что такое нормализация отношений в базе данных
Нормализация баз данных простыми словами
Приветствую всех посетителей сайта Info-Comp.ru! Сегодня мы с Вами поговорим о нормализации базы данных, узнаем, что это такое, какие нормальные формы базы данных существуют и зачем вообще проводить нормализацию базы данных.
Постоянные посетители данного сайта знают, что я здесь публикую достаточно много различных материалов, связанных с языком SQL и системами управления базами данных, однако статей, связанных с теорией баз данных, на текущий момент, к сожалению, нет, поэтому я решил это исправить, и начать цикл статей, посвященных теории баз данных.
Начну я с нормализации баз данных. В этом материале мы поговорим в целом о процессе нормализации, узнаем, зачем проводить нормализацию базы данных, что такое нормальная форма базы данных, а также какие нормальные формы существуют. В следующих материалах я подробно и с примерами расскажу про каждую нормальную форму.
Реляционная база данных
В целом под базой данных можно понимать любой набор информации, которую можно найти в этой базе данных и воспользоваться ей, однако если говорить в контексте SQL, то речь будет идти, конечно, о реляционных базах данных, а что же это такое?
Реляционная база данных – это упорядоченная информация, связанная между собой определёнными отношениями.
Логически такая база данных представлена в виде таблиц, в которых и лежит вся эта информация.
Примечание! Если Вас интересует язык SQL, рекомендую пройти мой онлайн-курс по основам SQL, который ориентирован на изучение SQL как стандарта, таким образом, Вы сможете работать в любой системе управления базами данных. Курс включает много практики: онлайн-тестирование, задания и многое другое.
Нормализация баз данных
В реляционных базах данных есть такое понятия, как «Нормализация».
Нормализация – это процесс удаления избыточных данных.
Также нормализацию можно рассматривать и с позиции проектирования базы данных, в таком случае мы можем сформулировать определение нормализации следующим образом.
Нормализация – это метод проектирования базы данных, который позволяет привести базу данных к минимальной избыточности.
Избыточность устраняется, как правило, за счёт декомпозиции отношений (таблиц), т.е. разбиения одной таблицы на несколько.
Зачем нормализовать базу данных?
У Вас может возникнуть вопрос – а зачем вообще нормализовать базу данных и бороться с этой избыточностью?
Дело в том, что избыточность данных создает предпосылки для появления различных аномалий, снижает производительность, и делает управление данными не гибким и не очень удобным. Отсюда можно сделать вывод, что нормализация нужна для:
Теперь давайте поговорим о самой избыточности данных, что же это такое.
Избыточность данных – это когда одни и те же данные хранятся в базе в нескольких местах, именно это и приводит к аномалиям.
Так как в этом случае необходимо добавлять, изменять или удалять одни и те же данные в нескольких местах. Например, если не выполнить операцию в каком-нибудь одном месте, то возникает ситуация, когда одни данные не соответствуют вроде как точно таким же данным в другом месте.
Давайте рассмотрим пример. Допустим, у нас есть следующая таблица, она хранит информацию о предметах мебели, в частности наименование предмета и материал, из которого изготовлен этот предмет.
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Массив дерева |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
А теперь допустим, что у нас возникла необходимость подкорректировать название материала, вместо «Массив дерева» нужно написать «Натуральное дерево», и чтобы это сделать нам необходимо внести изменения сразу в несколько строк, так как предметов, изготовленных из массива дерева, несколько, а именно 2: стол и шкаф.
А теперь представьте, что по каким-то причинам мы внесли изменения только в одну строку, в итоге в нашей таблице будет и «Массив дерева», и «Натуральное дерево».
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Натуральное дерево |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
Какое из этих названий будет правильным? А если представить, что мы можем внести еще какое-то новое значение при добавлении новых записей, например, просто «Дерево».
В этом случае в нашей таблице в скором времени будет и «Массив дерева», и «Натуральное дерево», и просто «Дерево», и вообще, что угодно, ведь это просто текст.
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Натуральное дерево |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
6 | Тумба | Дерево |
Однако по своей сути это один и тот же материал, мы просто решили или подкорректировать его название, или ошиблись при добавлении новой записи. Это и есть аномалия, когда одни данные в одном месте не соответствуют вроде как точно таким же данным в другом месте. Это всего лишь один вид аномалии, однако в процессе добавления, изменения и удаления данных может возникать много других противоречивых ситуаций, т.е. аномалий.
При этом, обязательно стоит отметить, что в нашей таблице всего 5 записей, а теперь представьте, что их миллион!
Именно поэтому мы должны устранять избыточность данных в базе, т.е. проводить так называемую нормализацию базы данных.
В данном конкретном случае мы должны название материала, из которого изготовлены предметы мебели, вынести в отдельную таблицу, а в таблице с предметами сделать всего лишь ссылку на нужный материал, тем самым, соотнеся эту ссылку с исходной записью, мы будем понимать, из какого материала сделан тот или иной предмет.
Идентификатор предмета | Наименование предмета | Идентификатор материала |
1 | Стул | 2 |
2 | Стол | 1 |
3 | Кровать | 3 |
4 | Шкаф | 1 |
5 | Комод | 3 |
Материалы, из которых изготовлены предметы мебели.
Идентификатор материала | Материал |
1 | Массив дерева |
2 | Металл |
3 | ЛДСП |
В этом случае когда нам потребуется изменить название материала, мы будем вносить изменение только в одном месте, т.е. править только одну строку.
Таким образом, представляя материалы в виде отдельной сущности и создавая для нее отдельную таблицу, мы устраняем описанную выше аномалию.
Другими словами, каждая сущность должна храниться отдельно, а в случае необходимости использования этой сущности в другой таблице на нее делается всего лишь ссылка, т.е. выстраивается связь.
Нормальные формы базы данных
В целом процесс нормализации базы данных выглядит следующим образом: мы, следуя определённым правилам и соблюдая определенные требования, проектируем таблицы в базе данных.
При этом все эти правила и требования можно сгруппировать в несколько наборов, и если спроектировать базу данных с соблюдением всех правил и требований, которые включаются в тот или иной набор, то база данных будет находиться в определённом состоянии, т.е. форме, и такая форма называется нормальная форма базы данных.
Иными словами, следуя определённым правилам и соблюдая определенные требования мы приводим базу данных к определенной нормальной форме.
Нормальная форма базы данных – это набор правил и критериев, которым должна отвечать база данных.
Каждая следующая нормальная форма содержит более строгие правила и критерии, тем самым приводя базу данных к определённой нормальной форме мы устраняем определённый набор аномалий.
Отсюда можно сделать вывод, что чем выше нормальная форма, тем меньше аномалий в базе будет.
Процесс нормализации – это последовательный процесс приведения базы данных к эталонному виду, т.е. переход от одной нормальной формы к следующей.
Иными словами, процесс перехода от одной нормальной формы к следующей – это усовершенствование базы данных. Так как если база данных находится в какой-то определённой нормальной форме – это означает, что в базе данных отсутствует определенный вид аномалий.
Существует 5 основных нормальных форм базы данных:
Однако выделяют еще дополнительные нормальные формы:
Если объединить оба этих списка и упорядочить нормальные формы от менее нормализованной до самой нормализованной, т.е. начиная с формы, при которой база данных по своей сути не является нормализованной, и заканчивая самой строгой нормальной формой, то мы получим следующий перечень:
База данных считается нормализованной, если она находится как минимум в третьей нормальной форме (3NF).
В реальном мире нормализация до третьей нормальной формы (3NF) является обычной, стандартной практикой, так как 3NF устраняет достаточное количество аномалий, при этом производительность базы данных, а также удобство ее использования не снижается, что нельзя сказать о всех последующих формах.
Ситуации, при которых требуется нормализовать базу данных до четвертой нормальной формы (4NF), в реальном мире встречаются достаточно редко.
Заметка! Если Вас интересует язык SQL, рекомендую почитать мою книгу «SQL код», которая ориентирована на изучение SQL как стандарта, после прочтения книги Вы сможете писать SQL запросы в любой системе управления базами данных.
Если говорить о всех последующих нормальных формах (5NF, DKNF, 6NF), то в реальной жизни трудно даже представить ситуации, при которых потребуется нормализовать базу данных до этих форм.
Иными словами, 5NF, DKNF, 6NF – это в большей степени теоретические нормальные формы, немного отстраненные от реального мира.
Стоит отметить, что приведение базы данных к какой-то конкретной нормальной форме, обязательно требует, чтобы эта база данных уже находилась в предыдущей нормальной форме. Другими словами, если Вы хотите нормализовать базу данных до третьей нормальной формы, то база уже должна находиться во второй нормальной форме, т.е. нельзя нормализовать базу данных до третьей формы, если она еще не нормализована до второй.
Описание нормальных форм базы данных
В следующих статьях представлено подробное описание каждой нормальной формы и приведены примеры.
На сегодня это все, надеюсь, материал был Вам полезен и интересен, пока!
Руководство по проектированию реляционных баз данных (10-13 часть из 15) [перевод]
Продолжение.
Предыдущие части: 1-3, 4-6, 7-9
10. Нормализация баз данных
Указания для правильного проектирования реляционных баз данных изложены в реляционной модели данных. Они собраны в 5 групп, которые называются нормальными формами. Первая нормальная форма представляет самый низкий уровень нормализации баз данных. Пятый уровень представляет высший уровень нормализации.
Вот некоторые из основных пунктов, которые связаны с нормализацией баз данных:
Очень малое количество баз данных следуют всем пяти нормальным формам, предоставленным в реляционной модели данных. Обычно базы данных нормализуются до второй или третьей нормальной формы. Четвертая и пятая формы используются редко. Поэтому я ограничусь тем, чтобы рассказать вам лишь о первых трех.
11. Первая нормальная форма (1НФ)
Первая нормальная форма гласит, что таблица базы данных – это представление сущности вашей системы, которую вы создаете. Примеры сущностей: заказы, клиенты, заказ билетов, отель, товар и т.д. Каждая запись в базе данных представляет один экземпляр сущности. Например, в таблице клиентов каждая запись представляет одного клиента.
Первичный ключ.
Правило: каждая таблица имеет первичный ключ, состоящий из наименьшего возможного количества полей.
Как вы знаете, первичный ключ может состоять из нескольких полей. Вы, к примеру, можете выбрать имя и фамилию в качестве первичного ключа (и надеяться, что эта комбинация будет уникальной всегда). Будет намного более хорошим выбором номер соц. Страхования в качестве первичного ключа, т.к. это единственное поле, которое уникальным образом идентифицирует человека.
Еще лучше, когда нет очевидного кандидата на звание первичного ключа, создайте суррогатный первичный ключ в виде числового автоинкрементного поля.
Атомарность.
Правило: поля не имеют дубликатов в каждой записи и каждое поле содержит только одно значение.
Возьмем, например, сайт коллекционеров автомобилей, на котором каждый коллекционер может зарегистрировать его автомобили. Таблица ниже хранит информацию о зарегистрированных автомобилях.
Горизонтальное дублирование данных – плохая практика.
С таким вариантом проектирования вы можете сохранить только пять автомобилей и если у вас их менее 5, то вы тратите впустую свободное место в базе данных на хранение пустых ячеек.
Другим примером плохой практики при проектировании является хранение множественных значений в ячейке.
Множественные значения в одной ячейке.
Верным решением в данном случае будет выделение автомобилей в отдельную таблицу и использование внешнего ключа, который ссылается на эту таблицу.
Порядок записей не должен иметь значение.
Правило: порядок записей таблицы не должен иметь значения.
Вы можете быть склонны использовать порядок записей в таблице клиентов для определения того, какой из клиентов зарегистрировался первым. Для этих целей вам лучше создать поля даты и времени регистрации клиентов. Порядок записей будет неизбежно меняться, когда клиенты будут удаляться, изменяться или добавляться. Вот почему вам никогда не следует полагаться на порядок записей в таблице.
В следующей части рассмотрим вторую нормальную форму (2НФ).
12. Вторая нормальная форма.
Для того, чтобы база данных была нормализована согласно второй нормальной форме, она должна быть нормализована согласно первой нормальной форме. Вторая нормальная форма связана с избыточностью данных.
Избыточность данных.
Правило: поля с не первичным ключом не должны быть зависимы от первичного ключа.
Может звучать немного заумно. А означает это то, что вы должны хранить в таблице только данные, которые напрямую связаны с ней и не имеют отношения к другой сущности. Следование второй нормальной форме – это вопрос нахождения данных, которые часто дублируются в записях таблицы и которые могут принадлежать другой сущности.
Дублирование данных среди записей в поле store.
Таблица выше может принадлежать компании, которая продает автомобили и имеет несколько магазинов в Нидерландах.
Если посмотрите на эту таблицу, то вы увидите множественные примеры дублирования данных среди записей. Поле brand могло бы быть выделено в отдельную таблицу. Также, как и поле type (модель), которое также могло бы быть выделено в отдельную таблицу, которая бы имела связь многие-к-одному с таблицей brand потому, что у бренда могут быть разные модели.
Колонка store содержит наименование магазина, в котором в настоящее время находится машина. Store – это очевидный пример избыточности данных и хороший кандидат для отдельной сущности, которая должна быть связана с таблицей автомобилей связью по внешнему ключу.
Ниже пример того, как бы вы моги смоделировать базу данных для автомобилей, избегая избыточности данных.
В примере выше таблица car имеет внешний ключ – ссылку на таблицы type и store. Столбец brand исчез потому, что на бренд есть неявная ссылка через таблицу type. Когда есть ссылка на type, есть ссылка и на brand, т.к. type принадлежит brand.
Избыточность данных была существенным образом устранена из нашей модели базы данных. Если вы достаточно придирчивы, то вы, возможно, еще не удовлетворены этим решением. А как насчет поля country_of_origin в таблице brand? Пока дубликатов нет потому, что есть только четыре бренда из разных стран. Внимательный разработчик базы данных должен выделить названия стран в отдельную таблицу country.
И даже сейчас вы не должны быть удовлетворены результатом потому, что вы также могли бы выделить поле color в отдельную таблицу.
Насколько строго вы подходите к созданию ваших таблиц – решать вам и зависит от конкретной ситуации. Если вы планируете хранить огромное количество единиц автомобилей в системе и вы хотите иметь возможность производить поиск по цвету (color), то было бы мудрым решением выделить цвета в отдельную таблицу так, чтобы они не дублировались.
Существует другой случай, когда вы можете захотеть выделить цвета в отдельную таблицу. Если вы хотите позволить работникам компании вносить данные о новых автомобилях вы захотите, чтобы они имели возможно выбирать цвет машины из заранее заданного списка. В этом случае вы захотите хранить все возможные цвета в вашей базе данных. Даже если еще нет машин с таким цветом, вы захотите, чтобы эти цвета присутствовали в базе данных, чтобы работники могли их выбирать. Это определенно тот случай, когда вам нужно выделить цвета в отдельную таблицу.
13. Третья нормальная форма.
Третья нормальная форма связана с транзитивными зависимостями. Транзитивные зависимости между полями базы данных существует тогда, когда значения не ключевых полей зависят от значений других не ключевых полей. Чтобы база данных была в третьей нормальной форме, она должна быть во второй нормальной форме.
Транзитивные зависимости.
Правило: не может быть транзитивных зависимостей между полями в таблице.
Таблица клиентов (мои клиенты – игроки немецкой и французской футбольной команды) ниже содержит транзитивные зависимости.
В этой таблице не все поля зависят исключительно от первичного ключа. Существует отдельная связь между полем postal_code и полями города (city) и провинции (province). В Нидерландах оба значение: город и провинция – определяются почтовым кодом, индексом. Таким образом, нет необходимости хранить город и провинцию в клиентской таблице. Если вы знаете почтовый код, то вы уже знаете город и провинцию.
Такая транзитивной зависимости следует избегать, если вы хотите, чтобы ваша модель базы данных была в третьей нормальной форме.
В данном случае устранение транзитивной зависимости из таблицы может быть достигнуто путем удаления полей города и провинции из таблицы и хранение их в отдельной таблице, содержащей почтовый код (первичный ключ), имя провинции и имя города. Получение комбинации почтовый код-город-провинция для целой страны может быть весьма нетривиальным занятием. Вот почему такие таблицы зачастую продаются.
Другим примером для применения третьей нормальной формы может служить (слишком) простой пример таблицы заказов интернет-магазина ниже.
НДС (value added tax) – это процент, который добавляется к цене продукта (19% в данной таблице). Это означает, что значение total_ex_vat может быть вычислено из значения total_inc_vat и vice versa. Вы должны хранить в таблице одно из этих значений, но не оба сразу. Вы должны возложить задачу вычисления total_inc_vat из total_ex_vat или наоборот на программу, которая использует базу данных.
Третья нормальная форма гласит, что вы не должны хранить данные в таблице, которые могут быть получены из других (не ключевых) полей таблицы. Особенно в примере с таблицей клиентов следование третьей нормальной форме требует либо большого объема работы, либо приобретения коммерческой версии данных для такой таблицы.
Третья нормальная форма не всегда используется при проектировании баз данных. Когда разрабатываете базу данных вы всегда должны сравнивать преимущества от более высокой нормальной формы в сравнении с объемом работ, которые требуются для применения третьей нормальной формы и поддержания данных в таком состоянии. В случае с клиентской таблицей лично я бы предпочел не нормализовать таблицу до третьей нормальной формы. В последнем примере с НДС я бы использовал третью нормальную форму. Хранение данных, воспроизводимых из существующих, обычно плохая идея.
Описание основ нормализации базы данных
Office 365 ProPlus переименован в Майкрософт 365 корпоративные приложения. Для получения дополнительной информации об этом изменении прочитайте этот блог.
Исходный номер КБ: 283878
В этой статье объясняется терминология нормализации баз данных для начинающих. Базовое понимание этой терминологии полезно при обсуждении разработки реляционной базы данных.
Описание нормализации
Нормализация — это процесс организации данных в базе данных. Это включает создание таблиц и установление связей между этими таблицами в соответствии с правилами, предназначенными как для защиты данных, так и для того, чтобы сделать базу данных более гибкой за счет устранения избыточности и непоследовательной зависимости.
Избыточные данные пустая трата дискового пространства и создает проблемы с обслуживанием. Если данные, которые существуют в нескольких местах, должны быть изменены, данные должны быть изменены точно так же во всех расположениях. Изменение адреса клиента гораздо проще реализовать, если эти данные хранятся только в таблице Клиентов и нигде в базе данных.
Что такое «непоследовательная зависимость»? Хотя пользователю интуитивно понятно искать в таблице Клиенты адрес конкретного клиента, не имеет смысла искать там зарплату сотрудника, который вызывает этого клиента. Заработная плата сотрудника связана с сотрудником или зависит от него, и поэтому его следует перенаселять в таблицу «Сотрудники». Несовместимые зависимости могут затруднить доступ к данным, так как путь к поиску данных может быть пропущен или нарушен.
Существует несколько правил нормализации базы данных. Каждое правило называется «нормальной формой». Если первое правило соблюдается, база данных, как сообщается, находится в «первой нормальной форме». Если соблюдаются первые три правила, база данных рассматривается как «третья нормальная форма». Хотя возможны другие уровни нормализации, третья нормальная форма считается наивысшим уровнем, необходимым для большинства приложений.
Как и во многих формальных правилах и спецификациях, сценарии реального мира не всегда позволяют обеспечить идеальное соответствие требованиям. Как правило, для нормализации требуются дополнительные таблицы, и некоторые клиенты считают это громоздким. Если вы решите нарушить одно из первых трех правил нормализации, убедитесь, что ваше приложение предвосхищает возможные проблемы, такие как избыточные данные и несовместимые зависимости.
Ниже описаны примеры.
Первая нормальная форма
Не используйте несколько полей в одной таблице для хранения аналогичных данных. Например, для отслеживания элемента инвентаризации, который может приходить из двух возможных источников, запись инвентаризации может содержать поля для кода поставщика 1 и кода поставщика 2.
Что происходит при добавлении третьего поставщика? Добавление поля не является ответом; она требует изменений программы и таблицы и не позволяет плавно разместить динамическое число поставщиков. Вместо этого поместите всю информацию поставщика в отдельную таблицу под названием Поставщики, а затем увязыв инвентаризацию с поставщиками с ключом номера элемента, или поставщики для инвентаризации с ключом кода поставщика.
Вторая нормальная форма
Записи не должны зависеть от чего-либо, кроме основного ключа таблицы (сложный ключ, если это необходимо). Например, рассмотрим адрес клиента в системе учета. Адрес необходим в таблице Клиенты, а также таблицами «Заказы», «Доставка», «Счета-фактуры», «Отчеты о счетах» и «Коллекции». Вместо того, чтобы хранить адрес клиента как отдельную запись в каждой из этих таблиц, храните его в одном месте, в таблице Клиенты или в отдельной таблице Адресов.
Третья нормальная форма
Значения в записи, которая не входит в ключ этой записи, не относятся к таблице. В общем, в любое время содержимое группы полей может применяться к более чем одной записи в таблице, рассмотрите возможность размещения этих полей в отдельной таблице.
Например, в таблице набора сотрудников может быть включено имя и адрес университета кандидата. Но для групповой рассылки необходим полный список университетов. Если сведения о университетах хранятся в таблице Candidates, нет возможности перечислять университеты без текущих кандидатов. Создайте отдельную таблицу университетов и привяжете ее к таблице Кандидаты с ключом кода университета.
ИСКЛЮЧЕНИЕ: применение третьей обычной формы, хотя теоретически желательно, не всегда является практическим. Если у вас есть таблица Клиентов и вы хотите устранить все возможные зависимости между полями, необходимо создать отдельные таблицы для городов, почтовых индексов, представителей продаж, классов клиентов и любого другого фактора, который может быть дублирован в нескольких записях. В теории, нормализация стоит очистки. Однако многие небольшие таблицы могут ухудшать производительность или превышать возможности открытого файла и памяти.
Возможно, более целесообразно применять третью нормальную форму только к данным, которые часто меняются. Если остаются некоторые зависимые поля, спроектировать приложение, чтобы потребовать от пользователя проверить все связанные поля при их смене.
Другие формы нормализации
Четвертая нормальная форма, также называемая «Обычная форма Бойс Кодд» (BCNF), и пятая нормальная форма существуют, но редко рассматриваются в практическом дизайне. Игнорирование этих правил может привести к менее совершенному дизайну базы данных, но не должно влиять на функциональные возможности.
Нормализация таблицы примеров
Эти действия демонстрируют процесс нормализации фиктивной студенческой таблицы.
Student # | Советник | Adv-Room | Класс 1 | Class2 | Class3 |
---|---|---|---|---|---|
1022 | Джонс | 412 | 101-07 | 143-01 | 159-02 |
4123 | Smith | 216 | 101-07 | 143-01 | 179-04 |
Первая нормальная форма: нет повторяюющихся групп
Таблицы должны иметь только два измерения. Так как у одного учащегося несколько классов, эти классы должны быть указаны в отдельной таблице. Поля Class1, Class2 и Class3 в вышеуказанных записях указывают на проблемы с дизайном.
Таблицы часто используют третье измерение, но таблицы не должны. Другой способ взглянуть на эту проблему — это отношение между одним и большим количеством, не помещая одну сторону и множество сторон в одну таблицу. Вместо этого создайте другую таблицу в первой обычной форме, устранив группу повторяющихся (Класс#), как показано ниже:
Student # | Советник | Adv-Room | Класс # |
---|---|---|---|
1022 | Джонс | 412 | 101-07 |
1022 | Джонс | 412 | 143-01 |
1022 | Джонс | 412 | 159-02 |
4123 | Smith | 216 | 101-07 |
4123 | Smith | 216 | 143-01 |
4123 | Smith | 216 | 179-04 |
Вторая нормальная форма: устранение избыточных данных
Обратите внимание на несколько значений Класса#для каждого значения Student# в вышеуказанной таблице. Класс# функционально не зависит от student# (основной ключ), поэтому эта связь не находится во второй нормальной форме.
В следующих таблицах демонстрируется вторая нормальная форма:
Student # | Советник | Adv-Room |
---|---|---|
1022 | Джонс | 412 |
4123 | Smith | 216 |
Student # | Класс # |
---|---|
1022 | 101-07 |
1022 | 143-01 |
1022 | 159-02 |
4123 | 101-07 |
4123 | 143-01 |
4123 | 179-04 |
Третья нормальная форма: устранение данных, не зависящих от ключа
В последнем примере Adv-Room (номер офиса советника) функционально зависит от атрибута Advisor. Решение заключается в том, чтобы переместить этот атрибут из таблицы Студенты в таблицу факультета, как показано ниже: