблюдается при наличии запаздывания в цепи О. с., когда простейших нелинейностейдостаточно для того, чтобы, изменяя коэф. передачи по каналу О. с., реализоватьмножество динамич. режимов: от простейших колебаний до хаоса.
О. с. в системах с распределёнными параметраминосит нелокальный характер, т. е. взаимовлияние осуществляется между величинами, переноса типа диффузии.
удаётся описать такие явления, как распространение нервного импульса[А. Л. Ходжкин (A. L. Hodgkin), А. Ф. Хаксли (A.F. Huxley), 1952), формирование стационарных неоднородных структур [А. Диссипативные структуры]. автоколебат. дui/дt, потоками дui/дх и самими величинами ui. На языкетеории нелинейных волн такие О. с. приводят к эффектам синхронизации иконкуренции мод, что в свою очередь влечёт за собой разл. явления самоорганизации.
Для достаточно «быстрых» нелинейностей, различных физ. величин, от к-рых зависит сопоставимыс обратной частотой световой волны самовоздействие света приводит к разл. эффектам генерации гармоник, вынужденномурассеянию света и др. Максимальный коэф. передачи по каналу положительнойО. с. в этих случаях обеспечивается при выполнении условий резонанснойсвязи мод (условий фазового синхронизма).
Др. примером самовоздействия являютсяэффекты типа самофокуснровки и самодефокусировки излучения, обусловленныедеформацией фазового фронта распространяющейся волны. Напр., в среде споказателем преломления п, зависящим от интенсивности световой волны п= nO + nzE 2 (безынерц. нелинейность),положительная О. с. формируется за счёт отклонения лучей в область большогопоказателя преломления, что в свою очередь приводит к росту показателяпреломления за счёт роста интенсивности света, фокусируемого такой нелинейнойлинзой. Если коэф. передачи по каналу такой положительной О. с. превышаеткоэф. передачи по каналу отрицательной О. с., связанной с дифракцией света, Лит.: Андронов А. А., Витт А. А.,Xайкин С. Э., Теория колебаний, [3 изд.], М., 1981; Франк-Каменецкий Д. теплопередача в химической кинетике, 3 изд., М., 1987; НиколисГ., Пригожин И., Самоорганизация в неравновесных системах, пер. с англ.,М., 1979; Физика XX века. Развитие и перспективы. Сб. ст., М., 1984; XакенГ., Синергетика. Иерархии неустойчивостей в самоорганизующихся системахи устройствах, пер. с англ., М., 1985; Васильев В. А., Романовский Ю. М.,Яхно В. Г., Автоволновые процессы, М., 1987; Бункин Ф. В., Кириченко Н. действие лазерного излучения, «УФН»,1982, т. 138, с. 45; их же, Структуры при лазерном окислении металлов,»УФН», 1987, т. 152, с. 162.
Н. В. Карлов, Б. С. Лукьянчук.
ElectronicsBlog
Обучающие статьи по электронике
Обратная связь. Часть 1. Виды обратной связи
Как я уже говорил в одном из предыдущих постов я начал публиковать цикл статей об операционных усилителях. В прошлой статье я рассмотрел две основные схемы включения (инвертирующую и неинвертирующую) и некоторые схемы с применением операционных усилителей. В данной статье я буду рассматривать такую тему как обратная связь.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Зачем нужна обратная связь
В отличие от идеальных операционных усилителей (ОУ), имеющих равномерную АЧХ, то есть их коэффициент усиления не изменяется в зависимости от частоты входного сигнала, реальные ОУ имеют коэффициент усиления, который с ростом частоты усиливаемого сигнала уменьшается. Кроме того в ОУ с увеличением частоты сигнала происходит фазовый сдвиг между входным и выходным сигналом, вследствие этого на некоторых частотах усиливаемого сигнала происходит самовозбуждение схемы, то есть усилитель превращается в генератор. Это всё приводит к уменьшению качественных показателей электронных схем.
Одним из наиболее распространённых и эффективных способов влияния на качественные параметры электронных схем с ОУ является применение обратной связи (ОС). Стоит отметить, что ОС широко применяется не только с ОУ, но и со многими другими электронными схемами, поэтому всё, что будет сказано про использование ОС с ОУ, относится и ко всем другим схемам с ОС.
Обратная связь определяется, как связь выходной цепи усилителя с его входной цепью, то есть когда усиленный сигнал с выхода усилителя передается на его вход через цепи, которые специально вводятся для этой цели (внешняя ОС) или через цепи, которые имеются в усилителе для выполнения других функций (внутренняя ОС). На рисунке ниже показана структурная схема усилителя с обратной связью
Структурная схема усилителя с обратной связью.
На рисунке выше показана структурная схема усилителя с коэффициентом усиления К, который охвачен внешней цепью ОС с коэффициентом передачи β. Стрелки на схеме показывают направление прохождения сигнала. Таким образом, часть усиленного сигнала с выхода усилителя поступает через цепь ОС на вход усилителя, где складывается с внешним сигналом. В результате на входе усилителя возникает суммарный входной сигнал, который может быть больше или меньше внешнего сигнала.
Виды обратной связи
Если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается больше амплитуды внешнего сигнала, то данная цепь ОС называется положительной обратной связью (ПОС), а в случае если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается меньше амплитуды внешнего сигнала, то такая ОС называется отрицательной обратной связью (ООС).
Путём введения ОС удаётся достаточно сильно изменить процесс работы и свойства усилителя, которые определяются как свойством усилителя, так и свойством цепи ОС. На свойства цепи ОС существенное влияние оказывает её вид, то есть принцип её действия, зависящий в общем случае от полярности и фазы напряжения ОС, а также способа её соединения с входными и выходными цепями усилителя.
Различают четыре вида обратных связей:
Кроме того существует также смешанная обратная связь, но из-за сложности в изготовлении и настройке данный вид обратной связи большого распространения не получил.
Рассмотрим, как образуется каждый вид обратной связи.
Параллельная обратная связь по напряжению
Параллельная обратная связь по напряжению образуется подключением входа цепи ОС параллельно сопротивлению нагрузки RH, а выход цепи ОС – параллельно входу усилителя.
Структурная схема параллельной обратной связи по напряжению.
Таким образом, входное напряжение цепи ОС UСВ равно выходному напряжению на нагрузке UН, а выходное напряжение цепи ОС UОС пропорционально сумме токов входного сигнала IСИГ и цепи ОС IOC на общем входном сопротивлении усилительной схемы.
То есть данная ОС образуется при параллельном соединении входа и выхода усилителя через цепь ОС. Данный вид ОС характеризуется тем, что действие ОС уменьшается при уменьшении сопротивления нагрузки и источника сигнала, а при коротком замыкании входа или выхода действие данного вида ОС прекращается.
Параллельная обратная связь по току
Параллельная обратная связь по току образуется подключением входа цепи ОС параллельно резистору RT, а выход цепи ОС подключён параллельно входу усилителя.
Структурная схема параллельной обратной связи по току.
Данный вид ОС характеризуется следующими параметрами: входное напряжение ОС UOC пропорционально выходному току усилителя протекающего через резисторы RT и RH, а выходное напряжение цепи ОС UОС пропорционально сумме токов входного сигнала IСИГ и цепи ОС IOC на общем входном сопротивлении усилительной схемы.
Действие данного вида ОС уменьшается при уменьшении сопротивления источника сигнала, входного сопротивления усилителя, а также при уменьшении сопротивления резистора RT или увеличении сопротивления нагрузки. То есть при коротком замыкании на входе схемы и отсутствии нагрузки данная ОС не действует.
Последовательная обратная связь по напряжению
Последовательная обратная связь по напряжению образуется подключением входа цепи ОС параллельно сопротивлению нагрузки RH, а выхода цепи ОС – последовательно с входом усилителя.
Структурная схема усилителя с последовательной цепью ОС по напряжению.
В последовательной обратной связи по напряжению входное напряжение UСВ равно выходному напряжению на нагрузке UН. В тоже время сумма выходного напряжения цепи ОС UОС и напряжения источника сигнала UСИГ равна входному напряжению усилителя UВХ.
Таким образом, последовательная ОС по напряжению уменьшает своё действие при увеличении сопротивлению источника сигнала и уменьшении сопротивления нагрузки и выходного сопротивления усилителя. В случае, когда на выходе короткое замыкание, а также в режиме холостого хода на входе данный вид ОС перестаёт действовать.
Последовательная обратная связь по току
Последовательная обратная связь по току образуется путём подключения входа цепи ОС параллельно резистору RT, а выход цепи ОС подключен последовательно с источником сигнала и входом усилителя.
Структурная схема усилителя с последовательной обратной связью по току.
Последовательная обратная связь по току имеет следующие характеристики. Входное напряжение цепи ОС UCB пропорционально выходному току усилителя ICB, который протекает через резисторы RH, RT и RВЫХ, а выходное напряжение цепи ОС UОС совместно с напряжением источника сигнала UСИГ составляет входное напряжение усилителя UВХ.
Из вышеизложенного следует, что при уменьшении сопротивлений RH, RT и RВЫХ, а также при увеличении входного сопротивления усилителя и источника сигнала действие последовательной ОС по току уменьшается. А при отсутствии нагрузки и холостом ходу на входе схемы данный вид ОС сводится к нулю.
Данная статья не может вместить все сведении об обратной связи, поэтому в ней рассмотрены только схемы различных видов обратных связей. О влиянии ОС на параметры усилительных устройств будет рассказано в следующей статье.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.