что такое обратная геодезическая задача
Что такое обратная и прямая геодезическая задача: суть, методы решения, назначение
В строительстве большую часть времени занимают геодезические работы. Это комплекс различных измерений и вычислений на местности. Стоит ли говорить, что качество выполненных работ зависит от точности полученных результатов. Это влияет на размещение зданий и сооружений, а также возведение их конструктивных элементов. Все должно соответствовать проектным показателям и техническим регламентам. Геодезические работы выполняются в объеме, определенном особенностями объекта и стадией его реализации. Компания «Промтерра» специализируется на их проведении с составлением необходимых чертежей, схем и расчетов. Для этого есть все составляющие: действующая лицензия, опыт, допуск СРО, штат специалистов. Один из вопросов, который поступает при выполнении работ, касается геодезической задачи. Что это такое, как используется в работе и ее назначение.
Математика в действии
По своей сути геодезические задачи — это математика в чистом виде. Основная задача состоит в определении взаимного положения точек принадлежащих какой-либо поверхности. Наиболее часто приходится иметь дело с прямыми и обратными геодезическими задачами, но на этом математические вычисления не заканчиваются. В зависимости от поставленных условий могут применяться и другие виды. Например, решение треугольника по измеренным углам и сторонам. Интересный исторический факт: с геодезическими задачами исследователи этой темы работают уже больше трех веков, а споры относительно методов дальше продолжаются.
Что такое прямая геодезическая задача
Эта разновидность предполагает вычисление координат, то есть широты и долготы определенной точки. А она, в свою очередь, лежит на математически правильной поверхности — земном эллипсоиде. Вычисления производятся по координатам другой точки, по длине и азимуту геодезической линии. Точность решения зависит от корректности исходных данных. Для проведения вычислений используют формулы нахождения приращений и определения координат.
Специалисты применяют разные методы для получения результатов. Наиболее востребованными считаются косвенный и прямой. Они отличаются тем, что в основе лежит точность исходных данных. Косвенные методы решения очень чувствительны к ним. Если в исходнике есть значительные расстояния, изменения по азимуту, то вычисления не получится сделать, или они будут с большими погрешностями. Прямые методы работают по соотношениям сфероидической геодезии, поэтому результаты можно получить более точные. Кстати, прямой тип геодезических задач применяется при вычислении координат в теодолитном ходе.
Что такое ОГЗ: суть обратной геодезической задачи
При работе над обратной геодезической задачей вычисления проводятся по известным координатам двух точек на земном эллипсоиде. Это нужно для получения значений горизонтального положения линий между ними, а также дирекционного угла этой самой линии. В этом состоит суть. Для получения искомых величин используется вычисление румба и расстояние между координатами точек. Нужно помнить, что дирекционный угол при этом находится по четверти системы координат, которая и является объектом, где размещены искомые позиции. Для решения нужно учитывать знаки приращения, которые свойственны для определенных четвертей. В этом типе задач уделяют большое значение сходимости результатов, поэтому расчеты могут проводиться несколько раз. На это влияют свойства горизонтального положения между точками. В каких случаях применяется обратная геодезическая задача? В тех, когда по известным двум точкам и их координатам определяют расстояние не только между ними, но и дирекционный угол линии.
В том или ином виде геодезические задачи возникают и в других направлениях — в полигонометрии, триангуляции, но на этом не заканчивается востребованность. Используется также, когда стоит задача определения взаимного положения точек по исходным данным длины и направления соединяющей линии. Есть ряд случаев, когда геодезические задачи решают с использованием формул аналитической геометрии в пространстве. Речь идет о пространственных прямоугольных координатах. Для этого используют пространственные компоненты направления прямой линии между этими точками.
Обратный тип геодезической задачи — не просто математическая проверка и вычисления. Она имеет практическое значение, ведь используется при вычислении длин проектных линий. Кроме этого, используется при выполнении привязки теодолитных ходов к пунктам геодезической сети, съемочных сетей и сетей сгущения. Еще одно практическое назначение — определение направления с пункта на пункт при отсутствии видимости. Обратная геодезическая задача используется в промышленном и гражданском строительстве.
А как решать обратные задачи, если в исходнике большие расстояния? В этом случае рекомендуется использовать метод итерации. Его можно использовать при расстояниях до 20 000 км. Итерация основана на решении прямой геодезической задачи любым выбранным методом — численным или аналитическим. И точность решения именно ОГЗ определяется решением ПГЗ.
Прямые и обратные геодезические задачи требуют получения точных результатов. Насколько получится достичь поставленной цели, зависит от исходных сведений и выбранного метода решения. Вычисление способом Бесселя, методом Рунге-Кутта-Фельберга, итерации, численного интегрирования — в каждом отдельном случае выбор зависит от расстояний и координат точек. В штате компании «Промтерра» работают опытные специалисты в сфере инженерной геодезии, поэтому за решение даже самых сложных задач можно быть спокойными. Тема геодезических задач всегда остается актуальной, поэтому отслеживание последних тенденций в проведении вычислений для получения точных результатов — необходимость. Важно отметить, что подобного плана математические методы востребованы не только в геодезической сфере деятельности, но и в навигации, корректировке ракетного огня и др.
Что такое прямая и обратная геодезическая задача?
Основной профиль компании БРИГС – геодезические работы в строительстве. Мы стараемся предоставлять информацию о нашей деятельности в как можно более доступной форме. Довольно часто нас спрашивают о геодезической задаче – что это, какими методами она решается и какие результаты приносит ее выполнение? На эти вопросы мы постараемся ответить в данном обзоре.
Что такое геодезическая задача?
Итак, геодезическая задача заключается в определении взаимного положения заданных точек на поверхности земли. В том или ином виде она возникает при обработке триангуляции и полигонометрии, то есть в процессе создания сети опорных пунктов геодезии. Геодезическая задача бывает прямой и обратной.
Прямая геодезическая задача решается методом вычисления широты и долготы конкретной точки, которая лежит на условном земном эллипсоиде. При этом необходимо знать координаты другой точки, а также длину и дирекционный угол направления, соединяющего обе эти позиции. Обратная геодезическая задача заключается в определении длины и дирекционного угла направления между точками на земном эллипсоиде с исходными геодезическими координатами.
Прямая геодезическая задача.
Решение задач данного типа проводится с помощью формул нахождения приращений и определения координат. Возможность и точность расчета координат точек зависит от корректности исходных данных, а также применяемой методики. Решение прямой геодезической задачи может осуществляться косвенными или прямыми методами.
Что касается первых, они являются весьма чувствительными к исходным данным и не работают при наличии значительных расстояний и изменений азимута, в частности, в северных широтах. Прямые же методы позволяют получить достаточно точные координаты по соотношениям сфероидической геодезии.
Обратная геодезическая задача.
В данном случае искомые величины рассчитываются с помощью вычисления румба и расстояния между заданными точками. При этом угол дирекции находится по четверти системы координат, в которой размещены искомые позиции.
Решение обратной геодезической задачи проводится с учетом знаков приращений. В свою очередь последние свойственны той или иной четверти. Правильность решения определяется сходимостью результатов вычислений, которые проводятся несколько раз в зависимости от свойств горизонтального проложения между расчетными точками.
Прямая и обратная геодез задачи
Геодезическая задача – математического вида задача, связаная с определением взаимного положения точек земной поверхности и подразделяется на прямую и обратную задачу.
Обратная геодезическая задача (ОГЗ) заключается в определении по геодезическим координатам двух точек на земном эллипсоиде длины и дирекционного угла направления между этими точками.
В зависимости от длины геодезической линии, соединяющей рассматриваемые точки, применяются различные методы и формулы, разработанные в геодезии. По размерам принятого земного эллипсоида (см. Эллипсоид Красовского) составляются таблицы, облегчающие решение геодезических задач и рассчитанные на использование определённой системы формул.
Для определения координат точки в прямой геодезической задаче обычно применяют формулы:
1) нахождения приращений :
2) нахождения координат :
В обратной геодезической задаче находят дирекционный угол и расстояние:
1) вычисляют румб по формуле :
2) находят дирекционный угол в зависимости от четверти угла :
3) определяют расстояние между точками :
Геодезическая задача в том и другом виде возникает при обработке полигонометрии и триангуляции, а также во всех тех случаях, когда необходимо определить взаимное положение двух точек по длине и направлению соединяющей их линии или же расстояние и направление между этими точками по их геодезическим координатам. В ряде случаев геодезические задачи решают в пространственных прямоугольных координатах по формулам аналитической геометрии в пространстве. В этих случаях вместо длины и дирекционного угла, соединяющей две точки, используют длину и пространственные компоненты направления прямой линии между этими точками.
Тахетрическая съемка
Тахеометрическая съемка – топографическая съемка, выполняемая с помощью теодолита или тахеометра и дальномерной рейки (вехи с призмой), в результате которой получают план местности с изображением ситуации и рельефа.
Тахеометрическая съемка выполняется самостоятельно для создания планов или цифровых моделей небольших участков местности в крупных масштабах (1: 500 – 1: 5000) либо в сочетании с другими видами работ, когда выполнение стереотопографической или мензульной съемокэкономически нецелесообразно или технически затруднительно. Ее результаты используют при ведении земельного или городского кадастра, для планировки населенных пунктов, проектирования отводов земель, мелиоративных мероприятий и т.д. Особенно выгодно ее применение для съемки узких полос местности при изысканиях трасс каналов, железных и автомобильных дорог, линий электропередач, трубопроводов и других протяженных линейных объектов.
Слово «тахеометрия» в переводе с греческого означает «быстрое измерение». Быстрота измерений при тахеометрической съемке достигается тем, что положение снимаемой точки местности в плане и по высоте определяется одним наведением трубы прибора на рейку, установленную в этой точке. Тахеометрическая съемка выполняется обычно с помощью технических теодолитов или тахеометров.
При использовании технических теодолитов сущность тахеометрической съемки сводится к определению пространственных полярных координат точек местности и последующему нанесению этих точек на план. При этом горизонтальный угол B между начальным направлением и направлением на снимаемую точку измеряется с помощью горизонтального круга, вертикальный угол v – вертикального круга теодолита, а расстояние до точки D – дальномером. Таким образом, плановое положение снимаемых точек определяется полярным способом (координатами в,d), а превышения точек – методом тригонометрического нивелирования.
Преимущества тахеометрической съемки по сравнению с другими видами топографических съемок заключаются в том, что она может выполняться при неблагоприятных погодных условиях, а камеральные работы могут выполняться другим исполнителем вслед за производством полевых измерений, что позволяет сократить сроки составления плана снимаемой местности. Кроме того, сам процесс съемки может быть автоматизирован путем использования электронных тахеометров, а составление плана или ЦММ – производить на базе ЭВМ и графопостроителей. Основным недостатком тахеометрической съемки является то, что составление плана местности выполняется в камеральных условиях на основании только результатов полевых измерений и зарисовок. При этом нельзя своевременно выявить допущенные промахи путем сличения плана с местностью.
Прямая и обратная геодезические задачи на плоскости.
Прямая геодезическая задача. По известным координатам х1 и у1 точки 1, дирекционному углу a1-2 и расстоянию d1-2 до точки 2 требуется вычислить ее координаты х2, у2.
Координаты точки 2 вычисляют по формулам (рис. 3.5):
(3.4)
(3.5)
Обратная геодезическая задача. По известным координатам х1, у1 точки 1 и х2, у2 точки 2 требуется вычислить расстояние между ними d1-2 и дирекционный угол a1-2.
Из формул (3.5) и рис. 3.5 видно, что
. (3.6)
Для определения дирекционного угла a1-2 воспользуемся функцией арктангенса. При этом учтем, что компьютерные программы и микрокалькуляторы выдают главное значение арктангенса
w =,
Рис. 3.6. Дирекционные углы и главные значения арктангенса в I, II, III и IV четвертях
Расстояние между точками вычисляют по формуле
(3.6)
или другим путем – по формулам
(3.7)
Программами решения прямых и обратных геодезических задач снабжены, в частности, электронные тахеометры, что дает возможность непосредственно в ходе полевых измерений определять координаты наблюдаемых точек, вычислять углы и расстояния для разбивочных работ.
Оставьте свой комментарий
Оставить комментарий от имени гостя
Комментарии
Закрепленные
Понравившиеся
Последние материалы
Заключение (Грунты)
При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8.
Представления о решении задач нелинейной механики грунтов
На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов.
Прочность грунтов при сложном напряженном состоянии
Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем.
Основные закономерности татического деформирования грунтов
За последние 15. 20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…
Упругопластическое деформирование среды и поверхности нагружения
Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…
Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний
При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…
Инварианты напряженного и деформированного состояний грунтовой среды
Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…
О коэффициентах устойчивости и сопоставление с результатами опытов
Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…
Давление грунта на сооружения
Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…
Несущая способность оснований
Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…
Процесс отрыва сооружений от оснований
Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…
Решения плоской и пространственной задач консолидации и их приложения
Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…
2.3. Прямая и обратная геодезические задачи
Время чтения: 3 минуты
2.3.1. Прямая геодезическая задача
2.3.2. Обратная геодезическая задача
2.3.1. Прямая геодезическая задача
В геодезии часто приходится передавать координаты с одной точки на другую. Например, зная исходные координаты точки А (рис.23), горизонтальное расстояние SAB от неё до точки В и направление линии, соединяющей обе точки (дирекционный угол αAB или румб rAB), можно определить координаты точкиВ. В такой постановке передача координат называется прямой геодезической задачей.
Рис. 23. Прямая геодезическая задача
Для точек, расположенных на сфероиде, решение данной задачи представляет значительные трудности. Для точек на плоскости она решается следующим образом.
Дано: Точка А( XA, YA ), SAB и αAB.
Найти: точку В( XB, YB ).
Непосредственно из рисунка имеем:
ΔX = XB – XA ;
Разности ΔX и ΔY координат точек последующей и предыдущей называются приращениями координат. Они представляют собой проекции отрезка АВ на соответствующие оси координат. Их значения находим из прямоугольного прямоугольника АВС:
ΔX = SAB · cos αAB ;
Так как в этих формулах SAB всегда число положительное, то знаки приращений координат ΔX и ΔY зависят от знаков cos αAB и sin αAB. Для различных значений углов знаки ΔX и ΔY представлены в табл.1.
Знаки приращений координат ΔX и ΔY
Приращения координат | Четверть окружности в которую направлена линия | |||
I (СВ) | II (ЮВ) | III (ЮЗ) | IV (СЗ) | |
ΔX | + | – | – | + |
ΔY | + | + | – | – |
При помощи румба приращения координат вычисляют по формулам:
ΔX = SAB · cos rAB ;
Знаки приращениям дают в зависимости от названия румба.
Вычислив приращения координат, находим искомые координаты другой точки:
XB = XA + ΔX ;
YB = YA + ΔY .
Таким образом можно найти координаты любого числа точек по правилу: координаты последующей точки равны координатам предыдущей точки плюс соответствующие приращения.
2.3.2. Обратная геодезическая задача
Обратная геодезическая задача заключается в том, что при известных координатах точек А( XA, YA ) и В( XB, YB ) необходимо найти длину SAB и направление линии АВ: румб rAB и дирекционный угол αAB (рис.24).
Рис. 24. Обратная геодезическая задача
Даннная задача решается следующим образом.
Сначала находим приращения координат:
ΔX = XB – XA ;
Величину угла rAB определем из отношения
= tg rAB
По знакам приращений координат вычисляют четверть, в которой располагается румб, и его название. Используя зависимость между дирекционными углами и румбами, находим αAB.
Для контроля расстояние SAB дважды вычисляют по формулам:
SAB= | ΔX | = | ΔY |
cos αAB | sin αAB |
SAB= | ΔX | = | ΔY |
cos rAB | sin rAB |
Расстояние SAB можно определить также по формуле
.
2.2. Дирекционные углы и осевые румбы, истинные и магнитные азимуты, зависимость между ними
2.4. Связь между дирекционными углами предыдущей и последующей линий