что такое обнизка на детали
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Появление трещин на литых корпусах цилиндров паровых турбин не исключает возможность дальнейшей эксплуатации турбины, но требует установления периодического контроля за развитием трещин и состоянием металла цилиндра.
1.2. Эксплуатация турбин с неустраненными трещинами литых корпусов цилиндров допускается до выхода трещин в критические точки, приводящие к нарушению плотности корпуса.
1.3. Критическими точками для корпусов цилиндров являются зоны шпилечных отверстий, контуры обнизки разъема фланцевого соединения и наружной поверхности корпуса.
В качестве примера критические точки ЦНД и ЦСД турбины К-200-130 указаны на рисунке 1.
1.4. Организация и проведение индивидуального контроля развития трещин литых корпусов цилиндров допускается только после заключения, выданного АООТ ВТИ или заводом-изготовителем.
2. ФИКСАЦИЯ РАЗМЕРОВ ТРЕЩИН
2.1. Поверхность зоны растрескивания зачищают от рыхлых отложений. Протяженность дефектов устанавливают визуальным контролем при увеличении в 5-7 раз и уточняют с помощью неразрушающих методов (МПД, УЗК, цветная дефектоскопия, токовихревой метод и т.д.).
2.3. Глубину трещины ( h m ) оценивают путем 3-5 сверлений диаметром 12- 15 мм в средней части зоны растрескивания. Допускается, при ориентировочном определении глубины дефектной зоны по ее протяженности ( l m ), использовать консервативное значение экспериментально найденного соотношения h m / l m = 0,2. Глубину трещины уточняют с помощью неразрушающих физических методов.
2.4. Поврежденность стенки детали ( w ) и эффективная толщина стенки ( h эф ) в миллиметрах, оставшаяся неповрежденной часть сечения, определяются по формулам
Протокол должен быть подписан начальником подразделения, осуществляющим наблюдение за состоянием металла энергооборудования ТЭС, и утвержден главным инженером ТЭС.
3. ОПРЕДЕЛЕНИЕ ПЕРИОДИЧНОСТИ КОНТРОЛЯ
3.1. Допустимая наработка до следующего контроля зоны распространения трещины определяется по таблице 1 в зависимости от степени поврежденности w стенки детали.
Степень поврежденности стенки детали, w
Максимальная допустимая наработка, тыс. ч
кернение или засверловка концов после выборки на глубину 10 мм в доступных местах
то же, отбор сколов и вырезок
выборка трещины в доступных местах и заварка по рекомендуемой технологии, отбор сколов и вырезок
3.2. В случае, если свойства металла не удовлетворяют требованиям п.4.2, периодичность контроля металла с поврежденностью до 0,5 не должна превышать 25 тыс. ч, а режим работы должен быть базовым.
4. ОПРЕДЕЛЕНИЕ ПРИЧИНЫ ПОВРЕЖДЕНИЯ КОРПУСА ПО КАЧЕСТВУ МЕТАЛЛА И ХАРАКТЕРУ ТРЕЩИН
4.2. Критериями оценки качества металла литого корпуса являются
4.2.1. Условный предел текучести при комнатной температуре:
для стали 15Х1М1ФЛ не менее 260 МПа;
4.2.3. Критическое раскрытие надреза при рабочей температуре и ударном нагружении ( приложение Б ).
4.3 Причину появления трещин устанавливают по их характеру, исследуемому на поперечных шлифах, изготовленных из сколов-лодочек треугольного сечения, продольная ось которых ориентирована вдоль трещины. При исследовании характера трещин следует обращать внимание на различие дефектов литейного и эксплуатационного происхождения. Литейные дефекты, как правило, имеют округлые края, заполненные окислами (рисунок 2 а). Эксплуатационные дефекты могут возникать по следующим причинам: термоусталости (рисунок 2 б), ползучести (рисунок 2 в), хрупкому сколу (рисунок 2 г ).
а) литейного происхождения; б) термоусталостные; в) ползучести; г) хрупкий скол
Для деталей, работающих в условиях ползучести, термоусталостное разрушение всегда сочетает в себе механизмы ползучести и усталости. Преобладающий механизм зависит от температуры эксплуатации, числа циклов и амплитуды термоциклического деформирования. При преобладании усталости трещины имеют преимущественно внутризеренный характер с переменным раскрытием, конец трещины заострен. При термическом ударе трещины приобретают вид скольных (при малопластичном металле). Если же металл достаточно пластичный, то в зоне распространения трещины наблюдаются участки сильно деформированной структуры.
После 100 тыс. ч эксплуатации характер развития трещин из-за разупрочнения и охрупчивания металла становится, как правило, межзеренным. Вдоль магистральной трещины в большом количестве наблюдаются межзеренные надрывы, что свидетельствует о большом влиянии процессов ползучести.
Для установления причин повреждения детали можно использовать градиент микротвердости у поверхности изломов. Градиент микротвердости (Г) рассчитывается по формуле:
Как правило, при термоусталостном характере трещин градиент микротвердости по мере приближения к поверхности излома возрастает.
Если металл вблизи трещины упрочнен, это свидетельствует о повышенных рабочих напряжениях, вызванных, возможно, отклонениями в режиме эксплуатации или недостатках в работе дренажной системы.
4.4. Анализ особенностей условий эксплуатации осуществляют путем сравнения наработки, числа пусков за год, суммарного числа пусков рабочих параметров среды на входе в цилиндр и продолжительности межремонтного срока у наблюдаемой турбины и у основной массы турбин (50-60 %) этого типа.
В таблице 2 приведены наиболее типичные данные для турбин К-200-130 (по данным ПО ЛМЗ) и К-100-90.
Число пусков за год
Суммарное число пусков
Температура пара, ° C
5. ПЕРИОДИЧЕСКИЙ КОНТРОЛЬ ПРОДВИЖЕНИЯ ФРОНТА ТРЕЩИНЫ И ОЦЕНКА ОСТАТОЧНОГО РЕСУРСА
5.1. Периодический контроль осуществляют после допустимой наработки, установленной в разделе 3, при останове турбины.
Пример системы периодического контроля представлен на рисунке 3.
5.2. Контроль без вскрытия корпуса цилиндра выполняют с помощью УЗК на патрубках верхних регулирующих клапанов ЦВД.
Допускается дополнять УЗК эндоскопированием через заглушаемые лючки. Эскизы обработки поверхности для установки лючков на корпусах высылает АООТ «ВТИ». Контроль ведут с помощью эндоскопа типа Э10.
5.3. При вскрытии корпуса цилиндра положение фронта трещины устанавливают визуальным контролем, а также с помощью цветной дефектоскопии.
5.4. При обнаружении увеличения длины трещины более чем на 40 мм на внутренней поверхности или более чем на 10 мм на поверхности фланцевого разъема, проводят оценку остаточного ресурса по фактической скорости роста трещины и ультразвуковой зондаж зоны предполагаемого развития трещины до критических точек.
5.5. Оценку остаточного ресурса выполняют по следующим правилам:
, мм/пуск (4)
, мм/ч (5)
По п.2.4 оценивают эффективную толщину стенки в месте растрескивания ( h эф ), а остаточный ресурс ( t р ) рассчитывают по формуле
Контроль выполняют прибором УД2-12 или другим аналогичным прибором по ОСТ 108.961.07.
Для контроля применяют пьезопреобразователь с углом ввода 40° на 1,8 МГц и нормальный пьезопреобразователь на 2,5 МГц. Настройка дефектоскопа согласно ГОСТ 14782, чувствительность настраивается по контрольному отражателю типа «Надпил» испытательного образца.
5.7 При величине остаточного ресурса (п.5.5) менее 14 тыс. ч с учетом результатов зондирования сплошности металла в зоне развития трещины (п.5.6), устанавливают систему непрерывного контроля за состоянием металла в зоне критических точек и вводят меры безопасности в зоне возможных сквозных разрушений: установка ограждений, кожухов, предупредительных знаков.
6. НЕПРЕРЫВНЫЙ КОНТРОЛЬ ЗА СОСТОЯНИЕМ МЕТАЛЛА КОРПУСА В КРИТИЧЕСКИХ ТОЧКАХ
Схема системы локального контроля в зоне фланцевого разъема представлена на рисунке 4.
6.2. Термопары монтируют на 2-4 шпильках ЦВД, симметрично расположенных по ходу пара у сопловых коробок. Горячий спай заводят в осевое сверление шпильки и опускают до уровня фланцевого разъема. Холодный спай выводят на показывающий измерительный прибор, размещенный на площадке у турбины.
6.4. Локальный контроль ведут в начале каждой смены и в конце во время стационарного режима путем записи показаний приборов по уровням температуры и давлений.
Показания приборов не должны превышать следующие нормы:
Необходимо учитывать, что признаком отказа может быть и неодновременное появление этих отклонений. В случае устойчивого сохранения увеличения давления или температуры следует поставить в известность сменного инженера и далее вести запись показаний приборов чаще. При стабильном росте температуры (на 15° по отношению к штатным термопарам) и давления (до 0,7-0,8 МПа), решают вопрос об остановке и вскрытии турбины.
6.5 После выхода трещины в одну из критических точек, разрабатывают мероприятия конструктивно-технологического характера, позволяющие обеспечить плотность корпуса (наплавки, заварки и т.д.). С их помощью эксплуатация корпуса продлевается еще на 10-15 лет.
Приложение А
(рекомендуемое)
Главный инженер ___________ (ТЭС)
«___»______________ 19___ г.
ПРОТОКОЛ
визуального обследования корпусной детали (наименование) с трещиной турбины (тип и станционный номер)
Наименование зоны, поверхности
Размеры трещины, мм
Размеры выборки в доступных местах, мм
Интервал наработки возникновения трещины
Толщина стенки в зоне трещины, мм
Срок следующего контроля установить ___________________________________________
Приложение Б
МЕТОД
определения критического раскрытия надреза и горячей твердости металла литых корпусных деталей турбин из сталей 20ХМФЛ, 20ХМЛ и 15Х1М1ФЛ, отработавших расчетный срок
Б.1 Подготовка образца
Б.2 Определение величины критического раскрытия надреза
Испытания при рабочей температуре выполняются по ГОСТ 9456. Температура испытания должна быть равна температуре пара на входе в корпус.
а) до испытания, б) после испытания
Измерение критического раскрытия
Кроме того, при неудовлетворительной локальной пластичности в микроструктуре наблюдается 50 и более процентов участков с бейнитной ориентацией.
Величину критического раскрытия определяют по неразрушенному надрезу как разность между шириной дна надреза после испытания и его начальной шириной.
Если после испытания в дне надреза не будет трещин, то измерение конечной ширины надреза проводят идентично измерению в исходном состоянии. Если же по надрезу произошло частичное разрушение образца, то при измерении не включают в ширину надреза зазоры, образующиеся при распространении трещины. Это облегчается тем, что благодаря прямоугольному профилю надрезов, надрывы локализуются в углах сопряжения дна и стенок надреза. Для облегчения обнаружения надрывов по дну надреза следует использовать различие в цвете у деформированного дна надреза и у поверхности распространения трещин, измеряя только темные участки, то есть только дно надреза.
Значение критического раскрытия определяется по формуле:
При выполнении всех требований точность определения раскрытия составляет не менее ±15 %.
Измерение ширины надреза после испытания включает определение угла поворота дна надреза относительно горизонтали a и величины проекции дна надреза на горизонталь h
ПЕРЕЧЕНЬ
нормативных документов, на которые имеются ссылки в РД 34.17
Цилиндр паровой турбины
Изобретение относится к турбостроению и может быть использовано для продления ресурса цилиндров среднего и высокого давления.
Для продления ресурса высокотемпературного ротора паровой турбины путем снижения температуры высоконагруженных участков диска первой ступени ротора среднего давления после промперегрева думмиса применяются системы охлаждения.
Известна, например, система охлаждения РСД турбин К-300-240 ЛМЗ паром, взятом из первого отбора ЦВД и подводимым спереди и сзади первого диска РСД (В. С. Шаргородский и др. Устройство для охлаждения ротора паровой турбины, а.с. N 1673734, F 01 D 5/08, 1989). При этом достигается снижение температуры металла диска первой ступени.
Организация обогрева фланцев позволяет уменьшить время прогрева цилиндра паровой турбины, например, высокого или среднего давления после промперегрева, уменьшить относительные расширения в проточной части.
Известно устройство обогрева фланцев цилиндра среднего давления турбины Т-250/300-240 ТМЗ или К-300-240 ЛМЗ (см., например, Левченко Б.Л. Режимные испытания мощных паровых турбин. М.: НИИинформатяжмаш, 1965, стр.56), где к фланцам приварены тонкостенные короба полуцилиндрового профиля. Однако, при этом, поскольку фланцы массивные, они прогреваются значительно медленнее, чем тонкостенные короба, что может привести к нежелательным температурным деформациям.
Известно устройство цилиндра паровой турбины с обогревом фланцевых соединений корпуса (см. Паровая турбина К-300-240 ХТРЗ. М.: Энергоиздат, 1982, стр. 3-7, стр. 30, рис. 3-1), включающее диски и диафрагмы ступеней, корпус с фланцами горизонтального разъема, имеющий опорные выступы в нижней половине, камеру между обоймами уплотнения, камеру между диском I ступени и передней обоймой концевого уплотнения думмиса, камеру между диафрагмой II ступени и диском I ступени. По нижнему краю обнизки выполнены вертикальные отверстия, соединенные с обнизкой, и горизонтальные отверстия, соединяющие коллекторы подачи пара с отверстиями под шпильки. По совокупности признаков это решение является наиболее близким к предлагаемому и выбрано в качестве прототипа.
Целью предлагаемого изобретения является повышение надежности и экономичности устройства за счет уменьшения перепадов температур и относительных перемещений между корпусом и ротором.
Указанная цель достигается за счет того, что в цилиндре паровой турбины, включающем диски и диафрагмы ступеней, корпус с фланцами горизонтального разъема, имеющий опорные выступы в нижней половине и обнизки на стыках разъема, отверстия под шпильки, отверстия во фланцах по внешнему краю обнизки, сообщенные с коллектором подачи пара к фланцам, камеру между обоймами уплотнения, камеру между диском I ступени и передней обоймой концевого уплотнения думмиса, камеру между диафрагмой II ступени и диском I ступени, согласно изобретению по внутреннему краю обнизки выполнены отверстия, расположенные между отверстиями под шпильки и сообщенные с коллектором подачи пара, у внутреннего края разъема у каждой из упомянутых камер выполнены отверстия, сообщенные с устройствами раздачи пара, расположенными в камерах, за третьей камерой со стороны II ступени в обнизке выполнена перегородка, причем по внешнему краю обнизки выполнен паз, соединяющий внешние отверстия между собой, и пазы, соединяющие этот паз с отверстиями у первой и второй камер, а в опорном выступе со стороны I ступени вблизи стыка разъема выполнен ряд сквозных отверстий, равномерно расположенных по ширине выступа и соединенных по входу с коллекторами подачи воды, а по выходу коллектором отвода воды через теплообменник, установленный на коллекторе подачи пара, со сборником воды.
Соединение обнизки на фланцах корпуса дополнительными пазами и отверстиями с камерами перед и за диском рабочего колеса первой ступени позволяет совместить систему охлаждения ротора с системой охлаждения корпуса, и, таким образом, согласовать тепловые расширения корпуса и ротора, уменьшить их разницу, а кроме того, и упростить подвод охлаждающего пара в устройство охлаждения ротора, т.к. не требуется проводить коллекторы подвода охлаждающего пара через стенку корпуса.
Выполнение отверстий в опорных выступах (лапах) фланцев, соединенных по входу с подводом охлаждающей воды, позволяет снизить температуру опорных лап, таким образом уменьшить расширение фланцев корпуса и улучшить тепловое состояние подшипника, на который опираются лапы цилиндра.
Присоединение отверстий в опорных выступах (лапах) по выходу с устройством подвода пара к фланцам позволяет регулировать, изменять температуру, уменьшить расход этого пара. Наличие промежуточного теплообменника позволит при этом использовать для охлаждения опорных лап и пара, подаваемого к фланцам, воду, давление которой меньше, чем давлением пара. Таким образом, совокупность заявляемых признаков позволяет повысить надежность цилиндра за счет согласования тепловых расширений ротора и корпуса и при этом уменьшить расход охлаждающего пара и повысить его экономичность.
Корпус цилиндра имеет фланцы горизонтального разъема 8 и 9 соответственно верхней 3 и нижней 4 половин с опорными выступами 10. По стыкам фланцев 8, 9 выполнены обнизки 11, 12 и обнизка участка разъема пониженного давления 13. На внешнем крае обнизок 11 и 12 имеются вертикальные отверстия 14, соединенные горизонтальными отверстиями 15 с коллекторами 16 и 17. По внутреннему краю обнизок 11 и 12 выполнены дополнительные отверстия 18 и 19, расположенные между отверстиями под шпильки и соединенные горизонтальными отверстиями 20 с коллекторами 16 и 17, причем отверстие 19 расположено у камеры 21 между диском 2 и диафрагмой II ступени 22. По наружному краю обнизки 12 выполнен паз 23, объединяющий отверстия 14, у внутреннего края разъема выполнены дополнительные отверстия 24, расположенные у камеры 25 между обоймами уплотнения 6 и 7, и отверстие 26, расположенное у камеры 27 между диском 2 и обоймой 7. Отверстия 19, 24 и 26 соединены горизонтальными отверстиями 28 с устройствами раздачи пара 29, 30 и 31 соответственно, расположенными в камерах 21, 25 и 27 соответственно, причем отверстия 24 и 26 соединены дополнительными пазами 32 и 33 с внешним пазом 23. За камерой 21 со стороны диафрагмы II ступени между обнизками 11, 12 и обнизкой 13 выполнена перегородка 34, отсекающая обнизки пониженного давления 13. В опорных выступах 10 со стороны I ступени вблизи стыка разъема выполнен ряд сквозных отверстий 35, равномерно расположенных по ширине выступа и соединенных по входу с коллектором подачи воды 36, а по выходу коллектором отвода воды 37 с теплообменником 38, установленным перед коллекторами 16 и 17 и соединенным со сборником воды.
Устройство работает следующим образом. Во время работы турбины с включенной системой охлаждения охлаждающая вода, например, после конденсатного насоса подается по коллекторам 36 в отверстия 35 опорных выступов 10 фланцев 9 нижней половины корпуса 4, охлаждает их, подогревается, подводится по коллекторам 37 в теплообменник 38. К теплообменнику 38, например, из отбора ЦВД подводится пар, который затем по коллекторам 16 и 17 подается через горизонтальные отверстия 15, 20 в отверстия 14, 18 и 19, охлаждая толщу фланцев 8 и 9 и через них верхнюю половину корпуса 3 и нижнюю 4. Пар из отверстий 14 заполняет пазы 23, проходит по ним, по пути дополнительно охлаждая фланцы 8 и 9, часть пара по пазу 33 попадает в вертикальные отверстия 24, из них через отверстия 28 подается в устройство 30, раздающее пар по окружности камеры 25, охлаждая переднюю 6 и заднюю 7 обоймы концевого уплотнения и думмис 5 ротора 1.
Другая часть пара по пазу 32 проходит к вертикальным отверстиям 26, из них через горизонтальные отверстия 28 подается в устройство раздачи пара 31 и раздается по окружности камеры 27, охлаждая думмис 5 и диск 2 первой ступени ротора 1. Третья часть пара, проходя через обнизки 11 и 12, вертикальные отверстия 19, горизонтальные отверстия 28, подается в устройство раздачи пара 29 и раздается по нему в камеру 21 за диском 2 первой ступени, проходя через каналы /не показано/ в диафрагме 22 второй ступени, охлаждая диск 2 первой ступени. Охлаждающий пар из обнизок 11 и 12 не попадает в обнизки пониженного давления 13 фланцев 8, 9, преграждаемый перегородкой 34, что предотвращает излишнюю утечку пара.
Таким образом, предлагаемое устройство цилиндра паровой турбины обеспечивает повышение его надежности, увеличение ресурса работы и экономичности системы охлаждения. Выполнение дополнительных отверстий и пазов во фланце и обнизке, использование их для подачи пара на охлаждение ротора позволит согласовать тепловые расширения корпуса и ротора, уменьшит их разницу, упростит подвод охлаждающего пара к ротору. Выполнение отверстий в опорных выступах фланцев с подводами в них охлаждающей воды позволяет снизить температуру опорных лап, уменьшить таким образом расширение корпуса и улучшить тепловое состояние опорного подшипника, присоединение отверстий в опорных лапах по выходу с устройством подвода пара к фланцам позволяет изменять температуру его, уменьшить расход этого пара.
Использование предлагаемого решения предполагается в цилиндрах среднего давления турбин типа К-300-240, К-210-130 АО ЛМЗ.
обнизь
Смотреть что такое «обнизь» в других словарях:
Оклад иконы — Для термина «Оклад» см. другие значения. Для термина «Риза» см. другие значения. Оклад списка иконы Владимирской Божьей матери. Г … Википедия
Оклад (риза) — Запрос «Оклад» перенаправляется сюда. Cм. также другие значения. У термина «Риза» существуют и другие значения. Оклад иконы типа Владимирской Божьей матери. ГИМ, XVII в. Риза, или оклад (в южных и западных областях России шата, цата[1], греч … Википедия
Риза (икона) — Запрос «Оклад» перенаправляется сюда. Cм. также другие значения. У термина «Риза» существуют и другие значения. Оклад иконы типа Владимирской Божьей матери. ГИМ, XVII в. Риза, или оклад (в южных и западных областях России шата, цата[1], греч … Википедия
Риза (оклад) — Запрос «Оклад» перенаправляется сюда. Cм. также другие значения. У термина «Риза» существуют и другие значения. Оклад иконы типа Владимирской Божьей матери. ГИМ, XVII в. Риза, или оклад (в южных и западных областях России шата, цата[1], греч … Википедия
ОБНИЗЫВАТЬ — ОБНИЗЫВАТЬ, обнизать что чем, нанизать кругом, вкруг чего, украшать низаньем. Бархатная накладка, обнизанная бусами. Всякая травинка обнизана жемчужными росинками. | Кого, опередить, перегнать нижучи взапуски. ся, быть обнизываему; | сделать… … Толковый словарь Даля
ОЖЕРЕЛЬНИК — ОЖЕРЕЛЬНИК, ожерелок муж. (жерло и горло) жерелок, всякого рода ошейник, что лежит вкруг шеи; астрах. ошейник на скотину, собаку; архан. галстук; шейный платок; архан. меховой воротник, особенно женский; ниж. женский ошейник, монисто, ожерелье; | … Толковый словарь Даля
Вознесенский монастырь (Барколабово) — Вознесенский монастырь в селе Барколабово (Могилевская область) действующий православный женский монастырь Белорусского экзархата Русской православной церкви. Монастырь входит в состав Бобруйской и Быховской епархии. Расположен в восьми… … Википедия
ожереліе — Ожерелие ожереліе (1) 1. Часть одежды, облегающая горло; воротник: Не бысть ту брата Брячяслава, ни другаго Всеволода: единъ же изрони жемчюжну душу изъ храбра тѣла чресъ злато ожереліе. 34. Есть бо видѣти исполненомъ домомъ велможь их таковы и… … Словарь-справочник «Слово о полку Игореве»
БОРКОЛАБОВСКАЯ ИКОНА БОЖИЕЙ МАТЕРИ — [Баркулабовская, Барколабовская] (празд. 11 июля), чудотворный образ, получивший название по своему местонахождению в Борколабовском в честь Вознесения Господня жен. мон ре в с. Борколабове Быховского р на Могилёвской обл. (Республика Беларусь).… … Православная энциклопедия
ЕПИТРАХИЛЬ — с «Великим Деисусом». 2 я пол. XIV в. (мон рь ап. Иоанна Богослова на Патмосе) Епитрахиль с «Великим Деисусом». 2 я пол. XIV в. (мон рь ап. Иоанна Богослова на Патмосе) [греч. ἐπιτραχήλιον, букв. (облачение, лежащее) на шее; в источниках… … Православная энциклопедия
ОБНИЗЫВАТЬ
Смотреть что такое «ОБНИЗЫВАТЬ» в других словарях:
ОБНИЗЫВАТЬ — ОБНИЗЫВАТЬ, обнизываю, обнизываешь (разг.). несовер. к обнизать. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
Обнизывать — несов. перех. разг. 1. Нанизывая, украшать что либо сплошь или кругом (обычно бисером, жемчугом и т.п.). 2. перен. Украшать чем либо в чрезмерном количестве. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
обнизывать — обн изывать, аю, ает … Русский орфографический словарь
обнизывать — (I), обни/зываю, ваешь, вают … Орфографический словарь русского языка
обнизывать(ся) — об/низ/ыва/ть(ся) … Морфемно-орфографический словарь
обниза́ть — нижу, нижешь; прич. страд. прош. обнизанный, зан, а, о; сов., перех. (несов. обнизывать). разг. Нанизывая (бисер, жемчуг и т. п.), покрыть что л. сплошь, со всех сторон; унизать. Обнизать сумочку бисером … Малый академический словарь
обни́зываться — ается; несов. страд. к обнизывать … Малый академический словарь
ОБНИЗАТЬ — ОБНИЗАТЬ, обнижу, обнижешь, совер. (к обнизывать), что (разг.). 1. что. Нанизывая, усеять сплошь или кругом. Обнизать ленту бисером. 2. перен. Украсить, обвесить чем нибудь. «Обнизан вкруг перстнями и часами.» Крылов. Толковый словарь Ушакова.… … Толковый словарь Ушакова
ОБНИЗЫВАТЬСЯ — ОБНИЗЫВАТЬСЯ, обнизываюсь, обнизываешься, несовер. (разг.). страд. к обнизывать. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
Обнизать — сов. перех. разг. см. обнизывать Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой